1
|
Schaub GA. Trypanosoma cruzi/Triatomine Interactions-A Review. Pathogens 2025; 14:392. [PMID: 40333244 PMCID: PMC12030229 DOI: 10.3390/pathogens14040392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, and its vectors, the triatomines, and highlights open questions. Four important facts should be emphasized at the outset: (1) The development of T. cruzi strains and their interactions with the mammalian host and the insect vector vary greatly. (2) Only about 10 of over 150 triatomine species have been studied for their interactions with the protozoan parasite. (3) The use of laboratory strains of triatomines makes generalizations difficult, as maintenance conditions influence the interactions. (4) The intestinal microbiota is involved in the interactions, but the mutualistic symbionts, Actinomycetales, have so far only been identified in four species of triatomines. The effects of the vector on T. cruzi are reflected in a different colonization ability of T. cruzi in different triatomine species. In addition, the conditions in the intestine lead to strong multiplication in the posterior midgut and rectum, with infectious metacyclic trypomastigotes developing almost exclusively in the latter. Starvation and feeding of the vector induce the development of certain stages of T. cruzi. The negative effects of T. cruzi on the triatomines depend on the T. cruzi strain and are particularly evident when the triatomines are stressed. The intestinal immunity of the triatomines responds to ingested blood-stage trypomastigotes of some T. cruzi strains and affects many intestinal bacteria, but not all and not the mutualistic symbionts. The specific interaction between T. cruzi and the bacteria is evident after the knockdown of antimicrobial peptides: the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. In long-term infections, the suppression of intestinal immunity is indicated by the growth of specific microbiota.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
2
|
Peterson JK, MacDonald ML, Ellis VA. First whole-genome sequence of Triatoma sanguisuga (Le Conte, 1855), vector of Chagas disease. G3 (BETHESDA, MD.) 2025; 15:jkae308. [PMID: 39739582 PMCID: PMC11917478 DOI: 10.1093/g3journal/jkae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025]
Abstract
Triatoma sanguisuga is the most widespread triatomine bug species in the United States. The species vectors the human parasite Trypanosoma cruzi, which causes Chagas disease. Vector-borne Chagas disease is rarely diagnosed in the United States, but T. sanguisuga has been implicated in a handful of cases. Despite its public health importance, little is known about the genomics or population genetics of T. sanguisuga. Here, we used long-read sequencing to assemble the first whole-genome sequence for T. sanguisuga using DNA extracted from 1 adult specimen from Delaware. The final size of the genome was 1.162 Gb with 77.7× coverage. The assembly consisted of 183 contigs with an N50 size of 94.97 kb. The Benchmarking Universal Single-Copy Ortholog complete score was 99.1%, suggesting a very complete assembly. Genome-wide GC content was 33.56%, and DNA methylation was 18.84%. The genome consists of 62.75% repetitive DNAs and 17,799 predicted coding genes. The assembled T. sanguisuga genome was very close in size and BUSCO score to that of Triatominae species T. dimidiata (1.16 Gb with 99.1% BUSCO score for T. sanguisuga vs 1.22 Gb with 98.7% BUSCO score for T. dimidiata) and slightly larger than that of T. infestans and Rhodnius prolixus (949 Mb with 90.4% BUSCO score and 706 Mb with 96.5% BUSCO score, respectively). The T. sanguisuga genome is the first North American triatomine species genome to be sequenced, allowing for deeper investigations into epidemiologically relevant aspects of triatomines in temperate climates, thus providing potential vector-borne disease management targets and strengthening public health preparedness.
Collapse
Affiliation(s)
- Jennifer K Peterson
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Madolyn L MacDonald
- Bioinformatics and Computational Biology Core, University of Delaware, Newark, DE 19716, USA
| | - Vincenzo A Ellis
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
3
|
Desale H, Tu W, Goff K, Marx PA, Herrera C, Dumonteil E. PBMC transcriptomic signatures reflect Trypanosoma cruzi strain diversity and trained immunity in chronically infected macaques. JCI Insight 2025; 10:e186003. [PMID: 39774119 PMCID: PMC11949070 DOI: 10.1172/jci.insight.186003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
Chagas disease is a tropical disease caused by Trypanosoma cruzi with clinical presentations ranging from asymptomatic to cardiac and/or gastrointestinal complications. The mechanisms of pathogenesis are still poorly understood, but T. cruzi strain diversity may be associated with disease progression. Therefore, we evaluated the transcriptomic response of PBMCs from macaques with natural chronic infections and tested for heterogeneity in their gene signatures. Remarkably, transcriptomic response to T. cruzi infection matched parasite strain profiles, indicating that parasite diversity is a key determinant of host response. While differences in adaptive immune responses were identified, more striking alterations of innate immune processes were detected. Thus, initial innate response to T. cruzi infection may be conditioned by parasite strain diversity, resulting in different profiles of trained immunity modulating subsequent adaptive responses, allowing parasite control or its persistence during the chronic phase. These results call for further characterization of the cross-talk between innate and adaptive immunity according to parasite diversity as well as how altered trained immunity contributes to pathogenesis, as this may lead to better treatments and vaccines.
Collapse
Affiliation(s)
- Hans Desale
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Weihong Tu
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Preston A. Marx
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Claudia Herrera
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and
- Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
4
|
Omondi ZN, Caner A, Arserim SK. Trypanosomes and gut microbiota interactions in triatomine bugs and tsetse flies: A vectorial perspective. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:253-268. [PMID: 38651684 DOI: 10.1111/mve.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ayşe Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
5
|
Llovera A, Abras A, Fernández-Arévalo A, Ballart C, Heras S, Muñoz C, Gállego M. Genetic Diversity of Trypanosoma cruzi in the United States of America: The Least Endemic Country for Chagas Disease. Life (Basel) 2024; 14:901. [PMID: 39063654 PMCID: PMC11278504 DOI: 10.3390/life14070901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Chagas disease (CD), caused by Trypanosoma cruzi and endemic in Latin America, has become an emergent health problem in non-endemic countries due to human migration. The United States (US) is the non-Latin American country with the highest CD burden and cannot be considered as non-endemic, since triatomine vectors and reservoir animals have been found. Populations of T. cruzi are divided into genetic subdivisions, which are known as discrete typing units (DTUs): TcI to TcVI and TcBat. Autochthonous human T. cruzi infection in the US is sporadic, but it may change due to environmental factors affecting the geographic distribution of triatomines. We aimed to perform a literature review of the genetic diversity of T. cruzi in triatomine vectors and mammalian hosts, including human cases, in the US. The 34 analyzed studies revealed the presence of T. cruzi in 18 states, which was mainly concentrated in Texas, Louisiana and New Mexico. TcI and TcIV were the principal DTUs identified, being TcI the most genotyped (42.4%; 917/2164). This study represents a first attempt to compile the molecular epidemiology of T. cruzi in the US, which is fundamental for predicting the progression of the infection in the country and could be of great help in its future management.
Collapse
Affiliation(s)
| | - Alba Abras
- Laboratori d’Ictiologia Genètica, Departament de Biologia, Universitat de Girona, 17003 Girona, Spain;
| | - Anna Fernández-Arévalo
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (A.F.-A.); (C.B.); (M.G.)
| | - Cristina Ballart
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (A.F.-A.); (C.B.); (M.G.)
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Sandra Heras
- Laboratori d’Ictiologia Genètica, Departament de Biologia, Universitat de Girona, 17003 Girona, Spain;
| | - Carmen Muñoz
- Servei de Microbiologia, Hospital de la Santa Creu i Sant Pau, 08025 Barcelona, Spain;
- Institut de Recerca Biomèdica Sant Pau, 08041 Barcelona, Spain
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Montserrat Gállego
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain; (A.F.-A.); (C.B.); (M.G.)
- Institut de Salut Global de Barcelona (ISGlobal), Hospital Clínic, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBERINFEC (Centro de Investigación Biomédica en Red de Enfermedades Infecciosas), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
6
|
Baiz MD, Wood AW, Toews DPL. Association between the gut microbiome and carotenoid plumage phenotype in an avian hybrid zone. Proc Biol Sci 2024; 291:20240238. [PMID: 38628125 PMCID: PMC11022011 DOI: 10.1098/rspb.2024.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection.
