1
|
Kouete MT, Longo AV, Byrne AQ, Echalle SN, Rosenblum EB, Blackburn DC. Host and environmental factors drive prevalence of the pathogen Batrachochytrium dendrobatidis in Central African amphibians. Sci Rep 2025; 15:14908. [PMID: 40295564 PMCID: PMC12037773 DOI: 10.1038/s41598-025-97367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
The spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) presents an escalating threat to amphibian populations globally, including in continental Africa. Focusing on Cameroon in Central Africa, we combined data from previous studies with newly sampled archived specimens and contemporary samples to investigate the emergence and dynamics of Bd, and to assess the risks it poses to local amphibian species. We find that Bd was already present in the early 1900s, with a prevalence averaging 54% (39-66, 95% CI), with the earliest record in 1905 in southern Cameroon-the earliest detection in Africa. The first detection in the mountains, which coincided with declining frog populations, occurred after 2009 and may be linked to BdCAPE, the sole lineage identified in the highlands. For the first time, we detected BdGPL in the country and confirmed that BdCAPE remains the dominant lineage. Pathogen dynamics and prevalence were strongly influenced by host factors, including taxonomic identity and ecology, and environmental variables such as precipitation and isothermality, which are likely to change with extreme weather events in the future. Our findings underscore the urgent need to address the dual threats of Bd and climate change, which together jeopardize the survival of amphibian populations in Cameroon.
Collapse
Affiliation(s)
- Marcel T Kouete
- Department of Natural History, Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
| | - Ana V Longo
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA, USA
| | - David C Blackburn
- Department of Natural History, Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Carvalho T, Belasen AM, Toledo LF, James TY. Coevolution of a generalist pathogen with many hosts: the case of the amphibian chytrid Batrachochytrium dendrobatidis. Curr Opin Microbiol 2024; 78:102435. [PMID: 38387210 DOI: 10.1016/j.mib.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 12/22/2023] [Accepted: 01/21/2024] [Indexed: 02/24/2024]
Abstract
Generalist pathogens maintain infectivity in numerous hosts; how this broad ecological niche impacts host-pathogen coevolution remains to be widely explored. Batrachochytrium dendrobatidis (Bd) is a highly generalist pathogenic fungus that has caused devastating declines in hundreds of amphibian species worldwide. This review examines amphibian chytridiomycosis host-pathogen interactions and available evidence for coevolution between Bd and its numerous hosts. We summarize recent evidence showing that Bd genotypes vary in geographic distribution and virulence, and that amphibian species also vary in Bd susceptibility according to their geographic distribution. How much variation can be explained by phenotypic plasticity or genetic differences remains uncertain. Recent research suggests that Bd genotypes display preferences for specific hosts and that some hosts are undergoing evolution as populations rebound from Bd outbreaks. Taken together, these findings suggest the potential for coevolution to occur and illuminate a path for addressing open questions through integrating historical and contemporary genetic data.
Collapse
Affiliation(s)
- Tamilie Carvalho
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Anat M Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, United States
| | - L Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, São Paulo, Brazil
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
3
|
Belasen AM, Peek RA, Adams AJ, Russell ID, De León ME, Adams MJ, Bettaso J, Breedveld KGH, Catenazzi A, Dillingham CP, Grear DA, Halstead BJ, Johnson PG, Kleeman PM, Koo MS, Koppl CW, Lauder JD, Padgett-Flohr G, Piovia-Scott J, Pope KL, Vredenburg V, Westphal M, Wiseman K, Kupferberg SJ. Chytrid infections exhibit historical spread and contemporary seasonality in a declining stream-breeding frog. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231270. [PMID: 38298390 PMCID: PMC10827429 DOI: 10.1098/rsos.231270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/18/2023] [Indexed: 02/02/2024]
Abstract
Species with extensive geographical ranges pose special challenges to assessing drivers of wildlife disease, necessitating collaborative and large-scale analyses. The imperilled foothill yellow-legged frog (Rana boylii) inhabits a wide geographical range and variable conditions in rivers of California and Oregon (USA), and is considered threatened by the pathogen Batrachochytrium dendrobatidis (Bd). To assess drivers of Bd infections over time and space, we compiled over 2000 datapoints from R. boylii museum specimens (collected 1897-2005) and field samples (2005-2021) spanning 9° of latitude. We observed a south-to-north spread of Bd detections beginning in the 1940s and increase in prevalence from the 1940s to 1970s, coinciding with extirpation from southern latitudes. We detected eight high-prevalence geographical clusters through time that span the species' geographical range. Field-sampled male R. boylii exhibited the highest prevalence, and juveniles sampled in autumn exhibited the highest loads. Bd infection risk was highest in lower elevation rain-dominated watersheds, and with cool temperatures and low stream-flow conditions at the end of the dry season. Through a holistic assessment of relationships between infection risk, geographical context and time, we identify the locations and time periods where Bd mitigation and monitoring will be critical for conservation of this imperilled species.
