1
|
Liu Y, Wang H, Yang J, Dao Z, Sun W. Conservation genetics and potential geographic distribution modeling of Corybas taliensis, a small 'sky Island' orchid species in China. BMC PLANT BIOLOGY 2024; 24:11. [PMID: 38163918 PMCID: PMC10759615 DOI: 10.1186/s12870-023-04693-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Corybas taliensis is an endemic species of sky islands in China. Its habitat is fragile and unstable, and it is likely that the species is threatened. However, it is difficult to determine the conservation priority or unit without knowing the genetic background and the overall distribution of this species. In this study, we used double digest restriction-site associated DNA-sequencing (ddRAD-seq) to investigate the conservation genomics of C. taliensis. At the same time, we modeled the extent of suitable habitat for C. taliensis in present and future (2030 and 2090) habitat using the maximum-entropy (MaxEnt) model. RESULTS The results suggested that the related C. fanjingshanensis belongs to C. taliensis and should not be considered a separate species. All the sampling locations were divided into three genetic groups: the Sichuan & Guizhou population (SG population), the Hengduan Mountains population (HD population) and Himalayan population (HM population), and we found that there was complex gene flow between the sampling locations of HD population. MT was distinct genetically from the other sampling locations due to the unique environment in Motuo. The genetic diversity (π, He) of C. taliensis was relatively high, but its contemporary effective population size (Ne) was small. C. taliensis might be currently affected by inbreeding depression, although its large population density may be able to reduce the effect of this. The predicted areas of suitable habitat currently found in higher mountains will not change significantly in the future, and these suitable habitats are predicted to spread to other higher mountains under future climate change. However, suitable habitat in relatively low altitude areas may disappear in the future. This suggests that C. taliensis will be caught in a 'summit trap' in low altitude areas, however, in contrast, the high altitude of the Himalaya and the Hengduan Mountains are predicted to act as 'biological refuges' for C. taliensis in the future. CONCLUSIONS These results not only provide a new understanding of the genetic background and potential resource distribution of C. taliensis, but also lay the foundation for its conservation and management.
Collapse
Affiliation(s)
- Yuhang Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huichun Wang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Zhiling Dao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Kunming Botanical Garden, Kunming Institute of Botany, Chinese Academy of Sciences (CAS), Kunming, Yunnan, 650201, China.
| |
Collapse
|
2
|
Shi BY, Pan D, Zhang KQ, Gu TY, Yeo DCJ, Ng PKL, Cumberlidge N, Sun HY. Diversification of freshwater crabs on the sky islands in the Hengduan Mountains Region, China. Mol Phylogenet Evol 2024; 190:107955. [PMID: 37898294 DOI: 10.1016/j.ympev.2023.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The numerous naturally-fragmented sky islands (SIs) in the Hengduan Mountains Region (HMR) of southwestern China constitute discontinuous landscapes where montane habitats are isolated by dry-hot valleys which have fostered exceptional species diversification and endemicity. However, studies documenting the crucial role of SI on the speciation dynamics of native freshwater organisms are scarce. Here we used a novel set of comprehensive genetic markers (24 nuclear DNA sequences and complete mitogenomes), morphological characters, and biogeographical information to reveal the evolutionary history and speciation mechanisms of a group of small-bodied montane potamids in the genus Tenuipotamon. Our results provide a robustly supported phylogeny, and suggest that the vicariance events of these montane crabs correlate well with the emergence of SIs due to the uplift of the HMR during the Late Oligocene. Furthermore, ancestrally, mountain ridges provided corridors for the dispersal of these montane crabs that led to the colonization of moist montane-specific habitats, aided by past climatic conditions that were the crucial determinants of their evolutionary history. The present results illustrated that the mechanisms isolating SIs are reinforced by the harsh-dry isolating climatic features of dry-hot valleys separating SIs and continue to affect local diversification. This offers insights into the causes of the high biodiversity and endemism shown by the freshwater crabs of the HMR-SIs in southwestern China.