Collapse
Affiliation(s)
- Marcella D. Baiz
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260, USA
| | - Andrew W. Wood
- Department of Biology, Pennylvania State University, University Park, PA 16802, USA
| | - David P. L. Toews
- Department of Biology, Pennylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
8
|
Vargas-Gastélum L, Romer AS, Ghotbi M, Dallas JW, Alexander NR, Moe KC, McPhail KL, Neuhaus GF, Shadmani L, Spatafora JW, Stajich JE, Tabima JF, Walker DM. Herptile gut microbiomes: a natural system to study multi-kingdom interactions between filamentous fungi and bacteria. mSphere 2024; 9:e0047523. [PMID: 38349154 PMCID: PMC10964425 DOI: 10.1128/msphere.00475-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/10/2024] [Indexed: 03/27/2024] Open
Abstract
Reptiles and amphibians (herptiles) are some of the most endangered and threatened species on the planet and numerous conservation strategies are being implemented with the goal of ensuring species recovery. Little is known, however, about the gut microbiome of wild herptiles and how it relates to the health of these populations. Here, we report results from the gut microbiome characterization of both a broad survey of herptiles, and the correlation between the fungus Basidiobolus, and the bacterial community supported by a deeper, more intensive sampling of Plethodon glutinosus, known as slimy salamanders. We demonstrate that bacterial communities sampled from frogs, lizards, and salamanders are structured by the host taxonomy and that Basidiobolus is a common and natural component of these wild gut microbiomes. Intensive sampling of multiple hosts across the ecoregions of Tennessee revealed that geography and host:geography interactions are strong predictors of distinct Basidiobolus operational taxonomic units present within a given host. Co-occurrence analyses of Basidiobolus and bacterial community diversity support a correlation and interaction between Basidiobolus and bacteria, suggesting that Basidiobolus may play a role in structuring the bacterial community. We further the hypothesis that this interaction is advanced by unique specialized metabolism originating from horizontal gene transfer from bacteria to Basidiobolus and demonstrate that Basidiobolus is capable of producing a diversity of specialized metabolites including small cyclic peptides.IMPORTANCEThis work significantly advances our understanding of biodiversity and microbial interactions in herptile microbiomes, the role that fungi play as a structural and functional members of herptile gut microbiomes, and the chemical functions that structure microbiome phenotypes. We also provide an important observational system of how the gut microbiome represents a unique environment that selects for novel metabolic functions through horizontal gene transfer between fungi and bacteria. Such studies are needed to better understand the complexity of gut microbiomes in nature and will inform conservation strategies for threatened species of herpetofauna.
Collapse
Affiliation(s)
- Lluvia Vargas-Gastélum
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexander S. Romer
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Marjan Ghotbi
- Research Division 3, Marine Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Jason W. Dallas
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - N. Reed Alexander
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Kylie C. Moe
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Kerry L. McPhail
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - George F. Neuhaus
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Leila Shadmani
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
| | - Joseph W. Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Jason E. Stajich
- Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, California, USA
- Institute for Integrative Genome Biology, University of California, Riverside, California, USA
| | - Javier F. Tabima
- Department of Biology, Clark University, Worcester, Massachusetts, USA
| | - Donald M. Walker
- Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
9
|
Busselman RE, Curtis-Robles R, Meyers AC, Zecca IB, Auckland LD, Hodo CL, Christopher D, Saunders AB, Hamer SA. Abundant triatomines in Texas dog kennel environments: Triatomine collections, infection with Trypanosoma cruzi, and blood feeding hosts. Acta Trop 2024; 250:107087. [PMID: 38061614 DOI: 10.1016/j.actatropica.2023.107087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Triatomine insects are vectors of the protozoan parasite Trypanosoma cruzi- the causative agent of Chagas disease. Chagas disease is endemic to Latin America and the southern United States and can cause severe cardiac damage in infected mammals, ranging from chronic disease to sudden death. Identifying interactions among triatomines, T. cruzi discrete typing units (DTUs), and blood feeding hosts is necessary to understand parasite transmission dynamics and effectively protect animal and human health. Through manual insect trapping efforts, kennel staff collections, and with the help of a trained scent detection dog, we collected triatomines from 10 multi-dog kennels across central and south Texas over a one-year period (2018-2019) and tested a subset to determine their T. cruzi infection status and identify the primary bloodmeal hosts. We collected 550 triatomines, including Triatoma gerstaeckeri (n = 515), Triatoma lecticularia (n = 15), Triatoma sanguisuga (n = 6), and Triatoma indictiva (n = 2), with an additional 10 nymphs and 2 adults unable to be identified to species. The trained dog collected 42 triatomines, including nymphs, from areas not previously considered vector habitat by the kennel owners. Using qPCR, we found a T. cruzi infection prevalence of 47 % (74/157), with T. lecticularia individuals more likely to be infected with T. cruzi than other species. Infected insects harbored two T. cruzi discrete typing units: TcI (64 %), TcIV (23 %), and mixed TcI/TcIV infections (13 %). Bloodmeal host identification was successful in 50/149 triatomines, revealing the majority (74 %) fed on a dog (Canis lupus), with other host species including humans (Homo sapiens), raccoons (Procyon lotor), chickens (Gallus gallus), wild pig (Sus scrofa), black vulture (Coragyps atratus), cat (Felis catus), and curve-billed thrasher (Toxostoma curviostre). Given the frequency of interactions between dogs and infected triatomines in these kennel environments, dogs may be an apt target for future vector control and T. cruzi intervention efforts.
Collapse
Affiliation(s)
- R E Busselman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - R Curtis-Robles
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - A C Meyers
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - I B Zecca
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - L D Auckland
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - C L Hodo
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States; Michale E. Keeling Center for Comparative Medicine and Research, The University of Texas MD Anderson Cancer Center, Bastrop, TX, United States
| | | | - A B Saunders
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, TX, United States
| | - S A Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
10
|
Gunter SM, Nelson A, Kneubehl AR, Justi SA, Manzanero R, Zielinski-Gutierrez E, Herrera C, Thompson J, Mandage R, Desale H, Maliga A, Bautista K, Ronca SE, Morey F, Fuentes RC, Lopez B, Dumonteil E, Morazan GH, Murray KO. Novel species of Triatoma (Hemiptera: Reduviidae) identified in a case of vectorial transmission of Chagas disease in northern Belize. Sci Rep 2024; 14:1412. [PMID: 38228608 PMCID: PMC10792162 DOI: 10.1038/s41598-023-50109-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 01/18/2024] Open
Abstract
Chagas disease is a leading cause of non-ischemic cardiomyopathy in endemic regions of Central and South America. In Belize, Triatoma dimidiata sensu lato has been identified as the predominate taxon but vectorial transmission of Chagas disease is considered to be rare in the country. We recently identified an acute case of vector-borne Chagas disease in the northern region of Belize. Here we present a subsequent investigation of triatomines collected around the case-patient's home. We identified yet undescribed species, closely related to Triatoma huehuetenanguensis vector by molecular systematics methods occurring in the peridomestic environment. The identification of a T. cruzi-positive, novel species of Triatoma in Belize indicates an increased risk of transmission to humans in the region and warrants expanded surveillance and further investigation.
Collapse
Affiliation(s)
- Sarah M Gunter
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA.
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA.
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA.
| | - Alisa Nelson
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander R Kneubehl
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Silvia A Justi
- Walter Reed Biosystematics Unit, Smithsonian Institution, Museum Support Center, Suitland, MD, USA
- One Health Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Smithsonian Institution National Museum of Natural History, Washington, DC, USA
| | | | | | - Claudia Herrera
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Julie Thompson
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
- Department of Biomedical Science, School of Medicine, Tulane University, New Orleans, LA, USA
| | - Rajendra Mandage
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Hans Desale
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Adrianna Maliga
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kim Bautista
- Belize Ministry of Health and Wellness, Belmopan, Belize
| | - Shannon E Ronca
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Francis Morey
- Belize Ministry of Health and Wellness, Belmopan, Belize
| | - Rafael Chacon Fuentes
- Centers for Disease Control and Prevention-Central America Region, Guatemala City, Guatemala
| | - Beatriz Lopez
- Centers for Disease Control and Prevention-Central America Region, Guatemala City, Guatemala
| | - Eric Dumonteil
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | | | - Kristy O Murray
- Division of Tropical Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, USA
- William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
11
|
Arias-Argáez BC, Dzul-Huchim VM, Haro-Álvarez AP, Rosado-Vallado ME, Villanueva-Lizama L, Cruz-Chan JV, Dumonteil E. Signature of cardiac alterations in early and late chronic infections with Trypanosoma cruzi in mice. PLoS One 2023; 18:e0292520. [PMID: 37797045 PMCID: PMC10553825 DOI: 10.1371/journal.pone.0292520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
Chagas disease by Trypanosoma cruzi (T. cruzi) infection is a leading cause of myocarditis worldwide. Chagas cardiomyopathy is presented with a wide variety of conduction abnormalities including arrhythmias, first- and second-degree atrioventricular blockade, left ventricular systolic dysfunction and some cases heart failure leading to the death. Currently, there are no effective treatments available against advanced Chagas disease. With the advance in the development of novel therapies, it is important to utilize an animal model that can effectively replicate the diverse stages of Chagas disease, including chronic asymptomatic and symptomatic infection, that are akin to those observed in humans. Therefore, to characterize the cardiac alterations during the evolution of the infection, we evaluated the progression of cardiomyopathy caused by T. cruzi H1 infection in both BALB/c and ICR mouse models by performing electrocardiogram (ECG) studies in unanesthetized mice every month until 210 days post-infection (dpi). In the late chronic phase of infection, we also performed echocardiogram (ECHO) studies to further assess cardiac function. In conclusion, we demonstrated that ICR mice were more susceptible to cardiac alterations compared to BALB/c mice and both mouse strains are suitable experimental models to study chronic T. cruzi infection and novel treatments.