Collapse
Affiliation(s)
- A. M. Belasen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - R. A. Peek
- California Department of Fish and Wildlife, West Sacramento, CA, USA
| | - A. J. Adams
- Earth Research Institute, University of California, Santa Barbara, CA, USA
| | - I. D. Russell
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - M. E. De León
- Genome Center, University of California, Davis, CA, USA
| | - M. J. Adams
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, OR, USA
| | - J. Bettaso
- Six Rivers National Forest, Lower Trinity Ranger District, USDA Forest Service, P.O. Box 68, Willow Creek, CA, USA
| | | | - A. Catenazzi
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | | | - D. A. Grear
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI, USA
| | - B. J. Halstead
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - P. G. Johnson
- Pinnacles National Park, National Park Service, Paicines, CA, USA
| | - P. M. Kleeman
- Point Reyes Field Station, U.S. Geological Survey, Western Ecological Research Center, Point Reyes Station, CA, USA
| | - M. S. Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, CA
| | - C. W. Koppl
- Plumas National Forest, USDA Forest Service, Quincy, CA, USA
| | | | | | - J. Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | - K. L. Pope
- Pacific Southwest Research Station, USDA Forest Service, Arcata, CA, USA
| | - V. Vredenburg
- Department of Biology, San Francisco State University, San Francisco, CA, USA
| | - M. Westphal
- Central Coast Field Office, United States Bureau of Land Management, Marina, CA, USA
| | - K. Wiseman
- Department of Herpetology, California Academy of Sciences, San Francisco, CA, USA
| | - S. J. Kupferberg
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
4
|
Kim AS, Kreiner JM, Hernández F, Bock DG, Hodgins KA, Rieseberg LH. Temporal collections to study invasion biology. Mol Ecol 2023; 32:6729-6742. [PMID: 37873879 DOI: 10.1111/mec.17176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.
Collapse
Affiliation(s)
- Amy S Kim
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia M Kreiner
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fernando Hernández
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dan G Bock
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kathryn A Hodgins
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Jacinto-Maldonado M, González-Salazar C, Basanta MD, García-Peña GE, Saucedo B, Lesbarrères D, Meza-Figueroa D, Stephens CR. Water Pollution Increases the Risk of Chytridiomycosis in Mexican Amphibians. ECOHEALTH 2023:10.1007/s10393-023-01631-0. [PMID: 37140741 DOI: 10.1007/s10393-023-01631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 05/05/2023]
Abstract
Chytridiomycosis is affecting amphibians worldwide, causing the decline and extinction of several amphibian populations. The disease is caused by the fungus Batrachochytrium dendrobatidis (Bd), a multihost pathogen living in freshwater habitats. While several environmental factors have been associated with the prevalence of Bd and its virulence, the effects of water quality on the pathogen are not clear yet. Some evidence suggests that water pollution may reduce amphibians' immune response and increase prevalence of Bd. To explore this hypothesis, we analyzed the relationship between water quality and the presence of Bd by using spatial data mining of 150 geolocations of Bd in amphibians from 9 families where Bd positive specimens have been previously reported, and water quality in 4,202 lentic and lotic water bodies in Mexico from 2010 to 2021. Our model showed that in the 3 main families where Bd was recorded, its presence is high in locations with low water quality, i.e., water polluted likely contaminated with urban and industrial waste. Using this model, we inferred areas suitable for Bd in Mexico; mainly in poorly studied areas along the gulf and on the pacific slope. We further argue that actions to reduce water pollution should become an integral part of public policies to prevent the spread of Bd and protect amphibians from this deadly pathogen.
