1
|
Li Z, Fan H, Liao Z, Wang Y, Wei F. Global spatiotemporal patterns of demographic fluctuations in terrestrial vertebrates during the Late Pleistocene. SCIENCE ADVANCES 2025; 11:eadq3938. [PMID: 40408474 PMCID: PMC12101494 DOI: 10.1126/sciadv.adq3938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 04/22/2025] [Indexed: 05/25/2025]
Abstract
Demographic fluctuations are crucial for assessing species' threat levels, yet their global spatiotemporal patterns and historical drivers remain unknown. Here, we used single whole-genome sequence data for 527 extant and widespread terrestrial vertebrates to investigate their demographic fluctuations during the Late Pleistocene. Effective population size (Ne) simulations indicated that all taxa experienced a population decline from the Last Interglacial to the Last Glacial Maximum (LGM). After the LGM, birds and amphibians underwent population expansion, whereas mammals and reptiles' populations declined. Regions with high Ne shifted from Neotropical to Afrotropical and to Palearctic, some overlapping with recognized glacial refugia and biodiversity hotspots. In addition, climate-related factors exerted long-term effects on Ne, while human disturbances might confine to specific regions around the Pleistocene-Holocene boundary. This study underscores the significance of quantifying vertebrate genetic vulnerability to guide biodiversity conservation in response to environmental changes.
Collapse
Affiliation(s)
- Zitian Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huizhong Fan
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ziyan Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610213, China
| | - Yuxuan Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuwen Wei
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Jiangxi Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang 330045, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Schneller NM, Strugnell JM, Field MA, Johannesson K, Cooke I. Putting Structural Variants Into Practice: The Role of Chromosomal Inversions in the Management of Marine Environments. Mol Ecol 2025:e17776. [PMID: 40342214 DOI: 10.1111/mec.17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/01/2025] [Accepted: 04/14/2025] [Indexed: 05/11/2025]
Abstract
Major threats to marine species and ecosystems include overfishing, invasive species, pollution and climate change. The changing climate not only imposes direct threats through the impacts of severe marine heatwaves, cyclones and ocean acidification but also complicates fisheries and invasive species management by driving species range shifts. The dynamic nature of these threats means that the future of our oceans will depend on the ability of species to adapt. This has led to calls for genetic interventions focussed on enhancing species' adaptive capacity, including translocations, restocking and selective breeding. Assessing the benefits and risks of such approaches requires an improved understanding of the genetic architecture of adaptive variation, not only in relation to climate-resilient phenotypes but also locally adapted populations and the fitness of hybrids. Large structural genetic variants such as chromosomal inversions play an important role in local adaptation by linking multiple adaptive loci. Consequently, inversions are likely to be particularly important when managing for adaptive capacity. However, under some circumstances, they also accumulate deleterious mutations, potentially increasing the risk of inbreeding depression. Genetic management that takes account of these dual roles on fitness is likely to be more effective at ensuring population persistence. We summarise evolutionary factors influencing adaptive and deleterious variation of inversions, review inversions found in marine taxa, and provide a framework to predict the consequences of ignoring inversions in key management scenarios. We conclude by describing practical methods to bridge the gap between evolutionary theory and practical application of inversions in conservation.
Collapse
Affiliation(s)
- Nadja M Schneller
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
| | - Jan M Strugnell
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| | - Matt A Field
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Kerstin Johannesson
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Ira Cooke
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Townsville, Queensland, Australia
- Securing Antarctica's Environmental Future, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
3
|
Nelson HV, Silver L, Kovacs TGL, McLennan EA, Georges A, DeGabriel JL, Hogg CJ, Belov K. Genome-wide diversity and MHC characterisation in a critically endangered freshwater turtle susceptible to disease. Immunogenetics 2025; 77:21. [PMID: 40327086 PMCID: PMC12055648 DOI: 10.1007/s00251-025-01378-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/23/2025] [Indexed: 05/07/2025]
Abstract
Small, isolated populations are often vulnerable to increased inbreeding and genetic drift, both of which elevate the risk of extinction. The Bellinger River turtle (Myuchelys georgesi) is a critically endangered species endemic to a single river catchment in New South Wales, Australia. The only extant wild population, along with the breeding program, face significant threats from viral outbreaks, most notably a nidovirus outbreak in 2015 that led to a 90% population decline. To enhance our understanding of genomic characteristics in the species, including genome-wide and functional gene diversity, we re-sequenced, assembled, and analysed 31 re-sequenced genomes for pure M. georgesi (N = 31). We manually annotated the major histocompatibility complex (MHC), identifying five MHC class I and ten MHC class II genes and investigated genetic diversity across both classes in M. georgesi. Our results showed that genome-wide diversity is critically low in pure M. georgesi, contexualised through comparison with opportunistically sampled backcross animals-offspring of F1 hybrids (M. georgesi × Emydura macquarii) backcrossed to pure M. georgesi (N = 4). However, the variation observed within the core MHC region of pure M. georgesi, extending across scaffold 10, exceeded that of all other macrochromosomes. Additionally, no significant short-term changes in either genome-wide or immunogenetic diversity were detected following the 2015 nidovirus outbreak (before; N = 19, after; N = 12). Demographic history reconstructions indicated a sustained, long-term decline in effective population size since the last interglacial period, accompanied by more recent steep declines. These patterns suggested that prolonged isolation and reduced population size have significantly influenced the dynamics of genome-wide diversity. It is likely that contemporary stressors, including the recent nidovirus outbreak, are acting on an already genetically depleted population. This study offers new insights into genome-wide and immune gene diversity, including immune gene annotation data with broader implications for testudines. These findings provide crucial information to support future management strategies for the species.
