1
|
Zhang S, Cao Z, Liu S, Hao Z, Zhang X, Sun G, Ge Y, Zhang L, Chen B. Soil Fungal Diversity, Community Structure, and Network Stability in the Southwestern Tibetan Plateau. J Fungi (Basel) 2025; 11:389. [PMID: 40422723 DOI: 10.3390/jof11050389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/28/2025] Open
Abstract
Despite substantial research on how environmental factors affect fungal diversity, the mechanisms shaping regional-scale diversity patterns remain poorly understood. This study employed ITS high-throughput sequencing to evaluate soil fungal diversity, community composition, and co-occurrence networks across alpine meadows, desert steppes, and alpine shrublands in the southwestern Tibetan Plateau. We found significantly higher fungal α-diversity in alpine meadows and desert steppes than in alpine shrublands. Random forest and CAP analyses identified the mean annual temperature (MAT) and normalized difference vegetation index (NDVI) as major ecological drivers. Mantel tests revealed that soil physicochemical properties explained more variation than climate, indicating an indirect climatic influence via soil characteristics. Distance-decay relationships suggested that environmental heterogeneity and species interactions drive community isolation. Structural equation modeling confirmed that the MAT and NDVI regulate soil pH and carbon/nitrogen availability, thereby influencing fungal richness. The highly modular fungal co-occurrence network depended on key nodes for connectivity. Vegetation coverage correlated positively with network structure, while soil pH strongly affected network stability. Spatial heterogeneity constrained stability and diversity through resource distribution and niche segregation, whereas stable networks concentrated resources among dominant species. These findings enhance our understanding of fungal assemblage processes at a regional scale, providing a scientific basis for the management of soil fungal resources in plateau ecosystems.
Collapse
Affiliation(s)
- Shiqi Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenjiao Cao
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Liu
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhipeng Hao
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xin Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxin Sun
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Limei Zhang
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baodong Chen
- State Key Laboratory of Regional and Urban Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang J, Yu D, Zhang L, Wang T, Zhang L, Wang L, Liu A, Yan J. The effects of polycyclic aromatic hydrocarbons on ecological assembly processes and co-occurrence patterns differ between soil bacterial and fungal communities. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136716. [PMID: 39642719 DOI: 10.1016/j.jhazmat.2024.136716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous organic pollutants prevalent in soil ecosystems. Bacteria and fungi play important roles in the degradation of PAHs in the soils. However, little is known about the differences between the bacterial and fungal community assemblies in PAH-contaminated soils. In this study, soil bacterial and fungal community distributions were investigated in maize farmlands and roadside barelands around nine coking plants in Shanxi, China. Most of the soil samples were severely polluted with PAHs. A clear microbial biogeographic pattern was observed. Bacterial communities are primarily affected by environmental factors, whereas fungal communities are primarily affected by spatial factors. Null modeling showed that homogeneous selection (deterministic processes) and dispersal limitation (stochastic processes) dominated the bacterial and fungal community assemblages, respectively. PAH concentrations were closely linked to community assembly processes, and influenced microbial co-occurrence by mediating specific network modules. Overall, the effects of PAHs on bacterial community assembly and co-occurrence relationships were greater than those on fungal communities. Some microbial taxa associated with PAH degradation can be considered potential biomarkers that reflect the degree of PAH pollution. These results expand the understanding of the mechanisms underlying the assembly and maintenance of soil microbial communities in response to PAH contamination.
Collapse
Affiliation(s)
- Jun Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Daijing Yu
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Liwei Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Tian Wang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Liuyaoxing Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China
| | - Lei Wang
- Key laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, Hebei, China
| | - Aiqin Liu
- Key laboratory of Mineral Resources and Ecological Environment Monitoring, Hebei Research Center for Geoanalysis, Baoding 071051, Hebei, China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong 030600, Shanxi, China; Shanxi Key Laboratory of Forensic Medicine, Jinzhong 030600, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Jinzhong 030600, Shanxi, China.
| |
Collapse
|
3
|
Zhou J, Liu Z, Wang S, Li J, Zhang L, Liao Z. A novel framework unveiling the importance of heterogeneous selection and drift on the community structure of symbiotic microbial indicator taxa across altitudinal gradients in amphibians. Microbiol Spectr 2025; 13:e0419223. [PMID: 39772705 PMCID: PMC11792505 DOI: 10.1128/spectrum.04192-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/08/2024] [Indexed: 01/11/2025] Open
Abstract
Existing analytical frameworks for community assembly have a noticeable knowledge gap, lacking a comprehensive assessment of the relative contributions of individual or grouped microbial distinct sampling units (DSUs) and distinct taxonomic units (DTUs) to each mechanism. Here, we propose a comprehensive framework for identifying DTUs/DSUs that remarkably contribute to the various mechanisms sustaining microbial community structure. Amphibian symbiotic microbes along an altitudinal gradient from Sichuan Province, China, were employed to examine the proposed statistical framework. In different altitude groups, we found that heterogeneous selection governed the community structure of symbiotic microbes across DSUs, while stochastic processes tended to increase with altitude. For DTUs at phylum and family levels, drift emerged as the dominant mechanism driving the community structure in the most symbiotic microbial taxa, while heterogeneous selection governs the most dominant or indicator taxa. Notably, the relative contribution of heterogeneous selection was significantly positively correlated with the relative abundance and niche breadth of taxa, and negatively correlated with drift. We also detected that community assembly processes remarkably regulate the structure of symbiotic microbial communities and their correlation with environmental variables. Altogether, our modeling framework is a robust and valuable tool that further enlarges our insight into microbiota community assembly. IMPORTANCE Distinguishing the drivers regulating microbial community assembly is essential in microbial ecology. We propose a novel modeling framework to partition the relative contributions of each individual or group of microbial DSUs and DTUs into different underpinning mechanisms. An empirical study on amphibian symbiotic microbes notably enlarges insight into community assembly patterns in the herpetological symbiotic ecosystem and demonstrates that the proposed statistical framework is an informative and sturdy tool to quantify microbial assembly processes at both levels of DSUs and DTUs. More importantly, our proposed modeling framework can provide in-depth insights into microbiota community assembly within the intricate tripartite host-environment-microbe relationship.
Collapse
Affiliation(s)
- Jin Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhidong Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Sishuo Wang
- Department of Microbiology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Lin Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Ziyan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
4
|
Yu H, Liu S, Zhang D, Hu R, Chen P, Liu H, Zhou Q, Tan W, Hu N, He Z, Ding D, Yan Q. Specific Enrichment of arsM-Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1647-1660. [PMID: 39810418 DOI: 10.1021/acs.est.4c10242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, arsM gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of Vetiveria zizanioides, a potential As hyperaccumulator. V. zizanioides was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment. Results showed that the content of dimethylarsinic acid in the rhizosphere was significantly positively correlated with the rate of N fixation and the activity of nitrite reductase. The As-methylating species (e.g., Flavisolibacter and Paraflavitalea) were significantly enriched in the root-associated compartments in the second generation of MS and AS. Notably, higher abundance of genes involved in N fixation (nifD, nifK) and dissimilatory nitrate reduction to ammonium (narG/H, nirB/D/K/S) was detected in the second generation of MS than in the first generation. The metabolic pathway analysis further demonstrated that N fixing-stimulative and DNRA-stimulative As-methylating species could provide ammonium to enhance the synthesis of S-adenosyl-l-methionine, serving as methyl donors for soil As methylation. This study highlights two important N conversion-stimulative As-methylating pathways and has important implications for enhancing phytoremediation in As-contaminated soils.
Collapse
Affiliation(s)
- Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Shengwei Liu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pubo Chen
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Huanping Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture 416000, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
5
|
Zhang Y, Li C, Zhang Z, Li C, Zhang B, Jiang H, Islam W, Li X, Zeng F. Effects of soil water on fungal community composition along elevational gradients on the northern slope of the Central Kunlun Mountains. Front Microbiol 2025; 15:1494070. [PMID: 39845045 PMCID: PMC11753354 DOI: 10.3389/fmicb.2024.1494070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/03/2024] [Indexed: 01/24/2025] Open
Abstract
Soil fungi are essential to ecosystem processes, yet their elevational distribution patterns and the ecological mechanisms shaping their communities remain poorly understood and actively debated, particularly in arid regions. Here, we investigated the diversity patterns and underlying mechanisms shaping soil fungal communities along an elevational gradient (1,707-3,548 m) on the northern slope of the Central Kunlun Mountains in northwest China. Results indicated that the dominant phyla identified across the seven elevational gradients were Basidiomycota and Ascomycota, displaying a unimodal pattern and a U-shaped pattern in relative abundance, respectively. Soil saprotroph and nectar/tap saprotroph were the dominant functional groups (>1.0%). Along the elevational gradients, soil fungal α-diversity demonstrated a generally decreasing trend, whereas β-diversity showed a contrasting increasing trend. Among the environmental variables, altitude and climate (mean annual precipitation, MAP; mean annual temperature, MAT) were the strongest predictors for α-diversity. Partial least squares path modeling (PLSPM) analysis revealed that soil water content (Wat) was the most influential factor driving fungal α-diversity, while vegetation coverage (Veg) emerged as the primary determinant of soil fungal community composition. The influence of Wat on fungal α-diversity shifted from indirect to direct as elevation increased, transitioning from lower elevations (≤2,448 m) to higher elevations (≥2,746 m). Similarly, the impact of Veg on soil fungal community composition exhibited a comparable pattern. The null model analysis revealed that homogeneous selection and dispersal limitation dominated the soil fungal community assembly at elevations lower than 2,448 m and higher than 2,746 m, respectively. Variations in ecological processes may be linked to changes in key environmental factors that influence soil fungal communities in an elevation-dependent manner. These findings can enhance our ability to predict soil fungal diversity patterns and their responses to climate change in the ecosystems of the northern slope of the Central Kunlun Mountain.