Collapse
Affiliation(s)
- M Jacinto-Maldonado
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Hermosillo Sonora, México.
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México.
| | - C González-Salazar
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - M D Basanta
- Department of Biology, University of Nevada Reno, Reno, NV, USA
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, Ciudad de Mexico, México
| | - G E García-Peña
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
| | - B Saucedo
- IDEXX Laboratories B.V, Holland, The Netherlands
| | - D Lesbarrères
- Environment and Climate Change Canada, Greater Sudbury, Canada
| | - D Meza-Figueroa
- Departamento de Geología, División de Ciencias Exactas y Naturales, Universidad de Sonora, Hermosillo Sonora, México
| | - C R Stephens
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, México
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Av. Universidad 3000, Mexico City, México
| |
Collapse
|
6
|
Bolom‐Huet R, Pineda E, Andrade‐Torres A, Díaz‐Fleischer F, Muñoz AL, Galindo‐González J. Chytrid prevalence and infection intensity in treefrogs from three environments with different degrees of conservation in Mexico. Biotropica 2022. [DOI: 10.1111/btp.13186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- René Bolom‐Huet
- Centro de Investigaciones en Ciencias Biológicas Aplicadas Universidad Autónoma del Estado de México Toluca Estado de México Mexico
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| | - Eduardo Pineda
- Instituto de Ecologia – Red de Biología y Conservación de Vertebrados Xalapa, Veracruz Mexico
| | - Antonio Andrade‐Torres
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| | - Francisco Díaz‐Fleischer
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| | - Antonio L. Muñoz
- ECOSUR – Conservación de la Biodiversidad San Cristobal de las Casas, Chiapas Mexico
| | - Jorge Galindo‐González
- Universidad Veracruzana – Instituto de Biotecnología y Ecología Aplicada (INBIOTECA) Xalapa, Veracruz Mexico
| |
Collapse
|
7
|
Basanta MD, Avila-Akerberg V, Byrne AQ, Castellanos-Morales G, González Martínez TM, Maldonado-López Y, Rosenblum EB, Suazo-Ortuño I, Parra Olea G, Rebollar EA. The fungal pathogen Batrachochytrium salamandrivorans is not detected in wild and captive amphibians from Mexico. PeerJ 2022; 10:e14117. [PMID: 36213512 PMCID: PMC9536319 DOI: 10.7717/peerj.14117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/04/2022] [Indexed: 01/21/2023] Open
Abstract
The recent emergence of the pathogen Batrachochytrium salamandrivorans (Bsal) is associated with rapid population declines of salamanders in Europe and its arrival to new areas could cause dramatic negative effects on other amphibian populations and species. Amphibian species, present in areas with high amphibian diversity such as Mexico, could be highly threatened due to the arrival of Bsal, particularly salamander species which are more vulnerable to chytridiomycosis caused by this pathogen. Thus, immediate surveillance is needed as a strategy to efficiently contend with this emerging infectious disease. In this study, we analyzed 490 wild and captive amphibians from 48 species across 76 sites in the North, Central, and South of Mexico to evaluate the presence of Bsal. Amphibians were sampled in sites with variable degrees of amphibian richness and suitability for Bsal according to previous studies. From the 76 sampling sites, 10 of them were located in areas with high amphibian richness and potential moderate to high Bsal habitat suitability. We did not detect Bsal in any of the samples, and no signs of the disease were observed in any individual at the time of sampling. Our results suggest that Bsal has not yet arrived at the sampled sites or could be at low prevalence within populations with low occurrence probability. This is the first study that evaluates the presence of Bsal in different regions and amphibian species in Mexico, which is the second most diverse country in salamander species in the world. We highlight the risk and the importance of continuing surveillance of Bsal in Mexico and discuss control strategies to avoid the introduction and spread of Bsal in the country.