Collapse
Affiliation(s)
- Holly V Nelson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Science, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Toby G L Kovacs
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Arthur Georges
- Institute for Applied Ecology, University of Canberra, Bruce, ACT, 2617, Australia
| | - Jane L DeGabriel
- NSW Department of Climate Change, the Environment,, Energy and Water, Parramatta, NSW, 2150, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Science, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science Science, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
4
|
De Cahsan B, Sandoval Velasco M, Westbury MV, Duchêne DA, Strander Sinding MH, Morales HE, Kalthoff DC, Barnes I, Brace S, Portela Miguez R, Roca AL, Greenwood AD, Johnson RN, Lott MJ, Gilbert MTP. Road to Extinction? Past and Present Population Structure and Genomic Diversity in the Koala. Mol Biol Evol 2025; 42:msaf057. [PMID: 40129172 PMCID: PMC12014528 DOI: 10.1093/molbev/msaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 01/28/2025] [Accepted: 02/24/2025] [Indexed: 03/26/2025] Open
Abstract
Koalas are arboreal herbivorous marsupials, endemic to Australia. During the late 1800s and early 1900s, the number of koalas declined dramatically due to hunting for their furs. In addition, anthropogenic activities have further decimated their available habitat, and decreased population numbers. Here, we utilize 37 historic and 25 modern genomes sampled from across their historic and present geographic range, to gain insights into how their population structure and genetic diversity have changed across time; assess the genetic consequences of the period of intense hunting, and the current genetic status of this iconic Australian species. Our analyses reveal how genome-wide heterozygosity has decreased through time and unveil previously uncharacterized mitochondrial haplotypes and nuclear genotypes in the historic dataset, which are absent from today's koala populations.
Collapse
Affiliation(s)
- Binia De Cahsan
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Marcela Sandoval Velasco
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
- Center for Genome Sciences (CCG), National Autonomous University of Mexico (UNAM), Cuernavaca, Mexico
| | | | - David A Duchêne
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | | | - Hernán E Morales
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
| | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Ian Barnes
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, England, UK
| | - Selina Brace
- Department of Earth Sciences, Natural History Museum, London SW7 5BD, England, UK
| | | | - Alfred L Roca
- Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Alex D Greenwood
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, 10315 Berlin, Germany
- Department of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Rebecca N Johnson
- Smithsonian National Museum of Natural History, Washington, D.C. 20560, USA
| | - Matthew J Lott
- Australian Centre for Wildlife Genomics, Australian Museum, Sydney, NSW 2010, Australia
| | - M Thomas P Gilbert
- Globe Institute, University of Copenhagen, 1350 Copenhagen K, Denmark
- Norwegian University of Science and Technology, University Museum, 7491 Trondheim, Norway
| |
Collapse
|
5
|
Stuart OP, Cleave R, Pearce K, Magrath MJL, Mikheyev AS. Purging of Highly Deleterious Mutations Through an Extreme Bottleneck. Mol Biol Evol 2025; 42:msaf079. [PMID: 40178369 PMCID: PMC12008769 DOI: 10.1093/molbev/msaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 03/12/2025] [Accepted: 03/13/2025] [Indexed: 04/05/2025] Open
Abstract
Transitions to captivity often produce population bottlenecks. On the one hand, bottlenecks increase inbreeding and decrease effective population size, thus increasing extinction risk. On the other hand, elevated homozygosity associated with inbreeding may purge deleterious mutations. Previous empirical studies of purging in captive breeding programs have focused on phenotypic measurements. We test natural selection's ability to purge deleterious mutations following an extreme population bottleneck by analyzing patterns of genetic diversity in wild and captive-bred individuals of the Lord Howe Island stick insect, Dryococelus australis. Dryococelus australis has been bred in captivity for two decades, having passed through an extreme bottleneck-only two mating pairs with few new additions since then. The magnitude of the bottleneck together with high female fecundity but low offspring recruitment set up nearly ideal conditions for the purging of deleterious mutations. As expected, captive-bred individuals had a greater number of long runs of homozygosity compared with wild individuals, implying strong inbreeding in captivity which would facilitate purging in homozygous regions. Stop-codon mutations were preferentially depleted in captivity compared with other mutations in coding and noncoding regions. The more deleterious a mutation was predicted to be, the more likely it was found outside of runs of homozygosity, implying that inbreeding facilitates the expression and thus removal of deleterious mutations, even after such an extreme bottleneck and under the benign conditions of captivity. These data implicate inbreeding and recessive deleterious mutation load in fitness variation among captive and wild D. australis.
Collapse
Affiliation(s)
- Oliver P Stuart
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| | | | - Kate Pearce
- Zoos Victoria, Parkville, VIC 3052, Australia
| | - Michael J L Magrath
- Zoos Victoria, Parkville, VIC 3052, Australia
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Alexander S Mikheyev
- Research School of Biology, Australian National University, Canberra, ACT 0200, Australia
| |
Collapse
|
6
|
Erven JAM, Mattiangeli V, Dreshaj M, Mullin VE, Rossi C, Daly KG, Jackson I, Parker Pearson M, Bradley DG, Frantz LAF, Madsen O, Raemaekers D, Çakirlar C. Archaeogenomic insights into commensalism and regional variation in pig management in Neolithic northwest Europe. Proc Natl Acad Sci U S A 2025; 122:e2410235122. [PMID: 40096601 PMCID: PMC11962444 DOI: 10.1073/pnas.2410235122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
The relationship between humans and pigs has changed dramatically since their domestication in southwest Asia and subsequent human-induced introduction into Europe. Introgression between incoming southwest Asian pigs and European boar resulted in the gradual replacement of southwest Asian ancestry in European pigs. However, we currently lack genomic data required to explore the regional trajectories, nature, and extent of contact between European boar and pigs that led to this turnover, and how this process was facilitated by human activity. We addressed this deficit by sequencing four Mesolithic boar and seven Neolithic pig samples from six archaeological sites in the Netherlands and Britain ranging from the Mesolithic (5500 BCE) to Neolithic (2500 BCE). Our data show that despite continuous gene flow with European boar, Neolithic European pigs show varying levels of southwest Asian ancestry. The low and varying southwest Asian ancestry in pigs from the Early Neolithic Dutch settlement Swifterbant indicates a high contribution of wild ancestry. The genetic profile, enriched δ15N values, on-site presence, and wide size distribution of Swifterbant Sus scrofa suggest a commensal relationship. Runs of homozygosity (ROH) imply that both closed-breeding and free-ranging management occurred in Neolithic communities, where the former showed an extreme burden of long segments of ROH. We further show selection signatures, associated with coat color and behavior, in Neolithic herds despite recurrent wild gene flow. Altogether, our results show distinct husbandry practices through space and time in Neolithic Europe, with heavy reliance on boar recruitment via the commensal pathway in northwest Europe.