Collapse
Affiliation(s)
- Yongguang Zhang
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chaonan Li
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Normal University, Mianyang, China
| | - Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Chenhong Li
- Faculty of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
| | - Bo Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xiangzhen Li
- Engineering Research Center of Soil Remediation of Fujian Province University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
6
|
Chang C, Hu E, Tang X, Ye S, Zhao D, Qu Z, Li M. Assembly of soil multitrophic community regulates multifunctionality via multifaceted biotic factors in subtropical ecosystems. ENVIRONMENT INTERNATIONAL 2025; 195:109272. [PMID: 39805170 DOI: 10.1016/j.envint.2025.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/05/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Soil biodiversity underpins multiple ecosystem functions and services essential for human well-being. Understanding the determinants of biodiversity-ecosystem function relationships (BEFr) is critical for the conservation and management of soil ecosystems. Community assembly processes determine community diversity and structure. However, there remains limited systematic research on how the assembly processes of multiple organismal groups affect soil ecosystem functions through their influence on biodiversity and species interactions. Here, we analyzed 331 soil samples from different land-use types (cropland, forest, and grassland) in the Qinling-Daba Mountains to investigate the drivers, assembly processes, and network stability of multitrophic organisms. High-throughput sequencing was used to examine archaea, bacteria, fungi, algae, protozoa, and invertebrates, while enzyme activity assays were used to assess ecosystem multifunctionality related to nutrient provisioning. Our results indicated that biotic factors contributed to 62.81-94.97 % of α-diversity and 4.19-52.37 % of β-diversity in multitrophic organisms, even when considering the influence of abiotic factors. Protozoan α- and β-diversity most significantly explained the α- and β-diversity of bacteria, fungi, algae, and invertebrates in soil ecosystems, serving as important indicators for assessing soil multifunctionality and ecosystem health. Furthermore, the assembly processes in prokaryotes were primarily governed by stochasticity (>50 %), whereas those in eukaryotic groups were dominated by deterministic processes (<50 %). Diversity and network stability increased with greater stochasticity in bacterial communities where stochastic processes predominated. Conversely, in fungal and protozoan communities dominated by deterministic processes, diversity and network stability decreased as deterministic processes intensified. Importantly, stochastic processes in soil multitrophic assembly enhanced ecosystem multifunctionality by increasing α-diversity, β-diversity, and network stability. These findings provide valuable insights into the regulation of BEFr by multitrophic assembly processes. Future research should further explore the role of these assembly processes in soil ecosystem functioning under land-use change scenarios.
Collapse
Affiliation(s)
- Chao Chang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061 Shaanxi, China
| | - Xiaofeng Tang
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China
| | - Sisi Ye
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China
| | - Dan Zhao
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061 Shaanxi, China
| | - Zhi Qu
- State Key Laboratory of Eco-hydraulics in the Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048 Shaanxi, China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A & F University, Yangling 712100 Shaanxi, China.
| |
Collapse
|
7
|
Miao L, Zhang J, Luo D, Adyel TM, Ao Y, Li C, Yao Y, Wu J, You G, Hou J. Distinct effects of flow intermittency on the benthic microbial diversity and their denitrification on different substrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177394. [PMID: 39528219 DOI: 10.1016/j.scitotenv.2024.177394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/14/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
Global climate change has significantly increased the duration of droughts in intermittent rivers, impacting benthic microbial-mediated biogeochemical processes. However, the response mechanisms of biofilms on different substrate types to alternating dry and wet conditions and their related ecosystem functions remain poorly understood. This study uses high-throughput sequencing and enzyme assays to investigate the impact of gradient drought stress on microbial diversity and functional changes of biofilm communities inhabiting on gravel, cobblestone, and sediment. Results showed that the duration of drought significantly affects microbial diversity, with algal and bacterial α-diversity declining under extended drought across gravel, cobblestone, and sediment substrates. At the same time, fungal diversity was less affected, likely due to their distinct ecological niches and reproductive strategies. β-diversity analysis revealed significant changes in community heterogeneity, with algae and bacteria showing increased Bray-Curtis dissimilarities, indicating distinct adaptation strategies that may affect ecosystem functioning. Fungal communities, however, were less impacted by drought-induced heterogeneity changes. Network analysis showed that drought altered microbial network connectivity, with algal networks displaying decreased path distances, while bacterial networks remained stable, suggesting greater resilience to drought stress. Functional enzyme assays revealed significantly reduced denitrification rates across all substrates post-drought, with distinct denitrifying enzyme activity responses depending on substrate type. Partial least squares path modeling revealed that algal biodiversity were closely linked to the maintaining of enzyme activities, particularly denitrification rates of biofilms on cobblestone and gravel. These findings indicated the critical role of substrate types in shaping microbial responses to drought stress, with distinct microbial groups and diversity indices playing key roles in maintaining ecosystem functions. This study highlights the importance of understanding the interactions between microbial community dynamics and ecosystem functions under varying environmental stressors in river ecosystems.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Junling Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa 850030, Tibet Autonomous Region, People's Republic of China
| | - Tanveer M Adyel
- Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Yanhui Ao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yu Yao
- School of Environment, Nanjing Normal University, Nanjing 210023, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
8
|
He S, Lv M, Wang R, Li N, Wang T, Shi W, Gao Z, Li X. Long-term garlic‒maize rotation maintains the stable garlic rhizosphere microecology. ENVIRONMENTAL MICROBIOME 2024; 19:90. [PMID: 39538303 PMCID: PMC11562493 DOI: 10.1186/s40793-024-00636-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Crop rotation is a sophisticated agricultural practice that can modify the demographic structure and abundance of microorganisms in the soil, stimulate the growth and proliferation of beneficial microorganisms, and inhibit the development of harmful microorganisms. The stability of the rhizosphere microbiome is crucial for maintaining both soil ecosystem vitality and crop prosperity. However, the effects of extended garlic‒maize rotation on the physicochemical characteristics of garlic rhizosphere soil and the stability of its microbiome remain unclear. To investigate this phenomenon, soil samples from the garlic rhizosphere were collected across four different lengths of rotation in a garlic-maize rotation. RESULTS There were notable positive associations between the total nitrogen and total phosphorus contents in the soil and the duration of rotation. Prolonged rotation could increase the maintenance of microbiome α diversity. The number of years of rotation and the soil organic carbon (SOC) content emerged as principal determinants impacting the evolution of the bacterial community structure, with the SOC content playing a pivotal role in sculpting the species diversity within the garlic rhizosphere bacterial community. Additionally, SOC remains predominant in shaping the root-associated bacterial community's β-nearest taxon index. However, these factors do not have a notable effect on the fungal community inhabiting the garlic rhizosphere. In comparison with monoculture, rotation can amplify the interconnectivity and intricacy of microbial ecological networks. Long-term rotation can further maintain the stability of both microbial ecological networks and interactions between bacterial and fungal communities. It can enlist a plethora of beneficial Bacillus species microorganisms within the garlic rhizosphere to form a biological barricade that aids in safeguarding garlic against encroachment by the pathogenic fungus Fusarium oxysporum, consequently diminishing disease incidence. This study provides a theoretical foundation for the sustainable development of garlic through long-term crop rotation with maize. CONCLUSIONS Our research results indicate that long-term garlic‒maize rotation maintains stable garlic rhizosphere microecology. Our study provides compelling evidence for the role of long-term crop rotation in maintaining microbiota and community stability, emphasizing the importance of cultivating specific beneficial microorganisms to enhance rotation strategies for garlic farming, thereby promoting sustainability in agriculture.
Collapse
Affiliation(s)
- Shidong He
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Minghao Lv
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Rongxin Wang
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Ningyang Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, China
| | - Taotao Wang
- Shandong Engineering and Technology Research Center for Garlic, Jining, 272200, China
| | - Wenchong Shi
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Zheng Gao
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
9
|
Tang X, Yang J, Lin D, Lin H, Xiao X, Chen S, Huang Y, Qian X. Community assembly of ectomycorrhizal fungal communities in pure and mixed Pinus massoniana forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121312. [PMID: 38824888 DOI: 10.1016/j.jenvman.2024.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/18/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Ectomycorrhizal (EcM) fungi play an important role in nutrient cycling and community ecological dynamics and are widely acknowledged as important components of forest ecosystems. However, little information is available regarding EcM fungal community structure or the possible relationship between EcM fungi, soil properties, and forestry activities in Pinus massoniana forests. In this study, we evaluated soil properties, extracellular enzyme activities, and fungal diversity and community composition in root and soil samples from pure Pinus massoniana natural forests, pure P. massoniana plantations, and P. massoniana and Liquidambar gracilipes mixed forests. The mixed forest showed the highest EcM fungal diversity in both root and bulk soil samples. Community composition and co-occurrence network structures differed significantly between forest types. Variation in the EcM fungal community was significantly correlated with the activities of β-glucuronidase and β-1,4-N-acetylglucosaminidase, whereas non-EcM fungal community characteristics were significantly correlated with β-1,4-glucosidase and β-glucuronidase activities. Furthermore, stochastic processes predominantly drove the assembly of both EcM and non-EcM fungal communities, while deterministic processes exerted greater influence on soil fungal communities in mixed forests compared to pure forests. Our findings may inform a deeper understanding of how the assembly processes and environmental roles of subterranean fungal communities differ between mixed and pure plantations and may provide insights for how to promote forest sustainability in subtropical areas.