Collapse
Affiliation(s)
- M. Delia Basanta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico,Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, Mexico,Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Victor Avila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, Estado de México, Mexico
| | - Allison Q. Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
| | - Gabriela Castellanos-Morales
- Departamento de Conservación de la Biodiversidad, Colegio de la Frontera Sur Unidad, Villahermosa, Tabasco, México
| | | | - Yurixhi Maldonado-López
- CONACYT-Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, United States of America
| | - Ireri Suazo-Ortuño
- Instituto de Investigaciones sobre los Recursos Naturales, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Ciudad de México, Mexico
| | - Eria A. Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
8
|
Basanta MD, Rebollar EA, García-Castillo MG, Parra Olea G. Comparative Analysis of Skin Bacterial Diversity and Its Potential Antifungal Function Between Desert and Pine Forest Populations of Boreal Toads Anaxyrus boreas. MICROBIAL ECOLOGY 2022; 84:257-266. [PMID: 34427721 DOI: 10.1007/s00248-021-01845-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
The skin microbiome in amphibians has gained a lot of attention as some of its members play a protective role against pathogens such as the fungus Batrachochytrium dendrobatidis (Bd). The composition of skin bacterial communities has been suggested as one of the factors explaining differences in susceptibility to Bd among amphibian species and populations. The boreal toad Anaxyrus boreas is known to be susceptible to Bd, and severe population declines in its southeastern range have been documented. However, throughout A. boreas distribution, populations present differences in susceptibility to Bd infections which may be associated with differences in skin microbial diversity. This study compared the skin bacterial diversity and Bd infection levels of A. boreas in one desert population and one pine forest population from Baja California, Mexico. We found that desert and pine forest toad populations exhibit differences in skin bacterial community structure but show similar Bd infection levels. Using a predictive method, we found that the abundance of bacteria with potential Bd-inhibitory properties differed between uninfected and infected individuals but not between populations. Our data suggest that several bacteria in the skin community may be offering protection from Bd infections in these A. boreas populations. This study provides foundational evidence for future studies seeking to understand the skin-microbial variation among boreal toads' populations and its relation with Bd susceptibility.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, México
- Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Universidad Veracruzana, Amatlán de Los Reyes, Veracruz, México
| | - Gabriela Parra Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
9
|
McCarthy K, Shinn O, Luna-Reyes R, Mendelson III JR. A redescription of the poorly known Central American toad Inciliustacanensis (Anura, Bufonidae), with a summary of its biology and conservation status. Zookeys 2022; 1102:149-161. [PMID: 36761155 PMCID: PMC9848913 DOI: 10.3897/zookeys.1102.79229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 04/18/2022] [Indexed: 11/12/2022] Open
Abstract
Based on examination of most of the existing museum specimens of the rare bufonid frog Inciliustacanensis, we present a redescription and new diagnosis for this species. The species is limited to small region of the Pacific chain of volcanoes in southeastern Chiapas, Mexico, and adjacent areas of Guatemala. The species has not been observed in the wild since 1984 and may have been reduced or eliminated by regional epidemics of chytridiomycosis.
Collapse
Affiliation(s)
- Kathryn McCarthy
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia, 30332, USAGeorgia Institute of TechnologyAtlantaUnited States of America
| | - Ollie Shinn
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia, 30332, USAGeorgia Institute of TechnologyAtlantaUnited States of America
| | - Roberto Luna-Reyes
- Dirección de Áreas Naturales y Vida Silvestre, Secretaría de Medio Ambiente e Historia Natural, Calzada de las Personas Ilustres s/n, Colonia Centro, Tuxtla Gutiérrez, 29000, Chiapas, MexicoSecretaría de Medio Ambiente e Historia NaturalTuxtla GutiérrezMexico
| | - Joseph R. Mendelson III
- School of Biological Sciences, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia, 30332, USAGeorgia Institute of TechnologyAtlantaUnited States of America
- Zoo Atlanta, 800 Cherokee Ave SE, Atlanta, Georgia, 30315, USASecretaría de Medio Ambiente e Historia NaturalAtlantaUnited States of America
| |
Collapse
|
10
|