Collapse
Affiliation(s)
- Jolijn A. M. Erven
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Merita Dreshaj
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
| | - Victoria E. Mullin
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
- School of Agriculture and Food Science, University College Dublin, DublinD04 C1P1, Ireland
| | - Iseult Jackson
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Mike Parker Pearson
- Institute of Archaeology, University College London, LondonWC1H 0PY, United Kingdom
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, DublinD02 VF25, Ireland
| | - Laurent A. F. Frantz
- Palaeogenomics Group, Institute of Palaeoanatomy, Domestication Research and the History of Veterinary Medicine, Ludwig-Maximilians-Universität of Munich, Munich80539, Germany
- School of Biological and Behavioural Sciences, Queen Mary University of London, LondonE1 4NS, United Kingdom
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen6700 AH, Netherlands
| | - Daan Raemaekers
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
| | - Canan Çakirlar
- Groningen Institute of Archaeology, University of Groningen, Groningen9712 ER, Netherlands
| |
Collapse
|
7
|
Shafer ABA, Kardos M. Runs of Homozygosity and Inferences in Wild Populations. Mol Ecol 2025; 34:e17641. [PMID: 39760145 PMCID: PMC11754702 DOI: 10.1111/mec.17641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Long homozygous chromosome segments are known as runs of homozygosity (ROH); these reflect patterns of identity by descent and can be used to measure individual inbreeding, map recessive traits, and reconstruct demographic histories. Here, we review some key considerations with ROH detection and the inferences pertaining to inbreeding and demographic analyses in wild populations.
Collapse
Affiliation(s)
- Aaron B. A. Shafer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
- Department of Forensic ScienceTrent UniversityPeterboroughOntarioCanada
| | - Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science CenterNational Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattleWashingtonUSA
| |
Collapse
|
8
|
Baumgartner CD, Jourdain E, Bonhoeffer S, Borgå K, Heide-Jørgensen MP, Karoliussen R, Laine JT, Rosing-Asvid A, Ruus A, Tavares SB, Ugarte F, Samarra FIP, Foote AD. Kinship clustering within an ecologically diverse killer whale metapopulation. Heredity (Edinb) 2025; 134:109-119. [PMID: 39833275 PMCID: PMC11799346 DOI: 10.1038/s41437-024-00740-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025] Open
Abstract
Metapopulation dynamics can be shaped by foraging ecology, and thus be sensitive to shifts in prey availability. Genotyping 204 North Atlantic killer whales at 1346 loci, we investigated whether spatio-temporal population structuring is linked to prey type and distribution. Using population-based methods (reflecting evolutionary means), we report a widespread metapopulation connected across ecological groups based upon nuclear genome SNPs, yet spatial structuring based upon mitogenome haplotypes. These contrasting patterns of markers with maternal and biparental inheritance are consistent with matrilineal site fidelity and philopatry, and male-mediated gene flow among demes. Connectivity between fish-eating and 'mixed-diet' (eating both fish and mammal prey) killer whales, marks a deviation within a species renowned for its marked structure associated with ecology. However, relatedness estimates suggest distinct spatial clusters, and heterogeneity in recent gene flow between them. The contrasting patterns between inference of structure and inference of relatedness suggest that gene flow has been partially restricted over the past two to three generations (50-70 years). This coincides with the collapse of North Atlantic herring stocks in the late 1960s and the subsequent cessation of their seasonal connectivity. Statistically significant association between diet types and assignment of Icelandic killer whales to relatedness-based clusters indicated limited gene flow was maintained through Icelandic 'mixed-diet' whales when herring-mediated connectivity was diminished. Thus, conservation of dietary variation within this metapopulation is critical to ensure genetic health. Our study highlights the role of resource dynamics and foraging ecology in shaping population structure and emphasises the need for transnational management of this widespread migratory species and its prey.
Collapse
Affiliation(s)
- Chérine D Baumgartner
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Orcestra, Zurich, Switzerland.
| | - Eve Jourdain
- Norwegian Orca Survey, Andenes, Norway
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Sebastian Bonhoeffer
- Department of Environmental Systems Science, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Katrine Borgå
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Jan T Laine
- Department of Natural History, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Anders Ruus
- Section for Aquatic Biology and Toxicology, Department of Biosciences, University of Oslo, Oslo, Norway
- Norwegian Institute for Water Research, Oslo, Norway
| | - Sara B Tavares
- Cetacean Research Program, Fisheries and Oceans, Nanaimo, Canada
| | | | - Filipa I P Samarra
- Westman Islands Research Centre, University of Iceland, Vestmannaeyjar, Iceland
| | - Andrew D Foote
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
9
|
Wolf M, de Jong MJ, Janke A. Ocean-Wide Conservation Genomics of Blue Whales Suggest New Northern Hemisphere Subspecies. Mol Ecol 2025; 34:e17619. [PMID: 39688592 DOI: 10.1111/mec.17619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/28/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
The blue whale is an endangered and globally distributed species of baleen whale with multiple described subspecies, including the morphologically and genetically distinct pygmy blue whale. North Atlantic and North Pacific populations, however, are currently regarded as a single subspecies despite being separated by continental land masses and acoustic call differences. To determine the degree of isolation among the Northern Hemisphere populations, 14 North Pacific and 6 Western Australian blue whale nuclear and mitochondrial genomes were sequenced and analysed together with 11 publicly available North Atlantic blue whale genomes. Population genomic analyses revealed distinctly differentiated clusters and limited genetic exchange among all three populations, indicating a high degree of isolation between the Northern Hemisphere populations. Nevertheless, the genomic and mitogenomic distances between all blue whale populations, including the Western Australian pygmy blue whale, are low when compared to other inter-subspecies distances in cetaceans. Given that the Western Australian pygmy blue whale is an already recognised subspecies and further supported by previously reported acoustic differences, a proposal is made to treat the two Northern Hemisphere populations as separate subspecies, namely Balaenoptera musculus musculus (North Atlantic blue whale) and Balaenoptera musculus sulfureus (North Pacific blue whale). Furthermore, a first molecular viability assessment of all three populations not only found a generally high genomic diversity among blue whales but also a lack of alleles at low frequency, non-neutral evolution and increased effects of inbreeding. This suggests a substantial anthropogenic impact on the genotypes of blue whales and calls for careful monitoring in future conservation plans.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Evolution and Biodiversity (IEB), University of Muenster, Muenster, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Menno J de Jong