Collapse
Affiliation(s)
- Bárbara Carolina Arias-Argáez
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Victor Manuel Dzul-Huchim
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Ana Paulina Haro-Álvarez
- Instituto de Investigaciones en Ciencias Veterinarias, Universidad Autónoma de Baja California, Mexicali, Baja California, México
| | - Miguel Enrique Rosado-Vallado
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Liliana Villanueva-Lizama
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Julio Vladimir Cruz-Chan
- Laboratorio de Parasitología, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autónoma de Yucatán, Mérida, Yucatán, México
| | - Eric Dumonteil
- Department of Tropical Medicine and Infectious Disease, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
| |
Collapse
|
12
|
Dumonteil E, Desale H, Tu W, Hernandez-Cuevas N, Shroyer M, Goff K, Marx PA, Herrera C. Intra-host Trypanosoma cruzi strain dynamics shape disease progression: the missing link in Chagas disease pathogenesis. Microbiol Spectr 2023; 11:e0423622. [PMID: 37668388 PMCID: PMC10581044 DOI: 10.1128/spectrum.04236-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/10/2023] [Indexed: 09/06/2023] Open
Abstract
Chronic Chagasic cardiomyopathy develops years after infection in 20-40% of patients, but disease progression is poorly understood. Here, we assessed Trypanosoma cruzi parasite dynamics and pathogenesis over a 2.5-year period in naturally infected rhesus macaques. Individuals with better control of parasitemia were infected with a greater diversity of parasite strains compared to those with increasing parasitemia over time. Also, the in vivo parasite multiplication rate decreased with increasing parasite diversity, suggesting competition among strains or a stronger immune response in multiple infections. Significant differences in electrocardiographic (ECG) profiles were observed in Chagasic macaques compared to uninfected controls, suggesting early conduction defects, and changes in ECG patterns over time were observed only in macaques with increasing parasitemia and lower parasite diversity. Disease progression was also associated with plasma fibronectin degradation, which may serve as a biomarker. These data provide a novel framework for the understanding of Chagas disease pathogenesis, with parasite diversity shaping disease progression.IMPORTANCEChagas disease progression remains poorly understood, and patients at increased risk of developing severe cardiac disease cannot be distinguished from those who may remain asymptomatic. Monitoring of Trypanosoma cruzi strain dynamics and pathogenesis over 2-3 years in naturally infected macaques shows that increasing parasite diversity in hosts is detrimental to parasite multiplication and Chagasic cardiomyopathy disease progression. This provides a novel framework for the understanding of Chagas disease pathogenesis.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Hans Desale
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Weihong Tu
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| | - Nora Hernandez-Cuevas
- Laboratorio de Parasitologia, Centro de Investigaciones Regionales “Dr. Hideyo Noguchi”, Universidad Autonoma de Yucatan, Merida, Yucatan, Mexico
| | - Monica Shroyer
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Kelly Goff
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Preston A. Marx
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
13
|
Tarabai H, Floriano AM, Zima J, Filová N, Brown JJ, Roachell W, Smith RL, Beatty NL, Vogel KJ, Nováková E. Microbiomes of Blood-Feeding Triatomines in the Context of Their Predatory Relatives and the Environment. Microbiol Spectr 2023; 11:e0168123. [PMID: 37289079 PMCID: PMC10433993 DOI: 10.1128/spectrum.01681-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/09/2023] Open
Abstract
The importance of gut microbiomes has become generally recognized in vector biology. This study addresses microbiome signatures in North American Triatoma species of public health significance (vectors of Trypanosoma cruzi) linked to their blood-feeding strategy and the natural habitat. To place the Triatoma-associated microbiomes within a complex evolutionary and ecological context, we sampled sympatric Triatoma populations, related predatory reduviids, unrelated ticks, and environmental material from vertebrate nests where these arthropods reside. Along with five Triatoma species, we have characterized microbiomes of five reduviids (Stenolemoides arizonensis, Ploiaria hirticornis, Zelus longipes, and two Reduvius species), a single soft tick species, Ornithodoros turicata, and environmental microbiomes from selected sites in Arizona, Texas, Florida, and Georgia. The microbiomes of predatory reduviids lack a shared core microbiota. As in triatomines, microbiome dissimilarities among species correlate with dominance of a single bacterial taxon. These include Rickettsia, Lactobacillus, "Candidatus Midichloria," and Zymobacter, which are often accompanied by known symbiotic genera, i.e., Wolbachia, "Candidatus Lariskella," Asaia, Gilliamella, and Burkholderia. We have further identified a compositional convergence of the analyzed microbiomes in regard to the host phylogenetic distance in both blood-feeding and predatory reduviids. While the microbiomes of the two reduviid species from the Emesinae family reflect their close relationship, the microbiomes of all Triatoma species repeatedly form a distinct monophyletic cluster highlighting their phylosymbiosis. Furthermore, based on environmental microbiome profiles and blood meal analysis, we propose three epidemiologically relevant and mutually interrelated bacterial sources for Triatoma microbiomes, i.e., host abiotic environment, host skin microbiome, and pathogens circulating in host blood. IMPORTANCE This study places microbiomes of blood-feeding North American Triatoma vectors (Reduviidae) into a broader evolutionary and ecological context provided by related predatory assassin bugs (Reduviidae), another unrelated vector species (soft tick Ornithodoros turicata), and the environment these arthropods coinhabit. For both vectors, microbiome analyses suggest three interrelated sources of bacteria, i.e., the microbiome of vertebrate nests as their natural habitat, the vertebrate skin microbiome, and the pathobiome circulating in vertebrate blood. Despite an apparent influx of environment-associated bacteria into the arthropod microbiomes, Triatoma microbiomes retain their specificity, forming a distinct cluster that significantly differs from both predatory relatives and ecologically comparable ticks. Similarly, within the related predatory Reduviidae, we found the host phylogenetic distance to underlie microbiome similarities.