Byrne AQ, Waddle AW, Saenz V, Ohmer M, Jaeger JR, Richards-Zawacki CL, Voyles J, Rosenblum EB. Host species is linked to pathogen genotype for the amphibian chytrid fungus (Batrachochytrium dendrobatidis). PLoS One 2022; 17:e0261047. [PMID: 35286323 PMCID: PMC8920232 DOI: 10.1371/journal.pone.0261047] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Host-pathogen specificity can arise from certain selective environments mediated by both the host and pathogen. Therefore, understanding the degree to which host species identity is correlated with pathogen genotype can help reveal historical host-pathogen dynamics. One animal disease of particular concern is chytridiomycosis, typically caused by the global panzootic lineage of the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd), termed Bd-GPL. This pathogen lineage has caused devastating declines in amphibian communities around the world. However, the site of origin for the common ancestor of modern Bd-GPL and the fine-scale transmission dynamics of this lineage have remained a mystery. This is especially the case in North America where Bd-GPL is widespread, but disease outbreaks occur sporadically. Herein, we use Bd genetic data collected throughout the United States from amphibian skin swabs and cultured isolate samples to investigate Bd genetic patterns. We highlight two case studies in Pennsylvania and Nevada where Bd-GPL genotypes are strongly correlated with host species identity. Specifically, in some localities bullfrogs (Rana catesbeiana) are infected with Bd-GPL lineages that are distinct from those infecting other sympatric amphibian species. Overall, we reveal a previously unknown association of Bd genotype with host species and identify the eastern United States as a Bd diversity hotspot and potential site of origin for Bd-GPL.
Collapse
Affiliation(s)
- Allison Q. Byrne
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America
- * E-mail:
| | - Anthony W. Waddle
- One Health Research Group, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Victoria, Australia
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
| | - Veronica Saenz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Michel Ohmer
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Biology, University of Mississippi, Oxford, Mississippi, United States of America
| | - Jef R. Jaeger
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, Nevada, United States of America
| | - Corinne L. Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jamie Voyles
- Department of Biology, University of Nevada Reno, Reno, Nevada, United States of America
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California Berkeley, Berkeley, California, United States of America
| |
Collapse
|
11
|
Adams AJ, Peralta-García A, Flores-López CA, Valdez-Villavicencio JH, Briggs CJ. High fungal pathogen loads and prevalence in Baja California amphibian communities: The importance of species, elevation, and historical context. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2021.e01968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Basanta MD, Rebollar EA, García-Castillo MG, Rosenblum EB, Byrne AQ, Piovia-Scott J, Parra-Olea G. Genetic variation of Batrachochytrium dendrobatidis is linked to skin bacterial diversity in the Pacific treefrog Hyliola regilla (hypochondriaca). Environ Microbiol 2021; 24:494-506. [PMID: 34959256 DOI: 10.1111/1462-2920.15861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 11/22/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
Symbiotic bacterial communities are crucial to combating infections and contribute to host health. The amphibian skin microbiome plays an important role in protecting their hosts against pathogens such as Batrachochytrium dendrobatidis (Bd), one of the causative agents of chytridiomycosis, which is responsible for dramatic amphibian population declines worldwide. Although symbiotic skin bacteria are known to inhibit Bd growth, an understanding of the relationship between Bd genetic variability, environmental conditions, and skin bacterial communities is limited. Therefore, we examined the associations between Bd infection load, Bd genetic diversity and skin bacterial communities in five populations of Hyliola regilla (hypochondriaca) from environmentally contrasting sites in Baja California, Mexico. We observed differences in Bd genetics and infection load among sites and environments. Genetic analysis of Bd isolates revealed patterns of spatial structure corresponding to the five sites sampled. Amphibian skin bacterial diversity and community structure differed among environments and sites. Bacterial community composition was correlated with Bd genetic differences and infection load, with specific bacterial taxa enriched on infected and un-infected frogs. Our results indicate that skin-associated bacteria and Bd strains likely interact on the host skin, with consequences for microbial community structure and Bd infection intensity.