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
- Institute for Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
- LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Frankfurt am Main, Germany
| |
Collapse
|
10
|
Kardos M, Keller LF, Funk WC. What Can Genome Sequence Data Reveal About Population Viability? Mol Ecol 2024:e17608. [PMID: 39681836 DOI: 10.1111/mec.17608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/08/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024]
Abstract
Biologists have long sought to understand the impacts of deleterious genetic variation on fitness and population viability. However, our understanding of these effects in the wild is incomplete, in part due to the rarity of sufficient genetic and demographic data needed to measure their impact. The genomics revolution is promising a potential solution by predicting the effects of deleterious genetic variants (genetic load) bioinformatically from genome sequences alone bypassing the need for costly demographic data. After a historical perspective on the theoretical and empirical basis of our understanding of the dynamics and fitness effects of deleterious genetic variation, we evaluate the potential for these new genomic measures of genetic load to predict population viability. We argue that current genomic analyses alone cannot reliably predict the effects of deleterious genetic variation on population growth, because these depend on demographic, ecological and genetic parameters that need more than just genome sequence data to be measured. Thus, while purely genomic analyses of genetic load promise to improve our understanding of the composition of the genetic load, they are currently of little use for evaluating population viability. Demographic data and ecological context remain crucial to our understanding of the consequences of deleterious genetic variation for population fitness. However, when combined with such demographic and ecological data, genomic information can offer important insights into genetic variation and inbreeding that are crucial for conservation decision making.
Collapse
Affiliation(s)
- Marty Kardos
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Lukas F Keller
- Department of Evolutionary Biology and Environmental Studies & Natural History Museum, University of Zurich, Zurich, Switzerland
| | - W Chris Funk
- Department of Biology, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
11
|
Mikalsen SO, Í Hjøllum J, Salter I, Djurhuus A, Í Kongsstovu S. A Faroese perspective on decoding life for sustainable use of nature and protection of biodiversity. NPJ BIODIVERSITY 2024; 3:37. [PMID: 39632982 PMCID: PMC11618374 DOI: 10.1038/s44185-024-00068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
Biodiversity is under pressure, mainly due to human activities and climate change. At the international policy level, it is now recognised that genetic diversity is an important part of biodiversity. The availability of high-quality reference genomes gives the best basis for using genetics and genetic diversity towards the global aims of (1) the protection of species, biodiversity, and nature, and (2) the management of biodiversity for achieving sustainable harvesting of nature. Protecting biodiversity is a global responsibility, also resting on small nations, like the Faroe Islands. Being in the middle of the North Atlantic Ocean and having large fisheries activity, the nation has a particular responsibility towards maritime matters. We here provide the reasoning behind the Genome Atlas of Faroese Ecology (Gen@FarE), a project based on our participation in the European Reference Genome Atlas consortium (ERGA). Gen@FarE has three major aims: (1) To acquire high-quality genomes of all eukaryotic species in the Faroe Islands and Faroese waters. (2) To establish population genetics for species of commercial or ecological interest. (3) To establish an information databank for all Faroese species, combined with a citizen science registration database, making it possible for the public to participate in acquiring and maintaining the overview of Faroese species in both terrestrial and marine environments. Altogether, we believe that this will enhance the society's interest in and awareness of biodiversity, thereby protecting the foundations of our lives. Furthermore, the combination of a wide and highly competent ERGA umbrella and more targeted national projects will help fulfil the formal and moral responsibilities that all nations, also those with limited resources, have in protecting biodiversity and achieving sustainability in harvesting from nature.
Collapse
Affiliation(s)
- Svein-Ole Mikalsen
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands.
| | - Jari Í Hjøllum
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Ian Salter
- Faroe Marine Research Institute, Tórshavn, Faroe Islands
| | - Anni Djurhuus
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Sunnvør Í Kongsstovu
- Faculty of Science and Technology, University of the Faroe Islands, Tórshavn, Faroe Islands
| |
Collapse
|
12
|
Vilaça ST, Dalapicolla J, Soares R, Guedes NMR, Miyaki CY, Aleixo A. Prioritizing Conservation Areas for the Hyacinth Macaw ( Anodorhynchus hyacinthinus) in Brazil From Low-Coverage Genomic Data. Evol Appl 2024; 17:e70039. [PMID: 39564451 PMCID: PMC11573696 DOI: 10.1111/eva.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/21/2024] Open
Abstract
Estimates of current genetic diversity and population connectivity are especially important for endangered species that are subject to illegal harvesting and trafficking. Genetic monitoring can also ensure that management units are sustaining viable populations, while estimating genetic structure and population dynamics can influence genetic rescue efforts and reintroduction from captive breeding and confiscated animals. The Hyacinth Macaw (Anodorhynchus hyacinthinus) is a charismatic endangered species with a fragmented (allopatric) distribution. Using low coverage genomes, we aimed to investigate the dynamics across the remaining three large disjunct populations of Hyacinth Macaws in Brazil to inform conservation strategies. We obtained low coverage DNA data for 54 individuals from seven sampling sites. Our results showed that Hyacinth Macaws have four genetically structured clusters with relatively high levels of diversity. The Pantanal biome had two genetically distinct populations, with no obvious physical barriers that might explain this differentiation. We detected signs of gene flow between populations, with some geographical regions being more connected than others. Estimates of effective population size in the past million years of the species' evolutionary history showed a decline trend with the lowest Ne in all populations reached within the last few thousand years. Our findings suggest that populations from the Pantanal biome are key to connecting sites across its distribution, and maintaining the integrity of this habitat is important for protecting the species. Given the genetic structure found, we also highlight the need of conserving all wild populations to ensure the protection of the species' evolutionary potential.