Collapse
Affiliation(s)
- Xinghao Tang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Juanjuan Yang
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danhua Lin
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huazhang Lin
- Fujian Datian Taoyuan State-owned Forest Farm, Sanming, 366199, China
| | - Xiangxi Xiao
- Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Sensen Chen
- Fujian Datian Taoyuan State-owned Forest Farm, Sanming, 366199, China
| | - Yunpeng Huang
- Fujian Academy of Forestry Sciences, Fuzhou, 350012, China
| | - Xin Qian
- Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
10
|
Zheng Y, Li S, Feng X, He X, Li Y. Seasonality regulates the distinct assembly patterns of microeukaryotic plankton communities in the Three Gorges Reservoir, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:37705-37716. [PMID: 38780846 DOI: 10.1007/s11356-024-33613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024]
Abstract
The hydrographic and environmental factors along the Three Gorges Reservoir (TGR) have been significantly altered since the Three Gorges Dam (TGD) began working in 2006. Here, we collected 54 water samples, and then measured the environmental factors, followed by sequencing of the 18S rRNA gene and subsequent analysis of community assembly mechanisms. The findings indicated that the majority of environmental variables (such as AN, TP, Chl-a, CODMn, and Cu) exhibited both temporal and spatial variations due to the influences of the TGD. The distribution of different environmental factors and microeukaryotic plankton communities is influenced by the changing seasons. The community structure in TGR showed variations across three seasons, possibly due to variations in their environmental preferences, inherent dissimilarities, and seasonal succession. Furthermore, different communities exhibited a comparable distance-decay trend, suggesting that distinct taxa are likely to exhibit a similar spatial distribution. In addition, the community formation in TGR was influenced by both deterministic and stochastic factors, with the balance between them being mainly controlled by the season. Specifically, deterministic processes could explain 33.9-51.1% of community variations, while stochastic processes could contribute 23.5-32.2%. The findings of this research demonstrated that the varying ecological processes' significance relied on environmental gradients, geographical scale, and ecological conditions. This could offer a fresh outlook on comprehending the composition, assembly mechanisms, and distribution patterns of microeukaryotic plankton in reservoir ecosystems.
Collapse
Affiliation(s)
- Yu Zheng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Suping Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xiao Feng
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xinhua He
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
- School of Biological Sciences, University of Western, Australia, Perth, WA, 6009, Australia
| | - Yong Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
11
|
Wang H, Wang Z, Yu J, Ma C, Liu L, Xu D, Zhang J. The function and keystone microbiota in typical habitats under the influence of anthropogenic activities in Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2024; 247:118196. [PMID: 38253195 DOI: 10.1016/j.envres.2024.118196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/18/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
Microbe is an essential driver in regulating the biochemical cycles of carbon, nitrogen, and sulfur. In freshwater lake, microbial communities and functions are influenced by multiple factors, especially anthropogenic activities. Baiyangdian Lake consisted of various habitats, and was frequently interfered with human activities. In this study, 16 S rRNA sequencing and metagenomic sequencing were performed to characterize the microbial communities, determine keystone taxa and reveal dominated metabolic functions in typical habitats in Baiyangdian Lake. The results showed that the diversity of microbial community was significantly higher in sediment compared with corresponding water sample. Microbial community showed strong spatial heterogeneity in sediment, and temporal heterogeneity in water. As for different habitats, significantly higher alpha diversity was observed in ecotone, where the interference of human activities was relatively weak. The shared OTUs were distinguished from the keystone taxa, which indicated the uniqueness of microbiota in different ecological habitat. Moreover, the interactions of microbial in ecological restoration area (abandoned fish pond) were relatively simple, suggesting that this ecosystem was relatively fragile compared with others. Based on the metagenomic sequencing, we recognized that the canal, open water, and abandoned fish pond were beneficial for methanogenic and the ecotone might be a hot zone for the oxidation of methane. Notably, most of the microbes that participated in these predominant metabolisms were unclassified, which indicated the hug potential for exploring functional microorganisms in Baiyangdian Lake. This study provided a comprehensive understanding of the ecology characteristics of microbiota in habitats undergoing various human interference in Baiyangdian Lake.
Collapse
Affiliation(s)
- Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Zhixin Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ling Liu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Dong Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China
| | - Jing Zhang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
12
|
Xing H, Chen W, Liu Y, Cahill JF. Local Community Assembly Mechanisms and the Size of Species Pool Jointly Explain the Beta Diversity of Soil Fungi. MICROBIAL ECOLOGY 2024; 87:58. [PMID: 38602532 PMCID: PMC11008070 DOI: 10.1007/s00248-024-02374-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Fungi play vital regulatory roles in terrestrial ecosystems. Local community assembly mechanisms, including deterministic and stochastic processes, as well as the size of regional species pools (gamma diversity), typically influence overall soil microbial community beta diversity patterns. However, there is limited evidence supporting their direct and indirect effects on beta diversity of different soil fungal functional groups in forest ecosystems. To address this gap, we collected 1606 soil samples from a 25-ha subtropical forest plot in southern China. Our goal was to determine the direct effects and indirect effects of regional species pools on the beta diversity of soil fungi, specifically arbuscular mycorrhizal (AM), ectomycorrhizal (EcM), plant-pathogenic, and saprotrophic fungi. We quantified the effects of soil properties, mycorrhizal tree abundances, and topographical factors on soil fungal diversity. The beta diversity of plant-pathogenic fungi was predominantly influenced by the size of the species pool. In contrast, the beta diversity of EcM fungi was primarily driven indirectly through community assembly processes. Neither of them had significant effects on the beta diversity of AM and saprotrophic fungi. Our results highlight that the direct and indirect effects of species pools on the beta diversity of soil functional groups of fungi can significantly differ even within a relatively small area. They also demonstrate the independent and combined effects of various factors in regulating the diversities of soil functional groups of fungi. Consequently, it is crucial to study the fungal community not only as a whole but also by considering different functional groups within the community.
Collapse
Affiliation(s)
- Hua Xing
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Wuwei Chen
- Qingyuan Bureau Natural Resources and Planning, Qingyuan, 323800, China
| | - Yu Liu
- ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, 500 Dongchuan Road, Minhuang District, 200241, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200082, China.
| | - James F Cahill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| |
Collapse
|
13
|
Fan Q, Liu K, Wang Z, Liu D, Li T, Hou H, Zhang Z, Chen D, Zhang S, Yu A, Deng Y, Cui X, Che R. Soil microbial subcommunity assembly mechanisms are highly variable and intimately linked to their ecological and functional traits. Mol Ecol 2024; 33:e17302. [PMID: 38421102 DOI: 10.1111/mec.17302] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 03/02/2024]
Abstract
Revealing the mechanisms underlying soil microbial community assembly is a fundamental objective in molecular ecology. However, despite increasing body of research on overall microbial community assembly mechanisms, our understanding of subcommunity assembly mechanisms for different prokaryotic and fungal taxa remains limited. Here, soils were collected from more than 100 sites across southwestern China. Based on amplicon high-throughput sequencing and iCAMP analysis, we determined the subcommunity assembly mechanisms for various microbial taxa. The results showed that dispersal limitation and homogenous selection were the primary drivers of soil microbial community assembly in this region. However, the subcommunity assembly mechanisms of different soil microbial taxa were highly variable. For instance, the contribution of homogenous selection to Crenarchaeota subcommunity assembly was 70%, but it was only around 10% for the subcommunity assembly of Actinomycetes, Gemmatimonadetes and Planctomycetes. The assembly of subcommunities including microbial taxa with higher occurrence frequencies, average relative abundance and network degrees, as well as wider niches tended to be more influenced by homogenizing dispersal and drift, but less affected by heterogeneous selection and dispersal limitation. The subcommunity assembly mechanisms also varied substantially among different functional guilds. Notably, the subcommunity assembly of diazotrophs, nitrifiers, saprotrophs and some pathogens were predominantly controlled by homogenous selection, while that of denitrifiers and fungal pathogens were mainly affected by stochastic processes such as drift. These findings provide novel insights into understanding soil microbial diversity maintenance mechanisms, and the analysis pipeline holds significant value for future research.
Collapse
Affiliation(s)
- Qiuping Fan
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Kaifang Liu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Zelin Wang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Dong Liu
- School of Life Sciences, Yunnan University, Kunming, China
| | - Ting Li
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Haiyan Hou
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Zejin Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Danhong Chen
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song Zhang
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Anlan Yu
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| | - Yongcui Deng
- School of Geography Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoyong Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongxiao Che
- Yunnan Key Laboratory of Soil Erosion Prevention and Green Development, Institute of International Rivers and Eco-security, Yunnan University, Kunming, China
| |
Collapse
|
14
|
Ma L, Zhou G, Zhang J, Jia Z, Zou H, Chen L, Zhang C, Ma D, Han C, Duan Y. Long-term conservation tillage enhances microbial carbon use efficiency by altering multitrophic interactions in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170018. [PMID: 38224879 DOI: 10.1016/j.scitotenv.2024.170018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/03/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
Microbial carbon (C) use efficiency (CUE) plays a key role in soil C storage. The predation of protists on bacteria and fungi has potential impacts on the global C cycle. However, under conservation tillage conditions, the effects of multitrophic interactions on soil microbial CUE are still unclear. Here, we investigate the multitrophic network (especially the keystone ecological cluster) and its regulation of soil microbial CUE and soil organic C (SOC) under different long-term (15-year) tillage practices. We found that conservation tillage (CT) significantly enhanced microbial CUE, turnover, and SOC (P < 0.05) compared to traditional tillage (control, CK). At the same time, tillage practice and soil depth had significant effects on the structure of fungal and protistan communities. Furthermore, the soil biodiversity of the keystone cluster was positively correlated with the microbial physiological traits (CUE, microbial growth rate (MGR), microbial respiration rate (Rs), microbial turnover) and SOC (P < 0.05). Protistan richness played the strongest role in directly shaping the keystone cluster. Compared with CK, CT generally enhanced the correlation between microbial communities and microbial physiological characteristics and SOC. Overall, our results illustrate that the top-down control (the organisms at higher trophic levels affect the organisms at lower trophic levels) of protists in the soil micro-food web plays an important role in improving microbial CUE under conservation tillage. Our findings provide a theoretical basis for promoting the application of protists in targeted microbial engineering and contribute to the promotion of conservation agriculture and the improvement of soil C sequestration potential.