Collapse
Affiliation(s)
- Bo-Yang Shi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Da Pan
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Kang-Qin Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Tian-Yu Gu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Darren C J Yeo
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Republic of Singapore; Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Peter K L Ng
- Lee Kong Chian Natural History Museum, National University of Singapore, 2 Conservatory Drive, Singapore 117377, Republic of Singapore
| | - Neil Cumberlidge
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Hong-Ying Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
3
|
Li H, Peng Y, Wang Y, Summerhays B, Shu X, Vasquez Y, Vansant H, Grenier C, Gonzalez N, Kansagra K, Cartmill R, Sujii ER, Meng L, Zhou X, Lövei GL, Obrycki JJ, Sethuraman A, Li B. Global patterns of genomic and phenotypic variation in the invasive harlequin ladybird. BMC Biol 2023; 21:141. [PMID: 37337183 DOI: 10.1186/s12915-023-01638-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND The harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae), native to Asia, has been introduced to other major continents where it has caused serious negative impacts on local biodiversity. Though notable advances to understand its invasion success have been made during the past decade, especially with then newer molecular tools, the conclusions reached remain to be confirmed with more advanced genomic analyses and especially using more samples from larger geographical regions across the native range. Furthermore, although H. axyridis is one of the best studied invasive insect species with respect to life history traits (often comparing invasive and native populations), the traits responsible for its colonization success in non-native areas warrant more research. RESULTS Our analyses of genome-wide nuclear population structure indicated that an eastern Chinese population could be the source of all non-native populations and revealed several putatively adaptive candidate genomic loci involved in body color variation, visual perception, and hemolymph synthesis. Our estimates of evolutionary history indicate (1) asymmetric migration with varying population sizes across its native and non-native range, (2) a recent admixture between eastern Chinese and American populations in Europe, (3) signatures of a large progressive, historical bottleneck in the common ancestors of both populations and smaller effective sizes of the non-native population, and (4) the southwest origin and subsequent dispersal routes within its native range in China. In addition, we found that while two mitochondrial haplotypes-Hap1 and Hap2 were dominant in the native range, Hap1 was the only dominant haplotype in the non-native range. Our laboratory observations in both China and USA found statistical yet slight differences between Hap1 and Hap2 in some of life history traits. CONCLUSIONS Our study on H. axyridis provides new insights into its invasion processes into other major continents from its native Asian range, reconstructs a geographic range evolution across its native region China, and tentatively suggests that its invasiveness may differ between mitochondrial haplotypes.
Collapse
Affiliation(s)
- Hongran Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Yansong Wang
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Bryce Summerhays
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Xiaohan Shu
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Yumary Vasquez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
- Department of Life and Environmental Sciences, University of California, Merced, CA, USA
| | - Hannah Vansant
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Christy Grenier
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Nicolette Gonzalez
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Khyati Kansagra
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | - Ryan Cartmill
- Department of Biological Sciences, California State University, San Marcos, CA, USA
| | | | - Ling Meng
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Gábor L Lövei
- Department of Agroecology, Flakkebjerg Research Centre, Aarhus University, Aarhus, Denmark
- ELKH-DE Anthropocene Ecology Research Group, University of Debrecen, Debrecen, Hungary
- Department of Zoology & Ecology, Hungarian University of Agriculture & Life Sciences, Godollo, Hungary
| | - John J Obrycki
- Department of Entomology, University of Kentucky, Lexington, KY, USA
| | - Arun Sethuraman
- Department of Biological Sciences, California State University, San Marcos, CA, USA.
- Department of Biology, San Diego State University, San Diego, CA, USA.
| | - Baoping Li
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, People's Republic of China.
| |
Collapse
|
4
|
Hill T, Unckless RL, Perlmutter JI. Positive Selection and Horizontal Gene Transfer in the Genome of a Male-Killing Wolbachia. Mol Biol Evol 2022; 39:msab303. [PMID: 34662426 PMCID: PMC8763111 DOI: 10.1093/molbev/msab303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Wolbachia are a genus of widespread bacterial endosymbionts in which some strains can hijack or manipulate arthropod host reproduction. Male killing is one such manipulation in which these maternally transmitted bacteria benefit surviving daughters in part by removing competition with the sons for scarce resources. Despite previous findings of interesting genome features of microbial sex ratio distorters, the population genomics of male-killers remain largely uncharacterized. Here, we uncover several unique features of the genome and population genomics of four Arizonan populations of a male-killing Wolbachia strain, wInn, that infects mushroom-feeding Drosophila innubila. We first compared the wInn genome with other closely related Wolbachia genomes of Drosophila hosts in terms of genome content and confirm that the wInn genome is largely similar in overall gene content to the wMel strain infecting D. melanogaster. However, it also contains many unique genes and repetitive genetic elements that indicate lateral gene transfers between wInn and non-Drosophila eukaryotes. We also find that, in line with literature precedent, genes in the Wolbachia prophage and Octomom regions are under positive selection. Of all the genes under positive selection, many also show evidence of recent horizontal transfer among Wolbachia symbiont genomes. These dynamics of selection and horizontal gene transfer across the genomes of several Wolbachia strains and diverse host species may be important underlying factors in Wolbachia's success as a male-killer of divergent host species.
Collapse
Affiliation(s)
- Tom Hill
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Robert L Unckless
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS, USA
| | | |
Collapse
|