Collapse
Affiliation(s)
- Hassan Tarabai
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Central European Institute of Technology (CEITEC), University of Veterinary Sciences, Brno, Czech Republic
| | - Anna Maria Floriano
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Jan Zima
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Natalia Filová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Joel J. Brown
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Cornell University, Department of Entomology, Ithaca, New York, USA
| | - Walter Roachell
- Public Health Command-Central, Fort Sam Houston, San Antonio, Texas, USA
| | - Robert L. Smith
- The University of Arizona, Department of Entomology and Desert Station, Tucson, Arizona, USA
| | - Norman L. Beatty
- University of Florida College of Medicine, Department of Medicine, Division of Infectious Disease and Global Medicine, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Kevin J. Vogel
- The University of Georgia, Department of Entomology, Athens, Georgia, USA
| | - Eva Nováková
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Institute of Parasitology, Ceske Budejovice, Czech Republic
| |
Collapse
|
14
|
Torhorst CW, Ledger KJ, White ZS, Milleson MP, Corral CC, Beatty NL, Wisely SM. Trypanosoma cruzi infection in mammals in Florida: New insight into the transmission of T. cruzi in the southeastern United States. Int J Parasitol Parasites Wildl 2023; 21:237-245. [PMID: 37575667 PMCID: PMC10422094 DOI: 10.1016/j.ijppaw.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/23/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023]
Abstract
In Latin America, synanthropic mammalian reservoirs maintain Trypanosoma cruzi, a parasitic protozoan, where they facilitate the transmission of the parasite to humans and other reservoir hosts in peridomestic settings. In the United States, raccoons (Procyon lotor) and Virginia opossums (Didelphis virginiana) are known synanthropic T. cruzi reservoir hosts; however, the role these species have in the peridomestic transmission cycle in the US is not well understood. This study aimed to identify the suite of mammalian reservoirs of T. cruzi in Florida. We also compared infection prevalence in raccoon populations sampled from within and outside of the estimated distribution of the common T. cruzi vector in Florida to gain insight into how the arthropod vector distribution impacts the distribution of infected reservoirs in the state. Finally, to investigate the impact of peridomestic landscapes on parasite prevalence, we compared the prevalence of T. cruzi-infected raccoons and opossums across five paired peridomestic and sylvatic sites. We live-trapped and collected peripheral blood samples from 135 raccoons, 112 opossums, 18 nine-banded armadillos (Dasypus novemcinctus), and nine species of rodents in north central Florida. Using quantitative PCR methods, we found that raccoons (42.2%, 95% CI [34.2-50.7%]) and opossums (50.9%, 95% CI [41.8-60.0%]) were infected with T. cruzi and the prevalence across habitats was similar for both raccoons (peridomestic: n = 77, 44.2%, 95% CI [33.6-55.3%], sylvatic: n = 58, 39.7%, 95% CI [28.1-52.5%]) and opossums (peridomestic: n = 66, 48.5%, 95% CI [36.8-60.3%], sylvatic: n = 46, 54.3%, 95% CI [40.2-67.8%]). Raccoons sampled outside the estimated distribution of Triatoma sanguisuga were not infected with T. cruzi (n = 73, 0.0%, 95% CI [0.0-5.0%]). Our study did not indicate that peridomestic habitats in Florida maintained a higher infection prevalence than their sylvatic counterparts; however, we did find a difference in prevalence within vs. outside the estimated vector distribution in Florida.
Collapse
Affiliation(s)
- Carson W. Torhorst
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Kimberly J. Ledger
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Zoe S. White
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Michael P. Milleson
- United States Department of Agriculture-Animal and Plant Health Inspection Service, National Wildlife Disease Surveillance and Emergency Response Program, Gainesville, FL, USA
| | - Catalina C. Corral
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
| | - Norman L. Beatty
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
- Division of Infectious Diseases and Global Medicine, Department of Medicine in the College of Medicine, Gainesville, FL, USA
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
15
|
Majeau A, Cloherty E, Anderson AN, Straif-Bourgeois SC, Dumonteil E, Herrera C. Genetic diversity of Trypanosoma cruzi infecting raccoons ( Procyon lotor) in 2 metropolitan areas of southern Louisiana: implications for parasite transmission networks. Parasitology 2023; 150:374-381. [PMID: 36788672 PMCID: PMC10090583 DOI: 10.1017/s0031182023000070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/11/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023]
Abstract
Trypanosoma cruzi, the aetiological agent of Chagas disease, exists as an anthropozoonosis in Louisiana. Raccoons are an important reservoir, as they demonstrate high prevalence and maintain high parasitaemia longer than other mammals. Given the complex nature of parasite transmission networks and importance of raccoons as reservoirs that move between sylvatic and domestic environments, detailing the genetic diversity of T. cruzi in raccoons is crucial to assess risk to human health. Using a next-generation sequencing approach targeting the mini-exon, parasite diversity was assessed in 2 metropolitan areas of Louisiana. Sequences were analysed along with those previously identified in other mammals and vectors to determine if any association exists between ecoregion and parasite diversity. Parasites were identified from discrete typing units (DTUs) TcI, TcII, TcIV, TcV and TcVI. DTUs TcII, TcV and TcVI are previously unreported in raccoons in the United States (US). TcI was the most abundant DTU, comprising nearly 80% of all sequences. All but 1 raccoon harboured multiple haplotypes, some demonstrating mixed infections of different DTUs. Furthermore, there is significant association between DTU distribution and level III ecoregion in Louisiana. Finally, while certain sequences were distributed across multiple tissues, others appeared to have tissue-specific tropism. Taken together, these findings indicate that ongoing surveillance of T. cruzi in the US should be undertaken across ecoregions to fully assess risk to human health. Given potential connections between parasite diversity and clinical outcomes, deep sequencing technologies are crucial and interventions targeting raccoons may prove useful in mitigating human health risk.
Collapse
Affiliation(s)
- Alicia Majeau
- Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, USA
| | - Erin Cloherty
- New Orleans Mosquito, Rodent, and Termite Control, New Orleans, LA, USA
| | - A Nikki Anderson
- Louisiana Department of Wildlife and Fisheries, Baton Rouge, LA, USA
| | | | - Eric Dumonteil
- Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, USA
| | - Claudia Herrera
- Tulane University School of Public Health & Tropical Medicine, New Orleans, LA, USA
| |
Collapse
|
16
|
Teal E, Herrera C, Dumonteil E. Metabolomics of developmental changes in Triatoma sanguisuga gut microbiota. PLoS One 2023; 18:e0280868. [PMID: 36827319 PMCID: PMC9955940 DOI: 10.1371/journal.pone.0280868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 02/25/2023] Open
Abstract
Triatoma sanguisuga is one of the major vectors of Trypanosoma cruzi in the southeastern US, where it sustains a robust zoonotic parasite transmission cycle and occasional human infections. A better understanding of triatomine development may allow for alternative approaches to insecticide-based vector control. Indeed, the role of the gut microbiota and bacterial endosymbionts in triatomine development and in their vectorial capacity is emerging. We investigated here the differences in microbiota among nymph and adult T. sanguisuga, to shed light on the metabolomic interactions occurring during development. Microbiota composition was assessed by 16s gene amplification and deep sequencing from field-caught adult bugs and their laboratory-raised progeny. Significant differences in microbiota bacterial diversity and composition were observed between nymphs and adults. Laboratory-raised nymphs showed a higher taxonomic diversity, and at least seven families predominated. On the other hand, field-caught adults had a lower bacterial diversity and four families comprised most of the microbiota. These differences in compositions were associated with differences in predicted metabolism, with laboratory-raised nymphs microbiota metabolizing a limited diversity of carbon sources, with potential for resource competition between bacterial families, and the production of lactic acid as a predominant fermentation product. On the other hand, field-caught adult microbiota was predicted to metabolize a broader diversity of carbon sources, with complementarity rather than competition among taxa, and produced a diverse range of products in a more balanced manner. The restricted functionality of laboratory-raised nymph microbiota may be associated with their poor development in captivity, and further understanding of the metabolic interactions at play may lead to alternative vector control strategies targeting triatomine microbiota.
Collapse
Affiliation(s)
- Evan Teal
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, and Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Jameson SB, Cloherty E, Londono-Renteria B, Wesson DM. Chagas Disease in the Southeastern USA. CURRENT TROPICAL MEDICINE REPORTS 2022. [DOI: 10.1007/s40475-022-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Forsyth CJ, Manne-Goehler J, Bern C, Whitman J, Hochberg NS, Edwards M, Marcus R, Beatty NL, Castro-Sesquen YE, Coyle C, Stigler Granados P, Hamer D, Maguire JH, Gilman RH, Meymandi S. Recommendations for Screening and Diagnosis of Chagas Disease in the United States. J Infect Dis 2022; 225:1601-1610. [PMID: 34623435 PMCID: PMC9071346 DOI: 10.1093/infdis/jiab513] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Chagas disease affects an estimated 326 000-347 000 people in the United States and is severely underdiagnosed. Lack of awareness and clarity regarding screening and diagnosis is a key barrier. This article provides straightforward recommendations, with the goal of simplifying identification and testing of people at risk for US healthcare providers. METHODS A multidisciplinary working group of clinicians and researchers with expertise in Chagas disease agreed on 6 main questions, and developed recommendations based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology, after reviewing the relevant literature on Chagas disease in the United States. RESULTS Individuals who were born or resided for prolonged time periods in endemic countries of Mexico and Central and South America should be tested for Trypanosoma cruzi infection, and family members of people who test positive should be screened. Women of childbearing age with risk factors and infants born to seropositive mothers deserve special consideration due to the risk of vertical transmission. Diagnostic testing for chronic T. cruzi infection should be conducted using 2 distinct assays. CONCLUSIONS Increasing provider-directed screening for T. cruzi infection is key to addressing this neglected public health challenge in the United States.