Collapse
Affiliation(s)
- Ling Ma
- College of Land and Environment, Shenyang Agricultural University, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Arable Land Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Guixiang Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Zhongjun Jia
- Chinese Academy of Sciences, Northeast Institute of Geography and Agroecology, Changchun 130102, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Arable Land Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Lin Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Congzhi Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Donghao Ma
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changdong Han
- College of Land and Environment, Shenyang Agricultural University, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Arable Land Conservation in Northeast China, Ministry of Agriculture and Rural Affairs, Shenyang 110866, China
| | - Yan Duan
- Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
15
|
Ma X, Wang X, Li J, Gen X, Liu X, Guo W, Liu H, Bao Y. Spatial variations of fungal community assembly and soil enzyme activity in rhizosphere of zonal Stipa species in inner Mongolia grassland. ENVIRONMENTAL RESEARCH 2024; 244:117865. [PMID: 38103776 DOI: 10.1016/j.envres.2023.117865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/19/2023]
Abstract
Rhizosphere soil fungal and enzyme activities affect the nutrient cycling of terrestrial ecosystems, and rhizosphere fungi are also important participants in the ecological process of vegetation succession, responding to changes in plant communities. Stipa is an excellent forage grass with important ecological and economic value, and has the spatial distribution pattern of floristic geographical substitution. In order to systematically investigate the synergistic response strategies of fungal communities and enzyme activities in the rhizosphere under the vegetation succession. Here we explored the turnover and assembly mechanisms of Stipa rhizosphere fungal communities and the spatial variation of metabolic activity under the succession of seven Stipa communities in northern China grassland under large scale gradients. The results indicated that the composition, abundance and diversity of fungal communities and microbial enzyme activities in rhizosphere soil differed among different Stipa species and were strikingly varied along the Stipa community changes over the geographic gradient. As the geographical distribution of Stipa community changed from east to west in grassland transect, Mortierellomycetes tended to be gradually replaced by Dothideomycetes. The null models showed that the rhizosphere fungal communities were governed primarily by the dispersal limitation of stochastic assembly processes, which showed decreased relative importance from S. grandis to S. gobica. Moreover, the MAT and MAP were the most important factors influencing the changes in the fungal community (richness, β-diversity and composition) and fungal community assembly, while SC and NP also mediated fungal community assembly processes. These findings deepen our understanding of the responses of the microbial functions and fungal community assembly processes in the rhizosphere to vegetation succession.
Collapse
Affiliation(s)
- Xiaodan Ma
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Xingzhe Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Jingpeng Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Xiao Gen
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Xinyan Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Wei Guo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Haijing Liu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China
| | - Yuying Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010010, China.
| |
Collapse
|
16
|
Zhao P, Gao G, Ding G, Zhang Y, Ren Y. Fungal complexity and stability across afforestation areas in changing desert environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169398. [PMID: 38114026 DOI: 10.1016/j.scitotenv.2023.169398] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The great achievements in combating desertification are attributed to large-scale afforestation, yet we lack verification of how the stability of the fungal community changes in afforestation areas in desert environments. Here, we present the fungal network structure from different niches (root and bulk soil) of plantations of Mongolian pine, a crucial species for afforestation introduced widely in desertification regions. We assessed changes in community complexity and stability of root-associated fungi (RAF) and soil fungi (SF) among different introduction sites: the Hulunbuir Desert (HB), the Horqin Desert (HQ) and the Mu Us Desert (MU). To illuminate the complexity and stability of the fungal network, the differences in topological properties, fungal function, and vegetation and environmental factors between introduction sites were fully considered. We showed that (1) the SF networks had more nodes and edges than the RAF networks. There was a lower ratio of negative:positive cohesion of RAF networks in HB and MU. For SF but not for RAF, across the three introduction sites, a higher modularity and ratio of negative:positive cohesion indicated higher stability. (2) Ectomycorrhizal (EcM) fungi were the dominant functional group in the RAF network (especially in HQ), and were only significantly correlated with vegetation factor. There was a higher relative abundance and number of OTUs of saprophytic fungi in the SF network and they showed positive correlations with soil nutrients. (3) RAF and SF network complexity and stability showed different responses to environmental and vegetation variables. The key determinant of the complexity and stability of the SF networks in Mongolian pine plantations was soil nutrients, followed by climate conditions. The composition and structure of the RAF community was closely related to host plants. Therefore, clarifying the complexity and stability of fungal communities in afforestation areas in changing desert environments is helpful for understanding the interactions between the environment, plants and fungi.
Collapse
Affiliation(s)
- Peishan Zhao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Guanglei Gao
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China.
| | - Guodong Ding
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Ying Zhang
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yue Ren
- Yanchi Research Station, School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Centre of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Key Laboratory of State Forestry and Grassland Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Ning D, Wang Y, Fan Y, Wang J, Van Nostrand JD, Wu L, Zhang P, Curtis DJ, Tian R, Lui L, Hazen TC, Alm EJ, Fields MW, Poole F, Adams MWW, Chakraborty R, Stahl DA, Adams PD, Arkin AP, He Z, Zhou J. Environmental stress mediates groundwater microbial community assembly. Nat Microbiol 2024; 9:490-501. [PMID: 38212658 DOI: 10.1038/s41564-023-01573-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024]
Abstract
Community assembly describes how different ecological processes shape microbial community composition and structure. How environmental factors impact community assembly remains elusive. Here we sampled microbial communities and >200 biogeochemical variables in groundwater at the Oak Ridge Field Research Center, a former nuclear waste disposal site, and developed a theoretical framework to conceptualize the relationships between community assembly processes and environmental stresses. We found that stochastic assembly processes were critical (>60% on average) in shaping community structure, but their relative importance decreased as stress increased. Dispersal limitation and 'drift' related to random birth and death had negative correlations with stresses, whereas the selection processes leading to dissimilar communities increased with stresses, primarily related to pH, cobalt and molybdenum. Assembly mechanisms also varied greatly among different phylogenetic groups. Our findings highlight the importance of microbial dispersal limitation and environmental heterogeneity in ecosystem restoration and management.
Collapse
Affiliation(s)
- Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Yajiao Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Yupeng Fan
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Jianjun Wang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA
| | - Ping Zhang
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Daniel J Curtis
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
| | - Renmao Tian
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL, USA
| | - Lauren Lui
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Terry C Hazen
- Department of Earth and Planetary Sciences, Bredesen Center, Department of Civil and Environmental Sciences, Center for Environmental Biotechnology, and Institute for a Secure and Sustainable Environment, University of Tennessee, Knoxville, TN, USA
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Eric J Alm
- Department of Biological Engineering, Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Matthew W Fields
- Center for Biofilm Engineering and Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Farris Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Paul D Adams
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Adam P Arkin
- Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, China
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, USA.
- School of Biological Sciences, University of Oklahoma, Norman, OK, USA.
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, USA.
- School of Computer Science, University of Oklahoma, Norman, OK, USA.
| |
Collapse
|
18
|
Maurice K, Bourceret A, Youssef S, Boivin S, Laurent-Webb L, Damasio C, Boukcim H, Selosse MA, Ducousso M. Anthropic disturbances impact the soil microbial network structure and stability to a greater extent than natural disturbances in an arid ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167969. [PMID: 37914121 DOI: 10.1016/j.scitotenv.2023.167969] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Growing pressure from climate change and agricultural land use is destabilizing soil microbial community interactions. Yet little is known about microbial community resistance and adaptation to disturbances over time. This hampers our ability to determine the recovery latency of microbial interactions after disturbances, with fundamental implications for ecosystem functioning and conservation measures. Here we examined the response of bacterial and fungal community networks in the rhizosphere of Haloxylon salicornicum (Moq.) Bunge ex Boiss. over the course of soil disturbances resulting from a history of different hydric constraints involving flooding-drought successions. An anthropic disturbance related to past agricultural use, with frequent successions of flooding and drought, was compared to a natural disturbance, i.e., an evaporation basin, with yearly flooding-drought successions. The anthropic disturbance resulted in a specific microbial network topology characterized by lower modularity and stability, reflecting the legacy of past agricultural use on soil microbiome. In contrast, the natural disturbance resulted in a network topology and stability close to those of natural environments despite the lower alpha diversity, and a different community composition compared to that of the other sites. These results highlighted the temporality in the response of the microbial community structure to disturbance, where long-term adaptation to flooding-drought successions lead to a higher stability than disturbances occurring over a shorter timescale.
Collapse
Affiliation(s)
- Kenji Maurice
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France.
| | - Amélia Bourceret
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Sami Youssef
- Department of Research and Development, VALORHIZ, 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez, France
| | - Stéphane Boivin
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| | - Liam Laurent-Webb
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France
| | - Coraline Damasio
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| | - Hassan Boukcim
- Department of Research and Development, VALORHIZ, 1900, Boulevard de la Lironde, PSIII, Parc Scientifique Agropolis, F34980 Montferrier sur Lez, France; ASARI, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid Ben Guerir, 43150, Morocco
| | - Marc-André Selosse
- ISYEB, Muséum national d'Histoire naturelle, CNRS, EPHE-PSL, Sorbonne Université, 57 rue Cuvier, CP39, 75005 Paris, France; Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland; Institut Universitaire de France, Paris, France
| | - Marc Ducousso
- LSTM, Univ Montpellier, CIRAD, INRAE, IRD, SupAgro, UMR082 LSTM, 34398 Montpellier Cedex 5, France
| |
Collapse
|
19
|
Li J, Zhao L, Song C, He C, Bian H, Sheng L. Forest swamp succession alters organic carbon composition and survival strategies of soil microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166742. [PMID: 37659521 DOI: 10.1016/j.scitotenv.2023.166742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Forest swamp ecosystems plays crucial role in the global carbon cycle. However, the effects of forest swamp succession on soil organic matter (SOM) and microbial community structure remain unclear. To determine the drivers of SOM change and soil microbial communities in forest swamp succession, a 'space instead of time' approach was used. Soil samples from 0 to 40 cm were collected along forest swamp (early stage), dried-up forest swamp (middle stage), and forest (late stage) ecosystems. Our findings reveal that as succession progresses, the relative content of aromatics decreases and SOM undergoes a transition towards a more readily degradable form. These changes affect soil carbon sequestration and nutrient availability. Bacterial diversity was significantly influenced by succession and changes in soil depth, with fungi exhibiting higher resilience. Soil properties and environmental conditions exert influence over the structure and function of microorganisms. As succession occurred, microbial interactions shifted from cooperation to competition, with bacteria displaying a deterministic distribution pattern and fungi exhibiting a random distribution pattern. SOM quality plays a key role in shaping microbial communities and influencing their growth strategies. Microorganisms are the major drivers of soil respiration, with K-strategist dominated communities in early succession exhibiting slower degradation rates, whereas r-strategists dominated in later stages, leading to faster decomposition.