Collapse
Affiliation(s)
| | - Jeronymo Dalapicolla
- Instituto Tecnológico Vale Belém Pará Brazil
- Departamento de Sistemática e Ecologia Universidade Federal da Paraíba João Pessoa Paraíba Brazil
| | - Renata Soares
- Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil
| | - Neiva Maria Robaldo Guedes
- Instituto Arara Azul Campo Grande Mato Grosso do Sul Brazil
- Programa de Pós-graduação em Meio Ambiente e Desenvolvimento Regional Universidade para o Desenvolvimento do Estado e da Região do Pantanal Campo Grande Mato Grosso do Sul Brazil
| | - Cristina Y Miyaki
- Instituto de Biociências Universidade de São Paulo São Paulo São Paulo Brazil
| | | |
Collapse
|
13
|
Crossman CA, Fontaine MC, Frasier TR. A comparison of genomic diversity and demographic history of the North Atlantic and Southwest Atlantic southern right whales. Mol Ecol 2024; 33:e17099. [PMID: 37577945 DOI: 10.1111/mec.17099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Right whales (genus Eubalaena) were among the first, and most extensively pursued, targets of commercial whaling. However, understanding the impacts of this persecution requires knowledge of the demographic histories of these species prior to exploitation. We used deep whole genome sequencing (~40×) of 12 North Atlantic (E. glacialis) and 10 Southwest Atlantic southern (E. australis) right whales to quantify contemporary levels of genetic diversity and infer their demographic histories over time. Using coalescent- and identity-by-descent-based modelling to estimate ancestral effective population sizes from genomic data, we demonstrate that North Atlantic right whales have lived with smaller effective population sizes (Ne) than southern right whales in the Southwest Atlantic since their divergence and describe the decline in both populations around the time of whaling. North Atlantic right whales exhibit reduced genetic diversity and longer runs of homozygosity leading to higher inbreeding coefficients compared to the sampled population of southern right whales. This study represents the first comprehensive assessment of genome-wide diversity of right whales in the western Atlantic and underscores the benefits of high coverage, genome-wide datasets to help resolve long-standing questions about how historical changes in effective population size over different time scales shape contemporary diversity estimates. This knowledge is crucial to improve our understanding of the right whales' history and inform our approaches to address contemporary conservation issues. Understanding and quantifying the cumulative impact of long-term small Ne, low levels of diversity and recent inbreeding on North Atlantic right whale recovery will be important next steps.
Collapse
Affiliation(s)
- Carla A Crossman
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| | - Michael C Fontaine
- Laboratoire MIVEGEC (Université de Montpellier, CNRS 5290, IRD 224), Montpellier, France
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Timothy R Frasier
- Biology Department, Saint Mary's University, Halifax, Nova Scotia, Canada
| |
Collapse
|
14
|
Cádiz MI, Tengstedt ANB, Sørensen IH, Pedersen ES, Fox AD, Hansen MM. Demographic History and Inbreeding in Two Declining Sea Duck Species Inferred From Whole-Genome Sequence Data. Evol Appl 2024; 17:e70008. [PMID: 39257569 PMCID: PMC11386304 DOI: 10.1111/eva.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Anthropogenic impact has transitioned from threatening already rare species to causing significant declines in once numerous organisms. Long-tailed duck (Clangula hyemalis) and velvet scoter (Melanitta fusca) were once important quarry sea duck species in NW Europe, but recent declines resulted in their reclassification as vulnerable on the IUCN Red List. We sequenced and assembled genomes for both species and resequenced 15 individuals of each. Using analyses based on site frequency spectra and sequential Markovian coalescence, we found C. hyemalis to show more historical demographic stability, whereas M. fusca was affected particularly by the Last (Weichselian) Glaciation. This likely reflects C. hyemalis breeding continuously across the Arctic, with cycles of glaciation primarily shifting breeding areas south or north without major population declines, whereas the more restricted southern range of M. fusca would lead to significant range contraction during glaciations. Both species showed evidence of declines over the past thousands of years, potentially reflecting anthropogenic pressures with the recent decline indicating an accelerated process. Analysis of runs of homozygosity (ROH) showed low but nontrivial inbreeding, with F ROH from 0.012 to 0.063 in C. hyemalis and ranging from 0 to 0.047 in M. fusca. Lengths of ROH suggested that this was due to ongoing background inbreeding rather than recent declines. Overall, despite demographically important declines, this has not yet led to strong inbreeding and genetic erosion, and the most pressing conservation concern may be the risk of density-dependent (Allee) effects. We recommend monitoring of inbreeding using ROH analysis as a cost-efficient method to track future developments to support effective conservation of these species.