Collapse
Affiliation(s)
- Colin J Forsyth
- Drugs for Neglected Diseases initiative, New York, New York, USA
| | - Jennifer Manne-Goehler
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey Whitman
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Natasha S Hochberg
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
- Boston Medical Center, Boston, Massachussetts, USA
| | - Morven Edwards
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Rachel Marcus
- Medstar Union Memorial Hospital, Washington, District of Columbia, USA
- Latin American Society of Chagas, Washington, District of Columbia, USA
| | - Norman L Beatty
- Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Yagahira E Castro-Sesquen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Christina Coyle
- Division of Infectious Diseases, Albert Einstein College of Medicine and Jacobi Medical Center, Bronx, New York, USA
| | | | - Davidson Hamer
- Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - James H Maguire
- Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sheba Meymandi
- Center of Excellence for Chagas Disease, Olive View-University of California, Los Angeles Medical Center, Sylmar, California, USA
| |
Collapse
|
19
|
Trypanosoma cruzi infection in the wild Chagas disease vector, Mepraia spinolai: Parasitic load, discrete typing units, and blood meal sources. Acta Trop 2022; 229:106365. [PMID: 35150641 DOI: 10.1016/j.actatropica.2022.106365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Mepraia spinolai, a wild vector of Trypanosoma cruzi in Chile, is an abundant triatomine species that is frequently infected by the parasite that causes Chagas disease. The aim of this study was to determine if the parasitic load of T. cruzi in M. spinolai is related to its blood meal source and the infecting DTUs of T. cruzi. METHODS The vector was captured in rural areas. In the laboratory, DNA was extracted from its abdomen and T. cruzi was quantified using qPCR. Real time PCR assays for four T. cruzi DTUs were performed. Blood meal sources were identified by real-time PCR amplification of vertebrate cytochrome b gene sequences coupled with high resolution melting (HRM). RESULTS Trypanosoma cruzi was detected in 735 M. spinolai; in 484 we identified one blood meal source, corresponding to human, sylvatic, and domestic species. From these, in 224 we were able to discriminate the infecting DTU. When comparing the parasitic loads between the unique blood meal sources, no significant differences were found, but infections with more than one DTU showed higher parasitic loads than single infections. DTU TcI was detected in a high proportion of the samples. CONCLUSIONS Higher parasitic loads are related to a greater number of T. cruzi DTUs infecting M. spinolai, and this triatomine seems to have a wide span of vertebrate species in its diet.
Collapse
|
20
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Exposure to Trypanosoma parasites induces changes in the microbiome of the Chagas disease vector Rhodnius prolixus. MICROBIOME 2022; 10:45. [PMID: 35272716 PMCID: PMC8908696 DOI: 10.1186/s40168-022-01240-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/31/2022] [Indexed: 05/04/2023]
Abstract
BACKGROUND The causative agent of Chagas disease, Trypanosoma cruzi, and its nonpathogenic relative, Trypanosoma rangeli, are transmitted by haematophagous triatomines and undergo a crucial ontogenetic phase in the insect's intestine. In the process, the parasites interfere with the host immune system as well as the microbiome present in the digestive tract potentially establishing an environment advantageous for development. However, the coherent interactions between host, pathogen and microbiota have not yet been elucidated in detail. We applied a metagenome shotgun sequencing approach to study the alterations in the microbiota of Rhodnius prolixus, a major vector of Chagas disease, after exposure to T. cruzi and T. rangeli focusing also on the functional capacities present in the intestinal microbiome of the insect. RESULTS The intestinal microbiota of R. prolixus was dominated by the bacterial orders Enterobacterales, Corynebacteriales, Lactobacillales, Clostridiales and Chlamydiales, whereas the latter conceivably originated from the blood used for pathogen exposure. The anterior and posterior midgut samples of the exposed insects showed a reduced overall number of organisms compared to the control group. However, we also found enriched bacterial groups after exposure to T. cruzi as well as T rangeli. While the relative abundance of Enterobacterales and Corynebacteriales decreased considerably, the Lactobacillales, mainly composed of the genus Enterococcus, developed as the most abundant taxonomic group. This applies in particular to vectors challenged with T. rangeli and at early timepoints after exposure to vectors challenged with T. cruzi. Furthermore, we were able to reconstruct four metagenome-assembled genomes from the intestinal samples and elucidate their unique metabolic functionalities within the triatomine microbiome, including the genome of a recently described insect symbiont, Candidatus Symbiopectobacterium, and the secondary metabolites producing bacteria Kocuria spp. CONCLUSIONS Our results facilitate a deeper understanding of the processes that take place in the intestinal tract of triatomine vectors during colonisation by trypanosomal parasites and highlight the influential aspects of pathogen-microbiota interactions. In particular, the mostly unexplored metabolic capacities of the insect vector's microbiome are clearer, underlining its role in the transmission of Chagas disease. Video Abstract.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Biologicum Campus Riedberg, Max-von-Laue-Str. 13, 60439 Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009 Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Senckenberganlage 25, 60325 Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt/Main, Germany
| |
Collapse
|
21
|
Haywood CJ, Jordon AM, Pena M, Nielsen CK, Jiménez FA. Tissue and Gastrointestinal Parasites of Colonizing Nine-Banded Armadillos at the Edge of Their Northern Range. J Parasitol 2022; 108:57-63. [DOI: 10.1645/21-76] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Carly J. Haywood
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| | - Abigail M. Jordon
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| | - Maria Pena
- U.S. Department of Health and Human Services, Health Resources and Services Administration, Health Systems Bureau, National Hansen's Disease Program, Baton Rouge, Louisiana 70809
| | - Clayton K. Nielsen
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| | - F. Agustín Jiménez
- School of Biological Sciences, Southern Illinois University, 1125 Lincoln Drive, Carbondale, Illinois 62901-6501
| |
Collapse
|
22
|
Beatty NL, White ZS, Bhosale CR, Wilson K, Cannella AP, Stenn T, Burkett-Cadena N, Wisely SM. Anaphylactic Reactions Due to Triatoma protracta (Hemiptera, Reduviidae, Triatominae) and Invasion into a Home in Northern California, USA. INSECTS 2021; 12:insects12111018. [PMID: 34821818 PMCID: PMC8619147 DOI: 10.3390/insects12111018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/28/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Kissing bugs are bloodsucking insects found throughout the Western Hemisphere, including the United States, but also within certain regions of the Western Pacific, India, the Middle East, and Africa. Within the Americas, these insects are known to harbor a parasite known as Trypanosoma cruzi, the causative agent of an infection in humans and other mammals known as Chagas disease. The infection can be spread through the fecal matter of the kissing bug when exposed to the skin or ingested from contaminated food or drink products. Kissing bugs will invade human homes and bite residents and their pets. The bite from a kissing bug can also lead to serious allergic reactions, including anaphylaxis. A potentially life-threatening allergic response typically needs emergency medical attention. We describe a home that was invaded by kissing bugs in northern California where the resident developed serious allergic reactions to the bite. The kissing bugs were identified and a blood meal investigation found the presence of human blood as well as the parasite, Trypanosoma cruzi. The resident was tested extensively for chronic Chagas disease due to his repeated exposure to the kissing bug but was found to not have the disease. Those who live in regions where kissing bugs are found naturally should be aware that their bites can be highly allergenic. Abstract Background: Triatoma protracta is a triatomine found naturally throughout many regions of California and has been shown to invade human dwellings and bite residents. A man living in Mendocino County, California, reported developing anaphylactic reactions due to the bite of an “unusual bug”, which he had found in his home for several years. Methods: We conducted environmental, entomological, and clinical investigations to examine the risk for kissing bug invasion, presence of Trypanosoma cruzi, and concerns for Chagas disease at this human dwelling with triatomine invasion. Results: Home assessment revealed several risk factors for triatomine invasion, which includes pack rat infestation, above-ground wooden plank floor without a concrete foundation, canine living in the home, and lack of residual insecticide use. Triatomines were all identified as Triatoma protracta. Midgut molecular analysis of the collected triatomines revealed the detection of T. cruzi discrete typing unit I among one of the kissing bugs. Blood meal PCR-based analysis showed these triatomines had bitten humans, canine and unidentified snake species. The patient was tested for chronic Chagas disease utilizing rapid diagnostic testing and laboratory serological testing, and all were negative. Conclusions: Triatoma protracta is known to invade human dwellings in the western portions of the United States. This is the first report of T. cruzi-infected triatomines invading homes in Mendocino County, California. Triatoma protracta is a known vector responsible for autochthonous Chagas disease within the United States, and their bites can also trigger serious systemic allergic reactions, such as anaphylaxis.