Collapse
Affiliation(s)
- Jianwei Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Liyuan Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chuantao Song
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Chunguang He
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China
| | - Hongfeng Bian
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Lianxi Sheng
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China.
| |
Collapse
|
20
|
Wang W, Sun Z, Mishra S, Xia S, Lin L, Yang X. Body size determines multitrophic soil microbiota community assembly associated with soil and plant attributes in a tropical seasonal rainforest. Mol Ecol 2023; 32:6294-6303. [PMID: 35770463 DOI: 10.1111/mec.16585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/18/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022]
Abstract
To understand soil biodiversity we need to know how soil communities are assembled. However, the relationship between soil community assembly and environmental factors, and the linkages between soil microbiota taxonomic groups and their body sizes, remain unexplored in tropical seasonal rainforests. Systematic and stratified random sampling was used to collect 243 soil and organism samples across a 20-ha plot in a tropical seasonal rainforest in southwestern China. High-throughput sequencing, variation analysis and principal coordinates of neighbourhood matrices were performed. Soil community composition, spatial distribution and assembly processes based on propagule size (including archaea, bacteria, fungi and nematodes) were investigated. The results showed that: (i) the community assembly of small soil microorganisms (bacteria, fungi) was mostly influenced by stochastic processes while that of larger soil organisms (nematodes) was more deterministic; (ii) the independent effects of habitat (including soil and topographic variables) and its interaction with plant attributes for community structure significantly decreased with increasing body size; and (iii) plant leaf phosphorus directly influenced the spatial distribution of soil-available phosphorus, which indicates their indirect impact on the assembly of the soil communities. Our data suggest that the assembly of multitrophic soil communities can be explained to some extent by changes in above-ground plant attributes. This highlights the importance of above- and below-ground linkages in influencing multitrophic soil microbiota community assembly.
Collapse
Affiliation(s)
- Wenting Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Sun
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Sandhya Mishra
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Shangwen Xia
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
| | - Luxiang Lin
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
- National Forest Ecosystem Research Station at Xishuangbanna, Mengla, China
| | - Xiaodong Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Yunnan, China
- National Field Scientific Observation and Research Station of Forest Ecosystem in Ailao Mountain, Yunnan, China
| |
Collapse
|
21
|
Qin Z, Zhao Z, Xia L, Yu G, Miao A, Liu Y. Significant roles of core prokaryotic microbiota across soil profiles in an organic contaminated site: Insight into microbial assemblage, co-occurrence patterns, and potentially key ecological functions. ENVIRONMENTAL RESEARCH 2023; 231:116195. [PMID: 37207735 DOI: 10.1016/j.envres.2023.116195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Extreme environmental disturbances induced by organic contaminated sites impose serious impacts on soil microbiomes. However, our understanding of the responses of the core microbiota and its ecological roles in organic contaminated sites is limited. In this study, we took a typical organic contaminated site as an example and investigated the composition and structure, assembly mechanisms of core taxa and their roles in key ecological functions across soil profiles. Results presented that core microbiota with a considerably lower number of species (7.93%) than occasional taxa presented comparatively high relative abundances (38.04%) yet, which was mainly comprised of phyla Proteobacteria (49.21%), Actinobacteria (12.36%), Chloroflexi (10.63%), and Firmicutes (8.21%). Furthermore, core microbiota was more influenced by geographical differentiation than environmental filtering, which possessed broader niche widths and stronger phylogenetic signals for ecological preferences than occasional taxa. Null modelling suggested that stochastic processes dominated the assembly of the core taxa and maintained a stable proportion along soil depths. Core microbiota had a greater impact on microbial community stability and possessed higher functional redundancy than occasional taxa. Additionally, the structural equation model illustrated that core taxa played pivotal roles in degrading organic contaminants and maintaining key biogeochemical cycles potentially. Overall, this study deepens our knowledge of the ecology of core microbiota under complicated environmental conditions in organic contaminated sites, and provides a fundamental basis for preserving and potentially utilizing core microbiota to maintain soil health.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing, 210016, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing, 210031, China
| | - Yuhong Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
22
|
Liu X, Liu H, Zhang Y, Liu C, Liu Y, Li Z, Zhang M. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117927. [PMID: 37075633 DOI: 10.1016/j.jenvman.2023.117927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Straw retention (SR) and organic fertilizer (OF) application contribute to improve soil quality, but it is unclear how the soil microbial assemblage under organic amendments mediate soil biochemical metabolism pathways to perform it. This study collected soil samples from wheat field under different application of fertilizer (chemical fertilizer, as control; SR, and OF) in North China Plain, and systematically investigated the interlinkages among microbe assemblages, metabolites, and physicochemical properties. Results showed that the soil organic carbon (SOC) and permanganate oxidizable organic carbon (LOC) in soil samples followed the trend as OF > SR > control, and the activity of C-acquiring enzymes presented significantly positive correlation with SOC and LOC. In organic amendments, bacteria and fungi community were respectively dominated by deterministic and stochastic processes, while OF exerted more selective pressure on soil microbe. Compared with SR, OF had greater potential to boost the microbial community robustness through increasing the natural connectivity and stimulating fungal taxa activities in inter-kingdom microbial networks. Altogether 67 soil metabolites were significantly affected by organic amendments, most of them belonged to benzenoids (Ben), lipids and lipid-like molecules (LL), and organic acids and derivatives (OA). These metabolites were mainly derived from lipid and amino acid metabolism pathways. A list of keystone genera such as stachybotrys and phytohabitans were identified as important to soil metabolites, SOC, and C-acquiring enzyme activity. Structural equation modeling showed that soil quality properties were closely associated with LL, OA, and PP drove by microbial community assembly and keystone genera. Overall, these findings suggested that straw and organic fertilizer might drive keystone genera dominated by determinism to mediate soil lipid and amino acid metabolism for improving soil quality, which provided new insights into understanding the microbial-mediated biological process in amending soil quality.
Collapse
Affiliation(s)
- Xueqing Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongrun Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Churong Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanan Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Mao Z, Zhao Z, Da J, Tao Y, Li H, Zhao B, Xing P, Wu Q. The selection of copiotrophs may complicate biodiversity-ecosystem functioning relationships in microbial dilution-to-extinction experiments. ENVIRONMENTAL MICROBIOME 2023; 18:19. [PMID: 36932455 PMCID: PMC10024408 DOI: 10.1186/s40793-023-00478-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and has recently become more popular with the development of high-throughput sequencing techniques. However, the pattern of community assembly processes in DTE experiments is less explored and blocks our further understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies were carried out to explore the dominant community assembly processes and their potential effect on exploring BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs were selected during the regrowth phase and rare species were lost. From the view of microbial functional performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF relationships using DTE.
Collapse
Affiliation(s)
- Zhendu Mao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zifan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jun Da
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- College of Life Science, Anhui Normal University, Wuhu, 241002, China
| | - Ye Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Biying Zhao
- International Genome Center, Jiangsu University, Zhenjiang, 212013, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
24
|
Li C, Miao L, Adyel TM, Huang W, Wang J, Wu J, Hou J, Wang Z. Eukaryotes contribute more than bacteria to the recovery of freshwater ecosystem functions under different drought durations. Environ Microbiol 2023. [PMID: 36916068 DOI: 10.1111/1462-2920.16370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023]
Abstract
Global climate change mostly impacts river ecosystems by affecting microbial biodiversity and ecological functions. Considering the high functional redundancy of microorganisms, the unknown relationship between biodiversity and ecosystem functions obstructs river ecological research, especially under the influence of increasing weather extremes, such as in intermittent rivers and ephemeral streams (IRES). Herein, dry-wet alternation experiments were conducted in artificial stream channels for 25 and 90 days of drought, both followed by 20 days of rewetting. The dynamic recovery of microbial biodiversity and ecosystem functions (represented by ecosystem metabolism and denitrification rate) were determined to analyse biodiversity-ecosystem-function (BEF) relationships after different drought durations. There was a significant difference between bacterial and eukaryotic biodiversity recovery after drought. Eukaryotic biodiversity was more sensitive to drought duration than bacterial, and the eukaryotic network was more stable under dry-wet alternations. Based on the establishment of partial least squares path models, we found that eukaryotic biodiversity has a stronger effect on ecosystem functions than bacteria after long-term drought. Indeed, this work represents a significant step forward for further research on the ecosystem functions of IRES, especially emphasizing the importance of eukaryotic biodiversity in the BEF relationship.