Collapse
Affiliation(s)
- María I Cádiz
- Department of Biology Aarhus University Aarhus Denmark
| | | | | | | | | | | |
Collapse
|
15
|
Hogg CJ, Edwards RJ, Farquharson KA, Silver LW, Brandies P, Peel E, Escalona M, Jaya FR, Thavornkanlapachai R, Batley K, Bradford TM, Chang JK, Chen Z, Deshpande N, Dziminski M, Ewart KM, Griffith OW, Marin Gual L, Moon KL, Travouillon KJ, Waters P, Whittington CM, Wilkins MR, Helgen KM, Lo N, Ho SYW, Ruiz Herrera A, Paltridge R, Marshall Graves JA, Renfree M, Shapiro B, Ottewell K, Belov K. Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial. Nat Ecol Evol 2024; 8:1311-1326. [PMID: 38945974 PMCID: PMC11239497 DOI: 10.1038/s41559-024-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XY1Y2 sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| | - Richard J Edwards
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Merly Escalona
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Frederick R Jaya
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rujiporn Thavornkanlapachai
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kimberley Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - J King Chang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Martin Dziminski
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kyle M Ewart
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Oliver W Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laia Marin Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Katherine L Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Paul Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Aurora Ruiz Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Rachel Paltridge
- Indigenous Desert Alliance, Alice Springs, Northern Territory, Australia
| | | | - Marilyn Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
16
|
Zhao H, Guo X, Wang W, Wang Z, Rawson P, Wilbur A, Hare M. Consequences of domestication in eastern oyster: Insights from whole genomic analyses. Evol Appl 2024; 17:e13710. [PMID: 38817396 PMCID: PMC11134191 DOI: 10.1111/eva.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024] Open
Abstract
Selective breeding for production traits has yielded relatively rapid successes with high-fecundity aquaculture species. Discovering the genetic changes associated with selection is an important goal for understanding adaptation and can also facilitate better predictions about the likely fitness of selected strains if they escape aquaculture farms. Here, we hypothesize domestication as a genetic change induced by inadvertent selection in culture. Our premise is that standardized culture protocols generate parallel domestication effects across independent strains. Using eastern oyster as a model and a newly developed 600K SNP array, this study tested for parallel domestication effects in multiple independent selection lines compared with their progenitor wild populations. A single contrast was made between pooled selected strains (1-17 generations in culture) and all wild progenitor samples combined. Population structure analysis indicated rank order levels of differentiation as [wild - wild] < [wild - cultured] < [cultured - cultured]. A genome scan for parallel adaptation to the captive environment applied two methodologically distinct outlier tests to the wild versus selected strain contrast and identified a total of 1174 candidate SNPs. Contrasting wild versus selected strains revealed the early evolutionary consequences of domestication in terms of genomic differentiation, standing genetic diversity, effective population size, relatedness, runs of homozygosity profiles, and genome-wide linkage disequilibrium patterns. Random Forest was used to identify 37 outlier SNPs that had the greatest discriminatory power between bulked wild and selected oysters. The outlier SNPs were in genes enriched for cytoskeletal functions, hinting at possible traits under inadvertent selection during larval culture or pediveliger setting at high density. This study documents rapid genomic changes stemming from hatchery-based cultivation of eastern oysters, identifies candidate loci responding to domestication in parallel among independent aquaculture strains, and provides potentially useful genomic resources for monitoring interbreeding between farm and wild oysters.
Collapse
Affiliation(s)
- Honggang Zhao
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
- Present address:
Center for Aquaculture TechnologySan DiegoCaliforniaUSA
| | - Ximing Guo
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Wenlu Wang
- Department of Computer SciencesTexas A&M University‐Corpus ChristiCorpus ChristiTexasUSA
| | - Zhenwei Wang
- Haskin Shellfish Research LaboratoryRutgers UniversityPort NorrisNew JerseyUSA
| | - Paul Rawson
- School of Marine SciencesUniversity of MaineOronoMaineUSA
| | - Ami Wilbur
- Shellfish Research Hatchery, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonNorth CarolinaUSA
| | - Matthew Hare
- Department of Natural Resources & the EnvironmentCornell UniversityIthacaNew YorkUSA
| |
Collapse
|
17
|
Garroway CJ, de Greef E, Lefort KJ, Thorstensen MJ, Foote AD, Matthews CJD, Higdon JW, Kucheravy CE, Petersen SD, Rosing-Asvid A, Ugarte F, Dietz R, Ferguson SH. Climate change introduces threatened killer whale populations and conservation challenges to the Arctic. GLOBAL CHANGE BIOLOGY 2024; 30:e17352. [PMID: 38822670 DOI: 10.1111/gcb.17352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The Arctic is the fastest-warming region on the planet, and the lengthening ice-free season is opening Arctic waters to sub-Arctic species such as the killer whale (Orcinus orca). As apex predators, killer whales can cause significant ecosystem-scale changes. Setting conservation priorities for killer whales and their Arctic prey species requires knowledge of their evolutionary history and demographic trajectory. Using whole-genome resequencing of 24 killer whales sampled in the northwest Atlantic, we first explored the population structure and demographic history of Arctic killer whales. To better understand the broader geographic relationship of these Arctic killer whales to other populations, we compared them to a globally sampled dataset. Finally, we assessed threats to Arctic killer whales due to anthropogenic harvest by reviewing the peer-reviewed and gray literature. We found that there are two highly genetically distinct, non-interbreeding populations of killer whales using the eastern Canadian Arctic. These populations appear to be as genetically different from each other as are ecotypes described elsewhere in the killer whale range; however, our data cannot speak to ecological differences between these populations. One population is newly identified as globally genetically distinct, and the second is genetically similar to individuals sampled from Greenland. The effective sizes of both populations recently declined, and both appear vulnerable to inbreeding and reduced adaptive potential. Our survey of human-caused mortalities suggests that harvest poses an ongoing threat to both populations. The dynamic Arctic environment complicates conservation and management efforts, with killer whales adding top-down pressure on Arctic food webs crucial to northern communities' social and economic well-being. While killer whales represent a conservation priority, they also complicate decisions surrounding wildlife conservation and resource management in the Arctic amid the effects of climate change.
Collapse
Affiliation(s)
- Colin J Garroway
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Evelien de Greef
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kyle J Lefort
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Matt J Thorstensen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew D Foote
- Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | - Cory J D Matthews
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Jeff W Higdon
- Higdon Wildlife Consulting, Winnipeg, Manitoba, Canada
| | - Caila E Kucheravy
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| | - Stephen D Petersen
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Conservation and Research Department, Assiniboine Park Zoo, Winnipeg, Manitoba, Canada
| | | | | | - Rune Dietz
- Department of Ecoscience, Aarhus University, Roskilde, Denmark
| | - Steven H Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Dalapicolla J, Weir JT, Vilaça ST, Quaresma TF, Schneider MPC, Vasconcelos ATR, Aleixo A. Whole genomes show contrasting trends of population size changes and genomic diversity for an Amazonian endemic passerine over the late quaternary. Ecol Evol 2024; 14:e11250. [PMID: 38660467 PMCID: PMC11040105 DOI: 10.1002/ece3.11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The "Amazon tipping point" is a global change scenario resulting in replacement of upland terra-firme forests by large-scale "savannization" of mostly southern and eastern Amazon. Reduced rainfall accompanying the Last Glacial Maximum (LGM) has been proposed to have acted as such a tipping point in the past, with the prediction that terra-firme inhabiting species should have experienced reductions in population size as drier habitats expanded. Here, we use whole-genomes of an Amazonian endemic organism (Scale-backed antbirds - Willisornis spp.) sampled from nine populations across the region to test this historical demography scenario. Populations from southeastern Amazonia and close to the Amazon-Cerrado ecotone exhibited a wide range of demographic patterns, while most of those from northern and western Amazonia experienced uniform expansions between 400 kya and 80-60 kya, with gradual declines toward 20 kya. Southeastern populations of Willisornis were the last to diversify and showed smaller heterozygosity and higher runs of homozygosity values than western and northern populations. These patterns support historical population declines throughout the Amazon that affected more strongly lineages in the southern and eastern areas, where historical "tipping point" conditions existed due to the widespread replacement of humid forest by drier and open vegetation during the LGM.