Collapse
Affiliation(s)
- Norman L. Beatty
- Department of Medicine, Division of Infectious Diseases and Global Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
- Correspondence:
| | - Zoe S. White
- Department of Wildlife Ecology and Conservation, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL 32610, USA; (Z.S.W.); (C.R.B.); (K.W.)
| | - Chanakya R. Bhosale
- Department of Wildlife Ecology and Conservation, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL 32610, USA; (Z.S.W.); (C.R.B.); (K.W.)
| | - Kristen Wilson
- Department of Wildlife Ecology and Conservation, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL 32610, USA; (Z.S.W.); (C.R.B.); (K.W.)
| | - Anthony P. Cannella
- Department of Medicine, Division of Infectious Diseases and International Medicine, University of South Florida Morsani College of Medicine, Tampa, FL 33610, USA;
| | - Tanise Stenn
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA; (T.S.); (N.B.-C.)
| | - Nathan Burkett-Cadena
- Entomology and Nematology Department, Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA; (T.S.); (N.B.-C.)
| | - Samantha M. Wisely
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
- Department of Wildlife Ecology and Conservation, University of Florida Institute of Food and Agricultural Sciences, Gainesville, FL 32610, USA; (Z.S.W.); (C.R.B.); (K.W.)
| |
Collapse
|
23
|
Busselman RE, Hamer SA. Chagas Disease Ecology in the United States: Recent Advances in Understanding Trypanosoma cruzi Transmission Among Triatomines, Wildlife, and Domestic Animals and a Quantitative Synthesis of Vector-Host Interactions. Annu Rev Anim Biosci 2021; 10:325-348. [PMID: 34758274 DOI: 10.1146/annurev-animal-013120-043949] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chagas disease, a neglected tropical disease present in the Americas, is caused by the parasite Trypanosoma cruzi and is transmitted by triatomine kissing bug vectors. Hundreds of vertebrate host species are involved in the ecology of Chagas disease. The sylvatic nature of most triatomines found in the United States accounts for high levels of animal infections but few reports of human infections. This review focuses on triatomine distributions and animal infections in the southern United States. A quantitative synthesis of available US data from triatomine bloodmeal analysis studies shows that dogs, humans, and rodents are key taxa for feeding triatomines. Imperfect and unvalidated diagnostic tools in wildlife complicate the study of animal T. cruzi infections, and integrated vector management approaches are needed to reduce parasite transmission in nature. The diversity of animal species involved in Chagas disease ecology underscores the importance of a One Health approach for disease research and management. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rachel E Busselman
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| | - Sarah A Hamer
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA;
| |
Collapse
|
24
|
Diversity of Trypanosoma cruzi parasites infecting Triatoma dimidiata in Central Veracruz, Mexico, and their One Health ecological interactions. INFECTION GENETICS AND EVOLUTION 2021; 95:105050. [PMID: 34450293 DOI: 10.1016/j.meegid.2021.105050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/17/2021] [Accepted: 08/21/2021] [Indexed: 01/21/2023]
Abstract
Triatoma dimidiata is the main vector of Trypanosoma cruzi parasites in Veracruz, Mexico, and its association with human housing appears variable. Also, in spite of a high seroprevalence of T. cruzi infection in humans, parasite transmission remains poorly understood. Therefore, we aimed to identify T. dimidiata blood feeding sources and its parasite and microbial diversity to reconstruct T. cruzi parasite transmission ecology in central Veracruz, Mexico, within a One Health/Ecohealth framework. We used a metabarcoding and deep sequencing approach of specific markers for the simultaneous identification of T. dimidiata haplogroup (ITS-2), vertebrate blood meals (12 s gene), T. cruzi parasites (mini-exon gene), and gut microbiota (bacterial 16 s). Twelve species of domestic/synanthropic animals and humans were identified as blood sources, with multiple feeding on 4.2 ± 0.4 hosts per bug. The feeding/parasite transmission network was strongly centered on humans, emphasizing a significant risk of infection. We also unambiguously confirmed the presence of TcI, TcII, TcV and TcVI DTUs in T. dimidiata, and sequences from Veracruz tended to cluster apart from parasites from other regions, suggesting some level of local differentiation. Analysis of T. dimidiata microbiota suggested that several bacterial families may be associated with the presence/absence of T. cruzi, and some of these associations may also be parasite DTU-specific. Such integrative approaches within the EcoHealth/One Health framework provide key insights on T. cruzi transmission and potential novel strategies for disease control.
Collapse
|
25
|
Thompson JM, Habrun CA, Scully CM, Sasaki E, Bauer RW, Jania R, Baker RE, Chapman AM, Majeau A, Pronovost H, Dumonteil E, Herrera CP. Locally Transmitted Trypanosoma cruzi in a Domestic Llama ( Lama glama) in a Rural Area of Greater New Orleans, Louisiana, USA. Vector Borne Zoonotic Dis 2021; 21:762-768. [PMID: 34342513 DOI: 10.1089/vbz.2021.0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Trypanosoma cruzi-associated megaesophagus was diagnosed in a domestic Louisiana-born llama with no significant travel history. The llama resided in the same rural area of greater New Orleans, Louisiana, where the first human autochthonous case of Chagas disease was identified in the state. Venous blood from the llama tested positive for T. cruzi kinetoplastid DNA by conventional PCR. The cardiac evaluation was unremarkable, while thoracic radiographs revealed generalized megaesophagus. The llama received supportive care, but was ultimately humanely euthanized. The esophagus was severely distended throughout its length on necropsy, and histologic evaluation showed no microscopic changes in esophageal tissue and minimal to mild lymphoplasmacytic inflammation in cardiac tissue. T. cruzi DNA was detected by conventional PCR in the esophagus, small intestine, and blood despite no protozoan organisms being observed in multiple tissue sections examined. This report contributes to the growing body of evidence of local transmission of T. cruzi in the southern United States, and Chagas disease should be considered a differential diagnosis when evaluating llamas and other large animal species for esophageal dysfunction. There is little research describing megaesophagus or Chagas disease in llamas, and this report aims to increase awareness about this zoonotic disease that is becoming more frequently reported in the southern United States.
Collapse
Affiliation(s)
- Julie M Thompson
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.,Department of Biomedical Sciences, School of Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Caroline A Habrun
- New Mexico Emerging Infections Program, University of New Mexico, SE Albuquerque, New Mexico
| | - Clare M Scully
- Department of Veterinary Clinical Services, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Emi Sasaki
- Department of Pathobiological Sciences, Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rudy W Bauer
- Department of Pathobiological Sciences, Louisiana Animal Disease Diagnostic Laboratory, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rachel Jania
- Department of Veterinary Clinical Services, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Rose E Baker
- Department of Veterinary Clinical Services, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Anna M Chapman
- Department of Veterinary Clinical Services, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Alicia Majeau
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Henry Pronovost
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Claudia P Herrera
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| |
Collapse
|
26
|
Polonio R, López-Domínguez J, Herrera C, Dumonteil E. Molecular ecology of Triatoma dimidiata in southern Belize reveals risk for human infection and the local differentiation of Trypanosoma cruzi parasites. Int J Infect Dis 2021; 108:320-329. [PMID: 34098097 DOI: 10.1016/j.ijid.2021.05.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE In Belize, the main vector for Trypanosoma cruzi, the agent of Chagas disease, is Triatoma dimidiata, but transmission cycles and the risk for human infection are unclear. Therefore, the aim of this study was to identify T. dimidiata blood feeding sources and its parasite and microbial diversity, in order to reconstruct T. cruzi parasite transmission ecology in southern Belize. METHODS A metabarcoding approach based on deep sequencing of markers was used for bug taxonomy, blood meal sources, T. cruzi genotypes, and microbiota composition. Bugs were collected in 13 villages of Toledo district. RESULTS Bugs fed on at least 13 species, from domestic hosts such as humans, dogs, cows, and pigs, to synanthropic species such as mice, rats, and opossums, and sylvatic species such as deer, peccary, and kinkajou, in agreement with an opportunistic feeding behavior. Nonetheless, most feeding focused on a few species, including humans. Infection with T. cruzi was detected in 24 of 39 bugs (62%), and the analysis of 242 T. cruzi mini-exon sequences (average 10 ± 5 haplotypes per bug) indicated the presence of TcI and TcIV parasite discrete typing units (DTUs). However, for both DTUs, sequences from Belize mostly clustered apart from sequences from North and South America, suggesting the local differentiation of parasites. T. dimidiata also harbored a diverse bacterial microbiota, with ontogenic changes suggesting microbiota maturation during nymphal development. CONCLUSIONS Together, these results indicate a significant risk for T. cruzi infection in humans. They also highlight the need to better characterize the diversity of T. cruzi strains in the region and its impact on disease epidemiology.