Collapse
Affiliation(s)
- María Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Mexico.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, AP 70-153, C.P. 04510, Mexico.,Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Mirna G García-Castillo
- Universidad Politécnica de Huatusco, Huatusco, Veracruz, Mexico.,Universidad Veracruzana, Facultad de Ciencias Biológicas y Agropecuarias Región: Orizaba-Córdoba, Amatlán de los Reyes, Veracruz, Mexico
| | - Erica Bree Rosenblum
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Allison Q Byrne
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, WA, USA
| | | |
Collapse
|
13
|
Koo MS, Vredenburg VT, Deck JB, Olson DH, Ronnenberg KL, Wake DB. Tracking, Synthesizing, and Sharing Global Batrachochytrium Data at AmphibianDisease.org. Front Vet Sci 2021; 8:728232. [PMID: 34692807 PMCID: PMC8527349 DOI: 10.3389/fvets.2021.728232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/02/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious diseases have been especially devastating to amphibians, the most endangered class of vertebrates. For amphibians, the greatest disease threat is chytridiomycosis, caused by one of two chytridiomycete fungal pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal). Research over the last two decades has shown that susceptibility to this disease varies greatly with respect to a suite of host and pathogen factors such as phylogeny, geography (including abiotic factors), host community composition, and historical exposure to pathogens; yet, despite a growing body of research, a comprehensive understanding of global chytridiomycosis incidence remains elusive. In a large collaborative effort, Bd-Maps was launched in 2007 to increase multidisciplinary investigations and understanding using compiled global Bd occurrence data (Bsal was not discovered until 2013). As its database functions aged and became unsustainable, we sought to address critical needs utilizing new technologies to meet the challenges of aggregating data to facilitate research on both Bd and Bsal. Here, we introduce an advanced central online repository to archive, aggregate, and share Bd and Bsal data collected from around the world. The Amphibian Disease Portal (https://amphibiandisease.org) addresses several critical community needs while also helping to build basic biological knowledge of chytridiomycosis. This portal could be useful for other amphibian diseases and could also be replicated for uses with other wildlife diseases. We show how the Amphibian Disease Portal provides: (1) a new repository for the legacy Bd-Maps data; (2) a repository for sample-level data to archive datasets and host published data with permanent DOIs; (3) a flexible framework to adapt to advances in field, laboratory, and informatics technologies; and (4) a global aggregation of Bd and Bsal infection data to enable and accelerate research and conservation. The new framework for this project is built using biodiversity informatics best practices and metadata standards to ensure scientific reproducibility and linkages across other biological and biodiversity repositories.
Collapse
Affiliation(s)
- Michelle S Koo
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Vance T Vredenburg
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States.,Department of Biology, San Francisco State University, San Francisco, CA, United States
| | - John B Deck
- Berkeley Natural History Museums, University of California, Berkeley, Berkeley, CA, United States
| | - Deanna H Olson
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - Kathryn L Ronnenberg
- US Department of Agriculture, Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States
| | - David B Wake
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
14
|
Distribution and Genetic Diversity of the Amphibian Chytrid in Japan. J Fungi (Basel) 2021; 7:jof7070522. [PMID: 34210103 PMCID: PMC8307550 DOI: 10.3390/jof7070522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022] Open
Abstract
While research on frog chytrid fungus Batrachochytrium dendrobatidis (Bd), an infectious disease that threatens amphibian diversity, continues to advance worldwide, little progress has been made in Japan since around 2010. The reason for this is, which we pointed out in 2009, that the origin of frog chytrid fungus may be in the East Asian region, including Japan based on the Bd ITS-DNA variation, and as few cases of mass mortality caused by this fungus have been observed in wild amphibian populations in Japan, the interest of the Japanese government and the general public in Bd has waned. However, we believe that organizing the data obtained so far in Japan and distributing the status of frog chytrid fungus in Japan to the world will provide useful insight for future risk management of this pathogen. We collected more than 5500 swab samples from wild amphibians throughout Japan from 2009 to 2010. Then, we investigated the infection status using the Nested-PCR method. We sequenced the obtained DNA samples and constructed a maximum-parsimony (MP) tree to clarify the phylogenetic diversity of Bd. We detected Bd infection in 11 (nine native and two alien) amphibian species in Japan and obtained 44 haplotypes of Bd ITS-DNA. The MP tree showed a high diversity of Bd strains in Japan, suggesting that some strains belong to Bd-GPL and Bd-Brazil. Except for local populations of the Japanese giant salamanders Andrias japonicus in Honshu Island and the sword tail newts Cynops ensicauda in Okinawa Island, the Bd infection prevalence in native amphibian species was very low. The alien bullfrog Aquarana catesbeiana had high Bd infection rates in all areas where they were sampled. No Bd infection was detected in other native amphibians in the areas where giant salamanders, sword tail newts, and bullfrogs were collected, suggesting that many native amphibians are resistant to Bd infection. The sword tail newt of Okinawa Island had both the highest infectious incidence and greatest number of haplotypes. The giant salamanders also showed relatively high infection prevalence, but the infected strains were limited to those specific to this species. These two Caudata species are endemic to a limited area of Japan, and it was thought that they may have been refugia for Bd, which had been distributed in Japan Islands for a long time.