Collapse
Affiliation(s)
- Chaoran Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Tanveer M Adyel
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Melbourne, Victoria, Australia
- STEM, University of South Australia, Mawson Lakes Campus, 5095, Mawson, Australia
| | - Wei Huang
- China Institute of Water Resources and Hydropower Research, 100038, Beijing, People's Republic of China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, 210098, Nanjing, People's Republic of China
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, 210029, Nanjing, China
| |
Collapse
|
25
|
Liu Y, Ding C, Li X, Su D, He J. Biotic interactions contribute more than environmental factors and geographic distance to biogeographic patterns of soil prokaryotic and fungal communities. Front Microbiol 2023; 14:1134440. [PMID: 36970675 PMCID: PMC10034001 DOI: 10.3389/fmicb.2023.1134440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent studies have shown distinct soil microbial assembly patterns across taxonomic types, habitat types and regions, but little is known about which factors play a dominant role in soil microbial communities. To bridge this gap, we compared the differences in microbial diversity and community composition across two taxonomic types (prokaryotes and fungi), two habitat types (Artemisia and Poaceae) and three geographic regions in the arid ecosystem of northwest China. To determine the main driving factors shaping the prokaryotic and fungal community assembly, we carried out diverse analyses including null model, partial mantel test and variance partitioning analysis etc. The findings suggested that the processes of community assembly were more diverse among taxonomic categories in comparison to habitats or geographical regions. The predominant driving factor of soil microbial community assembly in arid ecosystem was biotic interactions between microorganisms, followed by environmental filtering and dispersal limitation. Network vertex, positive cohesion and negative cohesion showed the most significant correlations with prokaryotic and fungal diversity and community dissimilarity. Salinity was the major environmental variable structuring the prokaryotic community. Although prokaryotic and fungal communities were jointly regulated by the three factors, the effects of biotic interactions and environmental variables (both are deterministic processes) on the community structure of prokaryotes were stronger than that of fungi. The null model revealed that prokaryotic community assembly was more deterministic, whereas fungal community assembly was structured by stochastic processes. Taken together, these findings unravel the predominant drivers governing microbial community assembly across taxonomic types, habitat types and geographic regions and highlight the impacts of biotic interactions on disentangling soil microbial assembly mechanisms.
Collapse
Affiliation(s)
- Yu Liu
- College of Grassland, Beijing Forestry University, Beijing, China
| | - Chengxiang Ding
- Academy of Animal Husbandry and Veterinary Science, Qinghai University, Xining, Qinghai, China
| | - Xingfu Li
- Industry Development and Planning Institute, National Forestry and Grassland Administration, Beijing, China
| | - Derong Su
- College of Grassland, Beijing Forestry University, Beijing, China
| | - Jing He
- College of Grassland, Beijing Forestry University, Beijing, China
| |
Collapse
|
26
|
Soil fungal diversity and assembly along a xeric stress gradient in the central Namib Desert. Fungal Biol 2023; 127:997-1003. [PMID: 37024159 DOI: 10.1016/j.funbio.2023.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
The Namib Desert of south-western Africa is one of the oldest deserts in the world and possesses unique geographical, biological and climatic features. While research through the last decade has generated a comprehensive survey of the prokaryotic communities in Namib Desert soils, little is yet known about the diversity and function of edaphic fungal communities, and even less of their responses to aridity. In this study, we have characterized soil fungal community diversity across the longitudinal xeric gradient across the Namib desert (for convenience, divided into the western fog zone, the central low-rainfall zone and the eastern high-rainfall zone), using internal transcribed sequence (ITS) metabarcoding. Ascomycota, Basidiomycota and Chytridiomycota consistently dominated the Namib Desert edaphic fungal communities and a core mycobiome composed of only 15 taxa, dominated by members of the class Dothideomycetes (Ascomycota), was identified. However, fungal community structures were significantly different in the fog, low-rainfall and high-rainfall zones. Furthermore, Namib Desert gravel plain fungal community assembly was driven by both deterministic and stochastic processes; the latter dominating in the all three xeric zones. We also present data that suggest that the inland limit of fog penetration represents an ecological barrier to fungal dispersal across the Namib Desert.
Collapse
|
27
|
King WL, Richards SC, Kaminsky LM, Bradley BA, Kaye JP, Bell TH. Leveraging microbiome rediversification for the ecological rescue of soil function. ENVIRONMENTAL MICROBIOME 2023; 18:7. [PMID: 36691096 PMCID: PMC9872425 DOI: 10.1186/s40793-023-00462-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Global biodiversity losses threaten ecosystem services and can impact important functional insurance in a changing world. Microbial diversity and function can become depleted in agricultural systems and attempts to rediversify agricultural soils rely on either targeted microbial introductions or retaining natural lands as biodiversity reservoirs. As many soil functions are provided by a combination of microbial taxa, rather than outsized impacts by single taxa, such functions may benefit more from diverse microbiome additions than additions of individual commercial strains. In this study, we measured the impact of soil microbial diversity loss and rediversification (i.e. rescue) on nitrification by quantifying ammonium and nitrate pools. We manipulated microbial assemblages in two distinct soil types, an agricultural and a forest soil, with a dilution-to-extinction approach and performed a microbiome rediversification experiment by re-introducing microorganisms lost from the dilution. A microbiome water control was included to act as a reference point. We assessed disruption and potential restoration of (1) nitrification, (2) bacterial and fungal composition through 16S rRNA gene and fungal ITS amplicon sequencing and (3) functional genes through shotgun metagenomic sequencing on a subset of samples. RESULTS Disruption of nitrification corresponded with diversity loss, but nitrification was successfully rescued in the rediversification experiment when high diversity inocula were introduced. Bacterial composition clustered into groups based on high and low diversity inocula. Metagenomic data showed that genes responsible for the conversion of nitrite to nitrate and taxa associated with nitrogen metabolism were absent in the low diversity inocula microcosms but were rescued with high diversity introductions. CONCLUSIONS In contrast to some previous work, our data suggest that soil functions can be rescued by diverse microbiome additions, but that the concentration of the microbial inoculum is important. By understanding how microbial rediversification impacts soil microbiome performance, we can further our toolkit for microbial management in human-controlled systems in order to restore depleted microbial functions.
Collapse
Affiliation(s)
- William L King
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sarah C Richards
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Laura M Kaminsky
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA
| | - Brosi A Bradley
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jason P Kaye
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Ecosystem Science and Management, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Terrence H Bell
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, 317 Buckhout Lab, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Intercollege Graduate Degree Program in International Agriculture and Development, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
28
|
Zhang X, Wang Y, Xu Y, Babalola BJ, Xiang S, Ma J, Su Y, Fan Y. Stochastic processes dominate community assembly of ectomycorrhizal fungi associated with Picea crassifolia in the Helan Mountains, China. Front Microbiol 2023; 13:1061819. [PMID: 36713171 PMCID: PMC9878330 DOI: 10.3389/fmicb.2022.1061819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Understanding the underlying mechanisms of microbial community assembly is a fundamental topic in microbial ecology. As an integral part of soil organisms, ectomycorrhizal (EM) fungi play vital roles in ecosystems. Picea crassifolia is an important pine species in the Helan Mountains in Inner Mongolia, China, with high ecological and economic values. However, studies of EM fungal diversity and mechanisms underlying community assembly on this pine species are limited. Methods In this study, we investigated EM fungal communities associated with P. crassifolia from 45 root samples across three sites in the Helan Mountains using Illumina Miseq sequencing of the fungal rDNA ITS2 region. Results A total of 166 EM fungal OTUs belonging to 24 lineages were identified, of which Sebacina and Tomentella-Thelephora were the most dominant lineages. Ordination analysis revealed that EM fungal communities were significantly different among the three sites. Site/fungus preference analysis showed that some abundant EM fungal OTUs preferred specific sites. Ecological process analysis implied that dispersal limitation and ecological drift in stochastic processes dominantly determined the community assembly of EM fungi. Discussion Our study indicates that P. crassifolia harbors a high EM fungal diversity and highlights the important role of the stochastic process in driving community assembly of mutualistic fungi associated with a single plant species in a semi-arid forest in northwest China.
Collapse
Affiliation(s)
- Xuan Zhang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China,*Correspondence: Yonglong Wang, ✉
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Simin Xiang
- Faculty of Biological Science and Technology, Baotou Teacher's College, Baotou, China
| | - Jianjun Ma
- College of Life Sciences, Langfang Normal University, Langfang, Hebei, China
| | - Yun Su
- Helan Mountains National Nature Reserve Administration of Inner Mongolia, Alxa League, China
| | - Yongjun Fan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, China,Yongjun Fan, ✉
| |
Collapse
|
29
|
Zhou J, Liao Z, Liu Z, Guo X, Zhang W, Chen Y. Urbanization increases stochasticity and reduces the ecological stability of microbial communities in amphibian hosts. Front Microbiol 2023; 13:1108662. [PMID: 36713161 PMCID: PMC9878570 DOI: 10.3389/fmicb.2022.1108662] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Urbanization not only profoundly alters landscape profiles, ecosystems and vertebrate faunal diversity but also disturbs microbial communities by increasing stochasticity, vulnerability, biotic homogenization, etc. However, because of the buffering effect of host species, microbial communities are expected to be influenced by both host species and urbanization stresses. Therefore, the impacts of urbanization on animals' microbial symbionts could be more complex and uncertain. In this study, we quantified the urbanization degree of sampling sites and surveyed the gut and skin microbes of three amphibian host species in different sites in urban parks and nearby villages of Chengdu, Southwest China. Furthermore, a co-occurrence network analysis, the phylogenetic normalized stochasticity ratio and Sloan neutral community models were applied to infer the impact of urbanization on symbiotic microbial communities. For the three host species, urbanization increased the diversity of symbiotic microbes and the number of keystone microbial taxa. However, the negative effects of such increased diversification were evident, as the community stochasticity and co-occurrence network structure vulnerability also increased, while the network structure complexity and stability were reduced. Finally, the community stochasticity had positive associations with the network vulnerability, implying that the existence of many transient symbiotic rare microbial taxa in urban parks makes the symbiotic microbial community structure more fragile. Conclusively, urbanization increased the symbiotic microbial diversity at the cost of community stability; the results provide a new perspective for better understanding the complex triangulated environment-host-microbe relationship.