Collapse
Affiliation(s)
- Roy Polonio
- University of Belize, Punta Gorda, Toledo, Belize
| | - Jaime López-Domínguez
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA; LADISER Inmunología y Biología Molecular, Facultad de Ciencias Químicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico; Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
27
|
Diversity and interactions among triatomine bugs, their blood feeding sources, gut microbiota and Trypanosoma cruzi in the Sierra Nevada de Santa Marta in Colombia. Sci Rep 2021; 11:12306. [PMID: 34112903 PMCID: PMC8192545 DOI: 10.1038/s41598-021-91783-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/25/2021] [Indexed: 12/14/2022] Open
Abstract
Chagas disease remains a major neglected disease in Colombia. We aimed to characterize Trypanosoma cruzi transmission networks in the Sierra Nevada de Santa Marta (SNSM) region, to shed light on disease ecology and help optimize control strategies. Triatomines were collected in rural communities and analyzed for blood feeding sources, parasite diversity and gut microbiota composition through a metagenomic and deep sequencing approach. Triatoma dimidiata predominated, followed by Rhodnius prolixus, Triatoma maculata, Rhodnius pallescens, Panstrongylus geniculatus and Eratyrus cuspidatus. Twenty-two species were identified as blood sources, resulting in an integrated transmission network with extensive connectivity among sylvatic and domestic host species. Only TcI parasites were detected, predominantly from TcIb but TcIa was also reported. The close relatedness of T. cruzi strains further supported the lack of separate transmission cycles according to habitats or triatomine species. Triatomine microbiota varied according to species, developmental stage and T. cruzi infection. Bacterial families correlated with the presence/absence of T. cruzi were identified. In conclusion, we identified a domestic transmission cycle encompassing multiple vector species and tightly connected with sylvatic hosts in the SNSM region, rather than an isolated domestic transmission cycle. Therefore, integrated interventions targeting all vector species and their contact with humans should be considered.
Collapse
|
28
|
Eberhard FE, Klimpel S, Guarneri AA, Tobias NJ. Metabolites as predictive biomarkers for Trypanosoma cruzi exposure in triatomine bugs. Comput Struct Biotechnol J 2021; 19:3051-3057. [PMID: 34136103 PMCID: PMC8178018 DOI: 10.1016/j.csbj.2021.05.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (American trypanosomiasis), colonizes the intestinal tract of triatomines. Triatomine bugs act as vectors in the life cycle of the parasite and transmit infective parasite stages to animals and humans. Contact of the vector with T. cruzi alters its intestinal microbial composition, which may also affect the associated metabolic patterns of the insect. Earlier studies suggest that the complexity of the triatomine fecal metabolome may play a role in vector competence for different T. cruzi strains. Using high-resolution mass spectrometry and supervised machine learning, we aimed to detect differences in the intestinal metabolome of the triatomine Rhodnius prolixus and predict whether the insect had been exposed to T. cruzi or not based solely upon their metabolic profile. We were able to predict the exposure status of R. prolixus to T. cruzi with accuracies of 93.6%, 94.2% and 91.8% using logistic regression, a random forest classifier and a gradient boosting machine model, respectively. We extracted the most important features in producing the models and identified the major metabolites which assist in positive classification. This work highlights the complex interactions between triatomine vector and parasite including effects on the metabolic signature of the insect.
Collapse
Affiliation(s)
- Fanny E. Eberhard
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
| | - Sven Klimpel
- Institute for Ecology, Evolution and Diversity, Goethe University Frankfurt, Frankfurt/Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
| | - Alessandra A. Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima,1715, Belo Horizonte, MG CEP 30190-009, Brazil
| | - Nicholas J. Tobias
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre, Frankfurt/Main, Germany
- Corresponding author at: LOEWE Centre for Translational Biodiversity Genomics (LOEWE TBG), Frankfurt/Main, Germany.
| |
Collapse
|
29
|
Dumonteil E, Desale H, Tu W, Duhon B, Wolfson W, Balsamo G, Herrera C. Shelter cats host infections with multiple Trypanosoma cruzi discrete typing units in southern Louisiana. Vet Res 2021; 52:53. [PMID: 33823911 PMCID: PMC8025558 DOI: 10.1186/s13567-021-00923-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/12/2021] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma cruzi is a zoonotic parasite endemic in the southern US and the Americas, which may frequently infect dogs, but limited information is available about infections in cats. We surveyed a convenience sample of 284 shelter cats from Southern Louisiana to evaluate T. cruzi infection using serological and PCR tests. Parasites from PCR positive cats were also genotyped by PCR and deep sequencing to assess their genetic diversity. We detected a seropositivity rate for T. cruzi of at least 7.3% (17/234), and 24.6% of cats (70/284) were PCR positive for the parasite. Seropositivity increased with cat age (R2 = 0.91, P = 0.011), corresponding to an incidence of 7.2% ± 1.3 per year, while PCR positivity decreased with age (R2 = 0.93, P = 0.007). Cats were predominantly infected with parasites from TcI and TcVI DTUs, and to a lesser extent from TcIV and TcV DTUs, in agreement with the circulation of these parasite DTUs in local transmission cycles. These results indicate that veterinarians should have a greater awareness of T. cruzi infection in pets and that it would be important to better evaluate the risk for spillover infections in humans.
Collapse
Affiliation(s)
- Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA. .,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA.
| | - Hans Desale
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Weihong Tu
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| | - Brandy Duhon
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Wendy Wolfson
- School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Gary Balsamo
- Infectious Disease Epidemiology Section, Office of Public Health, Department of Health, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Vector-Borne and Infectious Disease Research Center, Tulane University, New Orleans, LA, USA
| |
Collapse
|
30
|
Busselman RE, Olson MF, Martinez V, Davila E, Briggs C, Eldridge DS, Higgins B, Bass B, Cropper TL, Casey TM, Edwards T, Teel PD, Hamer SA, Hamer GL. Host Bloodmeal Identification in Cave-Dwelling Ornithodoros turicata Dugès (Ixodida: Argasidae), Texas, USA. Front Vet Sci 2021; 8:639400. [PMID: 33659288 PMCID: PMC7917080 DOI: 10.3389/fvets.2021.639400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 01/12/2023] Open
Abstract
Tick-host bloodmeal associations are important factors when characterizing risks of associated pathogen transmission and applying appropriate management strategies. Despite their biological importance, comparatively little is known about soft tick (Argasidae) host associations in the United States compared to hard ticks (Ixodidae). In this study, we evaluated a PCR and direct Sanger sequencing method for identifying the bloodmeal hosts of soft ticks. We collected 381 cave-associated Ornithodoros turicata near San Antonio, Texas, USA, and also utilized eight colony-reared specimens fed artificially on known host blood sources over 1.5 years ago. We correctly identified the vertebrate host bloodmeals of two colony-reared ticks (chicken and pig) up to 1,105 days post-feeding, and identified bloodmeal hosts from 19 out of 168 field-collected soft ticks, including raccoon (78.9%), black vulture (10.5%), Texas black rattlesnake (5.3%), and human (5.3%). Our results confirm the retention of vertebrate blood DNA in soft ticks and advance the knowledge of argasid host associations in cave-dwelling O. turicata.