Collapse
|
15
|
Sheets CN, Schmidt DR, Hurtado PJ, Byrne AQ, Rosenblum EB, Richards-Zawacki CL, Voyles J. Thermal Performance Curves of Multiple Isolates of Batrachochytrium dendrobatidis, a Lethal Pathogen of Amphibians. Front Vet Sci 2021; 8:687084. [PMID: 34239916 PMCID: PMC8258153 DOI: 10.3389/fvets.2021.687084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
Emerging infectious disease is a key factor in the loss of amphibian diversity. In particular, the disease chytridiomycosis has caused severe declines around the world. The lethal fungal pathogen that causes chytridiomycosis, Batrachochytrium dendrobatidis (Bd), has affected amphibians in many different environments. One primary question for researchers grappling with disease-induced losses of amphibian biodiversity is what abiotic factors drive Bd pathogenicity in different environments. To study environmental influences on Bd pathogenicity, we quantified responses of Bd phenotypic traits (e.g., viability, zoospore densities, growth rates, and carrying capacities) over a range of environmental temperatures to generate thermal performance curves. We selected multiple Bd isolates that belong to a single genetic lineage but that were collected across a latitudinal gradient. For the population viability, we found that the isolates had similar thermal optima at 21°C, but there was considerable variation among the isolates in maximum viability at that temperature. Additionally, we found the densities of infectious zoospores varied among isolates across all temperatures. Our results suggest that temperatures across geographic point of origin (latitude) may explain some of the variation in Bd viability through vertical shifts in maximal performance. However, the same pattern was not evident for other reproductive parameters (zoospore densities, growth rates, fecundity), underscoring the importance of measuring multiple traits to understand variation in pathogen responses to environmental conditions. We suggest that variation among Bd genetic variants due to environmental factors may be an important determinant of disease dynamics for amphibians across a range of diverse environments.
Collapse
Affiliation(s)
- Ciara N Sheets
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Deena R Schmidt
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
| | - Paul J Hurtado
- Department of Mathematics and Statistics, University of Nevada, Reno, NV, United States
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA, United States.,Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA, United States
| | | | - Jamie Voyles
- Department of Biology, University of Nevada, Reno, NV, United States
| |
Collapse
|
16
|
Rollins-Smith LA, Le Sage EH. Batrachochytrium fungi: stealth invaders in amphibian skin. Curr Opin Microbiol 2021; 61:124-132. [PMID: 33964650 DOI: 10.1016/j.mib.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 10/21/2022]
Abstract
Amphibian populations around the world have been affected by two pathogenic fungi within the phylum Chytridiomycota. Batrachochytrium dendrobatidis (Bd) has infected hundreds of species and led to widespread declines and some species extinctions. Batrachochytrium salamandrivorans (Bsal) has devastated some native European salamanders, especially the iconic fire salamanders (Salamandra salamandra). Comparative genomic studies show that Bd is more diverse and widespread than previously thought, and global lineages occur together allowing for the development of hybrid lineages. New studies raise the concern of greater pathogenesis if both Bd and Bsal infect the same host. Although amphibians possess robust immune defenses, co-infected and many single-infected hosts seem unable to mount effective immune responses. A strong defense may actually be harmful. Analysis of Bd and Bsal secretions documents small metabolites that signal high density to limit their growth and to suppress adaptive immune defenses, thus enabling a stealth presence in the skin compartment.
Collapse
Affiliation(s)
- Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology and of Pediatrics, Vanderbilt University School of Medicine and Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
| | - Emily H Le Sage
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|