Collapse
Affiliation(s)
- Jeronymo Dalapicolla
- Instituto Tecnológico ValeBelémParáBrazil
- Departamento de Sistemática e EcologiaUniversidade Federal da Paraíba, João PessoaParaíbaBrazil
| | - Jason T. Weir
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Natural History, Royal Ontario MuseumTorontoOntarioCanada
| | | | | | - Maria P. C. Schneider
- Laboratório de Genômica e BiotecnologiaInstituto de Ciências Biológicas, UFPABelémBrazil
| | - Ana Tereza R. Vasconcelos
- Laboratório de BioinformáticaLaboratório Nacional de Computação Científica, PetrópolisRio de JaneiroBrazil
| | | |
Collapse
|
19
|
Taylor RS, Manseau M, Keobouasone S, Liu P, Mastromonaco G, Solmundson K, Kelly A, Larter NC, Gamberg M, Schwantje H, Thacker C, Polfus J, Andrew L, Hervieux D, Simmons D, Wilson PJ. High genetic load without purging in caribou, a diverse species at risk. Curr Biol 2024; 34:1234-1246.e7. [PMID: 38417444 DOI: 10.1016/j.cub.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/17/2023] [Accepted: 02/01/2024] [Indexed: 03/01/2024]
Abstract
High intra-specific genetic diversity is associated with adaptive potential, which is key for resilience to global change. However, high variation may also support deleterious alleles through genetic load, thereby increasing the risk of inbreeding depression if population sizes decrease. Purging of deleterious variation has been demonstrated in some threatened species. However, less is known about the costs of declines and inbreeding in species with large population sizes and high genetic diversity even though this encompasses many species globally that are expected to undergo population declines. Caribou is a species of ecological and cultural significance in North America with a wide distribution supporting extensive phenotypic variation but with some populations undergoing significant declines resulting in their at-risk status in Canada. We assessed intra-specific genetic variation, adaptive divergence, inbreeding, and genetic load across populations with different demographic histories using an annotated chromosome-scale reference genome and 66 whole-genome sequences. We found high genetic diversity and nine phylogenomic lineages across the continent with adaptive diversification of genes, but also high genetic load among lineages. We found highly divergent levels of inbreeding across individuals, including the loss of alleles by drift but not increased purging in inbred individuals, which had more homozygous deleterious alleles. We also found comparable frequencies of homozygous deleterious alleles between lineages regardless of nucleotide diversity. Thus, further inbreeding may need to be mitigated through conservation efforts. Our results highlight the "double-edged sword" of genetic diversity that may be representative of other species atrisk affected by anthropogenic activities.
Collapse
Affiliation(s)
- Rebecca S Taylor
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada.
| | - Micheline Manseau
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Sonesinh Keobouasone
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | - Peng Liu
- Landscape Science and Technology, Environment and Climate Change Canada, Colonel By Drive, Ottawa, ON K1S 5B6, Canada
| | | | - Kirsten Solmundson
- Environmental & Life Sciences Graduate Program, Trent University, Peterborough, ON K9L 1Z8, Canada
| | - Allicia Kelly
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Nicholas C Larter
- Department of Environment and Natural Resources, Government of Northwest Territories, PO Box 900, Fort Smith, NT X0E 0P0, Canada
| | - Mary Gamberg
- Gamberg Consulting, Jarvis Street, Whitehorse, YK Y1A 2J2, Canada
| | - Helen Schwantje
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Caeley Thacker
- British Columbia Ministry of Forest, Lands, Natural Resource Operations, and Rural Development, Labieux Road, Nanaimo, BC V9T 6E9, Canada
| | - Jean Polfus
- Canadian Wildlife Service - Pacific Region, Environment and Climate Change Canada, 1238 Discovery Avenue, Kelowna, BC V1V 1V9, Canada
| | - Leon Andrew
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Dave Hervieux
- Alberta Ministry of Environment and Protected Areas, Government of Alberta, 10320-99 Street, Grande Prairie, AB T8V 6J4, Canada
| | - Deborah Simmons
- Ɂehdzo Got'ı̨nę Gots'ę́ Nákedı (Sahtú Renewable Resources Board), P.O. Box 134, Tulít'a, NT X0E 0K0, Canada
| | - Paul J Wilson
- Biology Department, Trent University, East Bank Drive, Peterborough, ON K9L 1Z8, Canada
| |
Collapse
|
20
|
Morin PA, McCarthy ML, Fung CW, Durban JW, Parsons KM, Perrin WF, Taylor BL, Jefferson TA, Archer FI. Revised taxonomy of eastern North Pacific killer whales ( Orcinus orca): Bigg's and resident ecotypes deserve species status. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231368. [PMID: 38545612 PMCID: PMC10966402 DOI: 10.1098/rsos.231368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/29/2024] [Accepted: 02/10/2024] [Indexed: 04/26/2024]
Abstract
Killer whales (Orcinus orca) are currently recognized as a single ecologically and morphologically diverse, globally distributed species. Multiple morphotypes or ecotypes have been described, often associated with feeding specialization, and several studies have suggested taxonomic revision to include multiple subspecies or species in the genus. We review the ecological, morphological and genetic data for the well-studied 'resident' and Bigg's (aka 'transient') ecotypes in the eastern North Pacific and use quantitative taxonomic guidelines and standards to determine whether the taxonomic status of these killer whale ecotypes should be revised. Our review and new analyses indicate that species-level status is justified in both cases, and we conclude that eastern North Pacific Bigg's killer whales should be recognized as Orcinus rectipinnus (Cope in Scammon, 1869) and resident killer whales should be recognized as Orcinus ater (Cope in Scammon, 1869).