Collapse
Affiliation(s)
- Rachel E. Busselman
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Mark F. Olson
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
| | - Viridiana Martinez
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Edward Davila
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Cierra Briggs
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
- Department of Entomology, Cornell University, Ithaca, NY, United States
| | - Devon S. Eldridge
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Bailee Higgins
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
| | - Brittany Bass
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
| | - Thomas L. Cropper
- 59th Medical Wing, Joint Base San Antonio, Lackland, San Antonio, TX, United States
| | - Theresa M. Casey
- 59th Medical Wing, Joint Base San Antonio, Lackland, San Antonio, TX, United States
| | - Theresa Edwards
- Texas Parks and Wildlife Department, Government Canyon State Natural Area, San Antonio, TX, United States
| | - Pete D. Teel
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, United States
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M AgriLife Research, College Station, TX, United States
| |
Collapse
|
31
|
Genetic diversity of Trypanosoma cruzi parasites infecting dogs in southern Louisiana sheds light on parasite transmission cycles and serological diagnostic performance. PLoS Negl Trop Dis 2020; 14:e0008932. [PMID: 33332357 PMCID: PMC7775123 DOI: 10.1371/journal.pntd.0008932] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/31/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Chagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. We genotyped parasites in a large cohort of PCR positive dogs to shed light on parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance. Methodology/principal findings We used a metabarcoding approach based on deep sequencing of T. cruzi mini-exon marker to assess parasite diversity. Phylogenetic analysis of 178 sequences from 40 dogs confirmed the presence of T. cruzi discrete typing unit (DTU) TcI and TcIV, as well as TcII, TcV and TcVI for the first time in US dogs. Infections with multiple DTUs occurred in 38% of the dogs. These data indicate a greater genetic diversity of T. cruzi than previously detected in the US. Comparison of T. cruzi sequence diversity indicated that highly similar T. cruzi strains from these DTUs circulate in hosts and vectors in Louisiana, indicating that they are involved in a shared T. cruzi parasite transmission cycle. However, TcIV and TcV were sampled more frequently in vectors, while TcII and TcVI were sampled more frequently in dogs. Conclusions/significance These observations point to ecological host-fitting being a dominant mechanism involved in the diversification of T. cruzi-host associations. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored TcI parasites with different mini-exon sequences, which strongly supports the hypothesis that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of conserved parasite antigens should be a high priority for the improvement of current serological tests. Chagas disease is a neglected zoonosis of growing concern in the southern US, caused by the parasite Trypanosoma cruzi. Here we analyzed the parasite genetic diversity in a large cohort of infected dogs to better understand parasite transmission cycles and assess potential relationships between parasite diversity and serological test performance. We used DNA sequencing of a well characterized T. cruzi genetic marker to assess parasite diversity. We confirmed the presence of T. cruzi lineages TcI and TcIV, and report TcII, TcV and TcVI for the first time in US dogs. Parasite lineages TcIV TcII and TcVI appeared more frequent in dogs compared to insect vectors. Dogs with negative, discordant or confirmed positive T. cruzi serology harbored genetically different TcI parasites, which shows that parasite genetic diversity is a key factor affecting serological test performance. Thus, the identification of parasite antigens conserved across strains and lineages should be a high priority for the improvement of current serological tests.
Collapse
|
32
|
Tobias NJ, Eberhard FE, Guarneri AA. Enzymatic biosynthesis of B-complex vitamins is supplied by diverse microbiota in the Rhodnius prolixus anterior midgut following Trypanosoma cruzi infection. Comput Struct Biotechnol J 2020; 18:3395-3401. [PMID: 33294135 PMCID: PMC7691439 DOI: 10.1016/j.csbj.2020.10.031] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 01/03/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease, colonizes the gut of triatomine insects, including Rhodnius prolixus. It is believed that this colonization upsets the microbiota that are normally present, presumably switching the environment to one more favorable for parasite survival. It was previously thought that one particular bacterium, Rhodococcus rhodnii, was essential for insect survival due to its ability to produce vital B-complex vitamins. However, these bacteria are not always identified in great abundance in studies on R. prolixus microbiota. Here we sequenced the microbiota of the insect anterior midgut using shotgun metagenomic sequencing in order to obtain a high-resolution snapshot of the microbes inside at two different time points and under two conditions; in the presence or absence of parasite and immediately following infection, or three days post-infection. We identify a total of 217 metagenomic bins, and recovered one metagenome-assembled genome, which we placed in the genus Dickeya. We show that, despite Rhodococcus being present, it is not the only microbe capable of synthesizing B-complex vitamins, with the genes required for biosynthesis present in a number of different microbes. This work helps to gain a new insight into the microbial ecology of R. prolixus.
Collapse
Affiliation(s)
- Nicholas J Tobias
- LOEWE Center for Translational Biodiversity in Genomics (TBG), Frankfurt, Germany.,Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe-Universität Frankfurt, Frankfurt am Main, Germany.,Senckenberg Biodiversity and Climate Research Centre, Senckenberg Gesellschaft für Naturforschung, Frankfurt am Main, Germany
| | - Fanny E Eberhard
- Integrative Parasitologie und Zoophysiologie, Goethe-Universität Frankfurt, Frankfurt am Main, Germany
| | - Alessandra A Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Avenida Augusto de Lima, 1715, Belo Horizonte, MG CEP 30190-009, Brazil
| |
Collapse
|
33
|
Brown JJ, Rodríguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, Zima J, Hypša V, Nováková E. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). MICROBIOME 2020; 8:146. [PMID: 33040738 PMCID: PMC7549230 DOI: 10.1186/s40168-020-00921-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 09/09/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Kissing bugs (Triatominae) are blood-feeding insects best known as the vectors of Trypanosoma cruzi, the causative agent of Chagas' disease. Considering the high epidemiological relevance of these vectors, their biology and bacterial symbiosis remains surprisingly understudied. While previous investigations revealed generally low individual complexity but high among-individual variability of the triatomine microbiomes, any consistent microbiome determinants have not yet been identified across multiple Triatominae species. METHODS To obtain a more comprehensive view of triatomine microbiomes, we investigated the host-microbiome relationship of five Triatoma species sampled from white-throated woodrat (Neotoma albigula) nests in multiple locations across the USA. We applied optimised 16S rRNA gene metabarcoding with a novel 18S rRNA gene blocking primer to a set of 170 T. cruzi-negative individuals across all six instars. RESULTS Triatomine gut microbiome composition is strongly influenced by three principal factors: ontogeny, species identity, and the environment. The microbiomes are characterised by significant loss in bacterial diversity throughout ontogenetic development. First instars possess the highest bacterial diversity while adult microbiomes are routinely dominated by a single taxon. Primarily, the bacterial genus Dietzia dominates late-stage nymphs and adults of T. rubida, T. protracta, and T. lecticularia but is not present in the phylogenetically more distant T. gerstaeckeri and T. sanguisuga. Species-specific microbiome composition, particularly pronounced in early instars, is further modulated by locality-specific effects. In addition, pathogenic bacteria of the genus Bartonella, acquired from the vertebrate hosts, are an abundant component of Triatoma microbiomes. CONCLUSION Our study is the first to demonstrate deterministic patterns in microbiome composition among all life stages and multiple Triatoma species. We hypothesise that triatomine microbiome assemblages are produced by species- and life stage-dependent uptake of environmental bacteria and multiple indirect transmission strategies that promote bacterial transfer between individuals. Altogether, our study highlights the complexity of Triatominae symbiosis with bacteria and warrant further investigation to understand microbiome function in these important vectors. Video abstract.
Collapse
Affiliation(s)
- Joel J. Brown
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | - Anbu Poosakkannu
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Giampiero Batani
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | | | - Walter Roachell
- US Army Public Health Command-Central, JBSA Fort Sam, Houston, TX USA
| | - Jan Zima
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Václav Hypša
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Eva Nováková
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
34
|
Salcedo-Porras N, Umaña-Diaz C, de Oliveira Barbosa Bitencourt R, Lowenberger C. The Role of Bacterial Symbionts in Triatomines: An Evolutionary Perspective. Microorganisms 2020; 8:E1438. [PMID: 32961808 PMCID: PMC7565714 DOI: 10.3390/microorganisms8091438] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/17/2020] [Indexed: 12/16/2022] Open
Abstract
Insects have established mutualistic symbiotic interactions with microorganisms that are beneficial to both host and symbiont. Many insects have exploited these symbioses to diversify and expand their ecological ranges. In the Hemiptera (i.e., aphids, cicadas, and true bugs), symbioses have established and evolved with obligatory essential microorganisms (primary symbionts) and with facultative beneficial symbionts (secondary symbionts). Primary symbionts are usually intracellular microorganisms found in insects with specialized diets such as obligate hematophagy or phytophagy. Most Heteroptera (true bugs), however, have gastrointestinal (GI) tract extracellular symbionts with functions analogous to primary endosymbionts. The triatomines, are vectors of the human parasite, Trypanosoma cruzi. A description of their small GI tract microbiota richness was based on a few culturable microorganisms first described almost a century ago. A growing literature describes more complex interactions between triatomines and bacteria with properties characteristic of both primary and secondary symbionts. In this review, we provide an evolutionary perspective of beneficial symbioses in the Hemiptera, illustrating the context that may drive the evolution of symbioses in triatomines. We highlight the diversity of the triatomine microbiota, bacterial taxa with potential to be beneficial symbionts, the unique characteristics of triatomine-bacteria symbioses, and the interactions among trypanosomes, microbiota, and triatomines.
Collapse
Affiliation(s)
- Nicolas Salcedo-Porras
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Claudia Umaña-Diaz
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| | - Ricardo de Oliveira Barbosa Bitencourt
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
- Programa de Pós-graduação em Ciências Veterinárias, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, 23890-000 Seropédica, Brasil
| | - Carl Lowenberger
- Centre for Cell Biology, Development and Disease, Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; (C.U.-D.); (R.d.O.B.B.); (C.L.)
| |
Collapse
|