Collapse
Affiliation(s)
- Jin Zhou
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China,University of Chinese Academy of Sciences, Beijing, China
| | - Ziyan Liao
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhidong Liu
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China
| | - Xuecheng Guo
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China
| | - Wenyan Zhang
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China
| | - Youhua Chen
- China-Croatia “Belt and Road” Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,*Correspondence: Youhua Chen,
| |
Collapse
|
30
|
Wang Z, Hu X, Qu Q, Hao W, Deng P, Kang W, Feng R. Dual regulatory effects of microplastics and heat waves on river microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129879. [PMID: 36084464 DOI: 10.1016/j.jhazmat.2022.129879] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/12/2022] [Accepted: 08/28/2022] [Indexed: 06/15/2023]
Abstract
Rivers play a critical role in the global carbon cycle, but the processes can be affected by widespread microplastic (MP) pollution and the increasing frequency of heat waves (HWs) in a warming climate. However, little is known about the role of river microbes in regulating the carbon cycle under the combined action of MP pollution and HWs. Here, through seven-day MP exposure and three cycles of HW simulation experiments, we found that MPs inhibited the thermal adaptation of the microbial community, thus regulating carbon metabolism. The CO2 release level increased, while the carbon degradation ability and the preference for stable carbon were inhibited. Metabonomic, 16 S rRNA and ITS gene analyses further revealed that the regulation of carbon metabolism was closely related to the microbial r-/K- strategy, community assembly and transformation of keystone taxa. The random forest model revealed that dissolved oxygen and ammonia-nitrogen were important variables influencing microbial carbon metabolism. The above findings regarding microbe-mediated carbon metabolism provide insights into the effect of climate-related HWs on the ecological risks of MPs.
Collapse
Affiliation(s)
- Zhongwei Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qian Qu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weidan Hao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Peng Deng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weilu Kang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruihong Feng
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education),Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
31
|
Zhang S, Hu W, Xu Y, Zhong H, Kong Z, Wu L. Linking bacterial and fungal assemblages to soil nutrient cycling within different aggregate sizes in agroecosystem. Front Microbiol 2022; 13:1038536. [PMID: 36452934 PMCID: PMC9701741 DOI: 10.3389/fmicb.2022.1038536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/27/2022] [Indexed: 09/30/2024] Open
Abstract
Soil aggregates provide spatially heterogeneous microhabitats that support the coexistence of soil microbes. However, there remains a lack of detailed assessment of the mechanism underlying aggregate-microbiome formation and impact on soil function. Here, the microbial assemblages within four different aggregate sizes and their correlation with microbial activities related to nutrient cycling were studied in rice fields in Southern China. The results show that deterministic and stochastic processes govern bacterial and fungal assemblages in agricultural soil, respectively. The contribution of determinism to bacterial assemblage improved as aggregate size decreased. In contrast, the importance of stochasticity to fungal assemblage was higher in macroaggregates (>0.25 mm in diameter) than in microaggregates (<0.25 mm). The association between microbial assemblages and nutrient cycling was aggregate-specific. Compared with microaggregates, the impacts of bacterial and fungal assemblages on carbon, nitrogen, and phosphorus cycling within macroaggregates were more easily regulated by soil properties (i.e., soil organic carbon and total phosphorus). Additionally, soil nutrient cycling was positively correlated with deterministic bacterial assemblage but negatively correlated with stochastic fungal assemblage in microaggregates, implying that bacterial community may accelerate soil functions when deterministic selection increases. Overall, our study illustrates the ecological mechanisms underlying the association between microbial assemblages and soil functions in aggregates and highlights that the assembly of aggregate microbes should be explicitly considered for revealing the ecological interactions between agricultural soil and microbial communities.
Collapse
Affiliation(s)
| | | | | | | | - Zhaoyu Kong
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| | - Lan Wu
- School of Life Sciences, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang, China
| |
Collapse
|
32
|
Hou W, He M, Qi Y, Liu T, Luo J. Soil nematode community assembly in a primary tropical lowland rainforest. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1034829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
More than half of the world's tropical lowland rainforests have been lost due to conversion to agricultural land (such as rubber plantations). Thus, ecological restoration in degraded tropical lowland rainforests is crucial. The first step to restoration is restoring soil functioning (i.e., soil fertility, carbon, and nitrogen cycling) to levels similar to those in the primary tropical lowland rainforest. This requires understanding soil nematode community assembly in primary tropical lowland rainforest, which has never been explored in this habitat. In this study, we measured species compositions of plant and soil nematode communities and soil characteristics (pH, total and available nitrogen, phosphorus, and soil water content) in a primary tropical lowland rainforest, which is located on Hainan Island, China. We performed two tests (the null-model test and distance-based Moran's eigenvector maps (MEM) and redundancy analysis-based variance partitioning) to quantify the relative contribution of the deterministic (abiotic filtering and biotic interactions) and stochastic processes (random processes and dispersal limitation) to the soil nematode community. We found that a deterministic process (habitat filtering) determined nematode community assembly in our tropical lowland rainforest. Moreover, soil properties, but not plant diversity, were the key determinants of nematode community assembly. We have, for the first time, managed to identify factors that contribute to the nematode community assembly in the tropical lowland rainforest. This quantified community assembly mechanism can guide future soil functioning recovery of the tropical lowland rainforest.
Collapse
|
33
|
Liu B, Yao J, Ma B, Li S, Duran R. Disentangling biogeographic and underlying assembly patterns of fungal communities in metalliferous mining and smelting soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157151. [PMID: 35798111 DOI: 10.1016/j.scitotenv.2022.157151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Elucidating community assembly and their relevance to environmental variables are fundamental for understanding microbial diversity and functioning in terrestrial ecosystems, yet the geographical diversity and assembly patterns of the fungal community in metalliferous ecospheres associated with mining and smelting activities have received penurious understandings. Here, the fungal communities collected from three groups of soils around the mining and smelting sites were profiled by Internal Transcribed Spacer (ITS) sequencing, in order to understand the geographical distributions of fungal community diversities, structures, compositions, assembly processes and the occurrence patterns. The results suggested obvious biogeographic distribution patterns of fungal compositions among the three groups of soils. Among them, 15 fungal phyla including Ascomycota, Basidiomycota and Mortierellomycota were recognized across the samples. 12 abundant classes showing significantly different in relative abundances among the three groups of soils. Total metal(loid)s and level significantly decreased the fungal abundances and diversities. The community similarity demonstrated distance-decay pattern among the three sites. Metal(loid)s explained relatively higher fungal community variations (4.16 %) relative to other factors (1.89 %) and geography (1.21 %), though 83.32 % of the variations could not be explained. Stochastic dispersal limitation and undominated fraction were dominated relative to deterministic heterogeneous selection in total and individual site, respectively. These results highlighted the stochastic processes in governing the biogeography of fungal communities in mining and smelting ecospheres.
Collapse
Affiliation(s)
- Bang Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China.
| | - Bo Ma
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China
| | - Shuzhen Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, People's Republic of China
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, People's Republic of China; Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, E2S-UPPA, IPREM UMR CNRS 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
34
|
Jiao S, Qi J, Jin C, Liu Y, Wang Y, Pan H, Chen S, Liang C, Peng Z, Chen B, Qian X, Wei G. Core phylotypes enhance the resistance of soil microbiome to environmental changes to maintain multifunctionality in agricultural ecosystems. GLOBAL CHANGE BIOLOGY 2022; 28:6653-6664. [PMID: 36002985 DOI: 10.1111/gcb.16387] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
Agricultural ecosystems are facing increasing environmental changes. Revealing ecological stability of belowground organisms is key to developing management strategies that maintain agricultural ecosystem services in a changing world. Here, we collected soils from adjacent pairs of maize and rice fields along large spatial scale across Eastern and Southeast China to investigate the importance of core microbiota as a predictor of resistance of soil microbiome (e.g. bacteria, fungi and protist) to climate changes and nutrient fertilization, and their effect on multiple ecosystem functions, representing key services for crop growth and health in agro-ecosystems. Soil microbiome in maize soils exhibited stronger resistance than that in rice soils, by considering multiple aspects of the resistance index, for example, community, phylogenetic conservation and network complexity. Community resistance of soil microbiome showed a geographic pattern, with higher resistance at lower latitudes, suggesting their stronger resistance in warmer regions. Particularly, we highlighted the role of core phylotypes in enhancing the community resistance of soil microbiome, which was essential for the maintenance of multifunctionality in agricultural ecosystems. Our results represent a significant advance in linking core phylotypes to community resistance and ecosystem functions, and therefore forecasting agro-ecosystems dynamics in response to ongoing environmental changes. These suggest that core phylotypes should be considered a key factor in enhancing agricultural sustainability and crop productivity under global change scenarios.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Jiejun Qi
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Chujie Jin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Yu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Yang Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Haibo Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Shi Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Chunling Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Ziheng Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Beibei Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Xun Qian
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, P. R. China
| |
Collapse
|
35
|
Wang Y, Xu Y, Maitra P, Babalola BJ, Zhao Y. Temporal variations in root-associated fungal communities of Potaninia mongolica, an endangered relict shrub species in the semi-arid desert of Northwest China. FRONTIERS IN PLANT SCIENCE 2022; 13:975369. [PMID: 36311128 PMCID: PMC9597089 DOI: 10.3389/fpls.2022.975369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The semi-arid region of the Western Ordos plateau in Inner Mongolia, China, is home to a critically endangered shrub species, Potaninia mongolica, which originates from ancient Mediterranean regions. Root-associated microbiomes play important roles in plant nutrition, productivity, and resistance to environmental stress particularly in the harsh desert environment; however, the succession of root-associated fungi during the growth stages of P. mongolica is still unclear. This study aimed to examine root-associated fungal communities of this relict plant species across three seasons (spring, summer and autumn) using root sampling and Illumina Miseq sequencing of internal transcribed spacer 2 (ITS 2) region to target fungi. The analysis detected 698 fungal OTUs in association with P. mongolica roots, and the fungal richness increased significantly from spring to summer and autumn. Eurotiales, Hypocreales, Chaetothyriales, Pleosporales, Helotiales, Agaricales and Xylariales were the dominant fungal orders. Fungal community composition was significantly different between the three seasons, and the fungal taxa at various levels showed biased distribution and preferences. Stochastic processes predominantly drove community assembly of fungi in spring while deterministic processes acted more in the later seasons. The findings revealed the temporal dynamics of root-associated fungal communities of P. mongolica, which may enhance our understanding of biodiversity and changes along with seasonal alteration in the desert, and predict the response of fungal community to future global changes.
Collapse
Affiliation(s)
- Yonglong Wang
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Ying Xu
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| | - Pulak Maitra
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Busayo Joshua Babalola
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yanling Zhao
- Faculty of Biological Science and Technology, Baotou Teacher’s College, Baotou, China
| |
Collapse
|
36
|
Dong L, Yao X, Deng Y, Zhang H, Zeng W, Li X, Tang J, Wang W. Nitrogen deficiency in soil mediates multifunctionality responses to global climatic drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156533. [PMID: 35679931 DOI: 10.1016/j.scitotenv.2022.156533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/23/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Natural and anthropogenic processes that decrease the availability of nitrogen (N) frequently occur in soil. Losses of N may limit the multiple functions linked to carbon, N and phosphorous cycling of soil (soil multifunctionality, SMF). Microbial communities and SMF are intimately linked. However, the relationship between soil microbial communities and SMF in response to global changes under N deficiency has never been examined in natural ecosystems. Here, soil samples from nine temperate arid grassland sites were used to assess the importance of microbial communities as driver of SMF to climate change and N deficiency. SMF was significantly decreased by drought and drought-wetting cycles, independent of the availability of soil N. Interestingly, temperature changes (variable temperature and warming) significantly increased SMF in N-poor conditions. However, this was at the expense of decreased SMF resistance. Deterministic assembly-driven microbial α-diversity and particularly fungal α-diversity, but not β-diversity, were generally found to play key roles in maintaining SMF in N-poor soil, irrespective of the climate. The results have two important implications. First, the absence of the stability offered by β-diversity means N-poor ecosystems will be particularly sensitive to global climate changes. Second, fungi are more important than bacteria for maintaining SMF in N-poor soil under climate changes.
Collapse
Affiliation(s)
- Lizheng Dong
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Xiaodong Yao
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China; State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, School of Geographical Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yanyu Deng
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Hongjin Zhang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Wenjing Zeng
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China; Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinyu Li
- Center for Statistical Science, School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Junjie Tang
- Center for Statistical Science, School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Wei Wang
- Department of Ecology, College of Urban and Environmental Sciences and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| |
Collapse
|
37
|
Li B, Shen C, Wu HY, Zhang LM, Wang J, Liu S, Jing Z, Ge Y. Environmental selection dominates over dispersal limitation in shaping bacterial biogeographical patterns across different soil horizons of the Qinghai-Tibet Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156177. [PMID: 35613642 DOI: 10.1016/j.scitotenv.2022.156177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/13/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Soil microbial biogeographical patterns have been widely explored from horizontal to vertical scales. However, studies of microbial vertical distributions were still limited (e.g., how soil genetic horizons influence microbial distributions). To shed light on this question, we investigated soil bacterial communities across three soil horizons (topsoil: horizon A; midsoil: horizon B; subsoil: horizon C) of 60 soil profiles along a 3500 km transect in the Qinghai-Tibet Plateau. We found that bacterial diversity was highest in the topsoil and lowest in the subsoil, and community composition significantly differed across soil horizons. The network complexity decreased from topsoil to subsoil. There were significant geographical/environmental distance-decay relationships (DDR) in three soil horizons, with a lower slope from topsoil to subsoil due to the decreased environmental heterogeneity. Variation partitioning analysis (VPA) showed that bacterial community variations were explained more by environmental than spatial factors. Although environmental selection processes played a dominant role, null model analysis revealed that deterministic processes (mainly variable selection) decreased with deeper soil horizons, while stochastic processes (mainly dispersal limitation) increased from topsoil to subsoil. These results suggested that microbial biogeographical patterns and community assembly processes were soil horizon dependent. Our study provides new insights into the microbial vertical distributions in large-scale alpine regions and highlights the vital role of soil genetic horizons in affecting microbial community assembly, which has implications for understanding the pedogenetic process and microbial responses to extreme environment under climate change.
Collapse
Affiliation(s)
- Bojian Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Shen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hua-Yong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siyi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongwang Jing
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
38
|
Exogenous Melatonin Reprograms the Rhizosphere Microbial Community to Modulate the Responses of Barley to Drought Stress. Int J Mol Sci 2022; 23:ijms23179665. [PMID: 36077064 PMCID: PMC9456345 DOI: 10.3390/ijms23179665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 02/08/2023] Open
Abstract
The rhizospheric melatonin application-induced drought tolerance has been illuminated in various plant species, while the roles of the rhizosphere microbial community in this process are still unclear. Here, the diversity and functions of the rhizosphere microbial community and related physiological parameters were tested in barley under the rhizospheric melatonin application and drought. Exogenous melatonin improved plant performance under drought via increasing the activities of non-structural carbohydrate metabolism enzymes and activating the antioxidant enzyme systems in barley roots under drought. The 16S/ITS rRNA gene sequencing revealed that drought and melatonin altered the compositions of the microbiome. Exogenous melatonin increased the relative abundance of the bacterial community in carbohydrate and carboxylate degradation, while decreasing the relative abundance in the pathways of fatty acid and lipid degradation and inorganic nutrient metabolism under drought. These results suggest that the effects of melatonin on rhizosphere microbes and nutrient condition need to be considered in its application for crop drought-resistant cultivation.
Collapse
|
39
|
Zhang F, Zhou Z, Xiao Y. Distinct community assembly and co‐existence of arbuscular mycorrhizal fungi and diazotrophs across large scale soil fertility to improve functions in alfalfa cultivation systems. Environ Microbiol 2022; 24:5277-5291. [DOI: 10.1111/1462-2920.16176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/11/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Fengge Zhang
- College of Agro‐grassland Science Nanjing Agricultural University Nanjing China
| | - Zhibo Zhou
- College of Agro‐grassland Science Nanjing Agricultural University Nanjing China
| | - Yan Xiao
- College of Agro‐grassland Science Nanjing Agricultural University Nanjing China
| |
Collapse
|
40
|
Zhang C, Liu H, Liu S, Hussain S, Zhang L, Yu X, Cao K, Xin X, Cao H, Zhu A. Response of Fungal Sub-Communities in a Maize-Wheat Rotation Field Subjected to Long-Term Conservation Tillage Management. Front Microbiol 2022; 13:829152. [PMID: 35422775 PMCID: PMC9002332 DOI: 10.3389/fmicb.2022.829152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Conservation tillage is an advanced agricultural technology that seeks to minimize soil disturbance by reducing, or even eliminating tillage. Straw or stubble mulching in conservation tillage systems help to increase crop yield, maintain biodiversity and increase levels of exogenous nutrients, all of which may influence the structure of fungal communities in the soil. Currently, however, the assembly processes and co-occurrence patterns of fungal sub-communities remain unknown. In this paper, we investigated the effects of no-tillage and straw mulching on the composition, assembly process, and co-occurrence patterns of soil fungal sub-communities in a long-term experimental plot (15 years). The results revealed that combine straw mulching with no-tillage significantly increased the richness of fungi but not their diversity. Differential abundance analysis and principal component analysis (PCA) indicated that tillage management had a greater effect on the fungal communities of abundant and intermediate taxa than on the rare taxa. Available phosphorus (AP) and total nitrogen (TN) were the major determinants of fungal sub-communities in NT treatment. The abundant fungal sub-communities were assembled by deterministic processes under medium strength selection, while strong conservation tillage strength shifts the abundant sub-community assembly process from deterministic to stochastic. Overall, the investigation of the ecological network indicated that no-tillage and straw mulching practices decreased the complexity of the abundant and intermediate fungal networks, while not significantly influencing rare fungal networks. These findings refine our knowledge of the response of fungal sub-communities to conservation tillage management techniques and provide new insights into understanding fungal sub-community assembly.
Collapse
Affiliation(s)
- Cunzhi Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hao Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Senlin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Sarfraz Hussain
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, China
| | - Liting Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Yu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kaixun Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiuli Xin
- Fengqiu Agro-Ecological Experimental Station, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Hui Cao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anning Zhu
- Fengqiu Agro-Ecological Experimental Station, State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
41
|
Jiao S, Chen W, Wei G. Core microbiota drive functional stability of soil microbiome in reforestation ecosystems. GLOBAL CHANGE BIOLOGY 2022; 28:1038-1047. [PMID: 34862696 DOI: 10.1111/gcb.16024] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/23/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Revealing the ecological roles of core microbiota in the maintenance of the functional stability of soil microbiomes is crucial for sustainable ecosystem functioning; however, there is a dearth of whole-soil profile studies on the fundamental topic in microbial ecology, especially in the context of ecological restoration. Here, we explored whether core microbiota influence the temporal changes in the functional stability of soil microbiomes throughout the soil profile (i.e., soil depths of 0-300 cm) during natural succession in restored ex-arable ecosystems, via high-throughput amplicon and metagenomic sequencing. We revealed that core microbiota were essential for the maintenance of the functional stability of soil microbiomes in reforestation ecosystems. Specifically, the core taxa within one cluster of soil network, which had similar ecological preferences, had major contributions to functional stability. Reforestation significantly decreased the functional stability of soil microbiomes, which exhibited significant variations along the vertical soil profile in the reforested soils. Overall, the findings enhance our understanding of the factors driving functional stability in soil microbiomes, and suggests that core microbiota should be considered a key factor and integrated in policy and management activities targeting the enhancement and maintenance of functional stability and ecosystem sustainability in ecological restoration programs.
Collapse
Affiliation(s)
- Shuo Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Weimin Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|