Collapse
Affiliation(s)
- Phillip A. Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA92037, USA
| | - Morgan L. McCarthy
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA92037, USA
| | - Charissa W. Fung
- University of British Columbia, Vancouver, British ColumbiaV6T 1Z4, Canada
| | - John W. Durban
- Marine Mammal Institute, Oregon State University, Newport, OR97365, USA
| | - Kim M. Parsons
- Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, Seattle, WA98112, USA
| | - William F. Perrin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA92037, USA
| | - Barbara L. Taylor
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA92037, USA
| | - Thomas A. Jefferson
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA92037, USA
| | - Frederick I. Archer
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA92037, USA
| |
Collapse
|
21
|
Bukhman YV, Morin PA, Meyer S, Chu LF, Jacobsen JK, Antosiewicz-Bourget J, Mamott D, Gonzales M, Argus C, Bolin J, Berres ME, Fedrigo O, Steill J, Swanson SA, Jiang P, Rhie A, Formenti G, Phillippy AM, Harris RS, Wood JMD, Howe K, Kirilenko BM, Munegowda C, Hiller M, Jain A, Kihara D, Johnston JS, Ionkov A, Raja K, Toh H, Lang A, Wolf M, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. A High-Quality Blue Whale Genome, Segmental Duplications, and Historical Demography. Mol Biol Evol 2024; 41:msae036. [PMID: 38376487 PMCID: PMC10919930 DOI: 10.1093/molbev/msae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/21/2024] Open
Abstract
The blue whale, Balaenoptera musculus, is the largest animal known to have ever existed, making it an important case study in longevity and resistance to cancer. To further this and other blue whale-related research, we report a reference-quality, long-read-based genome assembly of this fascinating species. We assembled the genome from PacBio long reads and utilized Illumina/10×, optical maps, and Hi-C data for scaffolding, polishing, and manual curation. We also provided long read RNA-seq data to facilitate the annotation of the assembly by NCBI and Ensembl. Additionally, we annotated both haplotypes using TOGA and measured the genome size by flow cytometry. We then compared the blue whale genome with other cetaceans and artiodactyls, including vaquita (Phocoena sinus), the world's smallest cetacean, to investigate blue whale's unique biological traits. We found a dramatic amplification of several genes in the blue whale genome resulting from a recent burst in segmental duplications, though the possible connection between this amplification and giant body size requires further study. We also discovered sites in the insulin-like growth factor-1 gene correlated with body size in cetaceans. Finally, using our assembly to examine the heterozygosity and historical demography of Pacific and Atlantic blue whale populations, we found that the genomes of both populations are highly heterozygous and that their genetic isolation dates to the last interglacial period. Taken together, these results indicate how a high-quality, annotated blue whale genome will serve as an important resource for biology, evolution, and conservation research.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Susanne Meyer
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Li-Fang Chu
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | | | | | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Maylie Gonzales
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Cara Argus
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Jennifer Bolin
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Mark E Berres
- University of Wisconsin Biotechnology Center, Bioinformatics Resource Center, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
| | - John Steill
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Scott A Swanson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Peng Jiang
- Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, Cleveland, OH, USA
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA
- Center for RNA Science and Therapeutics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Arang Rhie
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - Adam M Phillippy
- Genome Informatics Section, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | - Robert S Harris
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | | | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge CB10 1SA, UK
| | - Bogdan M Kirilenko
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Aashish Jain
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J Spencer Johnston
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Alexander Ionkov
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Kalpana Raja
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| | - Huishi Toh
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Aimee Lang
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), La Jolla, CA 92037, USA
| | - Magnus Wolf
- Institute for Evolution and Biodiversity (IEB), University of Muenster, 48149, Muenster, Germany
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt am Main, Germany
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, New York, NY 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, Los Angeles, CA 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, Madison, WI 53715, USA
| |
Collapse
|
22
|
Kyriazis CC, Robinson JA, Lohmueller KE. Using Computational Simulations to Model Deleterious Variation and Genetic Load in Natural Populations. Am Nat 2023; 202:737-752. [PMID: 38033186 PMCID: PMC10897732 DOI: 10.1086/726736] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractDeleterious genetic variation is abundant in wild populations, and understanding the ecological and conservation implications of such variation is an area of active research. Genomic methods are increasingly used to quantify the impacts of deleterious variation in natural populations; however, these approaches remain limited by an inability to accurately predict the selective and dominance effects of mutations. Computational simulations of deleterious variation offer a complementary tool that can help overcome these limitations, although such approaches have yet to be widely employed. In this perspective article, we aim to encourage ecological and conservation genomics researchers to adopt greater use of computational simulations to aid in deepening our understanding of deleterious variation in natural populations. We first provide an overview of the components of a simulation of deleterious variation, describing the key parameters involved in such models. Next, we discuss several approaches for validating simulation models. Finally, we compare and validate several recently proposed deleterious mutation models, demonstrating that models based on estimates of selection parameters from experimental systems are biased toward highly deleterious mutations. We describe a new model that is supported by multiple orthogonal lines of evidence and provide example scripts for implementing this model (https://github.com/ckyriazis/simulations_review).
Collapse
Affiliation(s)
- Christopher C. Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
| | - Jacqueline A. Robinson
- Institute for Human Genetics, University of California, San Francisco; San Francisco, CA, USA
| | - Kirk E. Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles; Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles; Los Angeles, CA, USA
| |
Collapse
|
23
|
Femerling G, van Oosterhout C, Feng S, Bristol RM, Zhang G, Groombridge J, P Gilbert MT, Morales HE. Genetic Load and Adaptive Potential of a Recovered Avian Species that Narrowly Avoided Extinction. Mol Biol Evol 2023; 40:msad256. [PMID: 37995319 DOI: 10.1093/molbev/msad256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 10/26/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
High genetic diversity is a good predictor of long-term population viability, yet some species persevere despite having low genetic diversity. Here we study the genomic erosion of the Seychelles paradise flycatcher (Terpsiphone corvina), a species that narrowly avoided extinction after having declined to 28 individuals in the 1960s. The species recovered unassisted to over 250 individuals in the 1990s and was downlisted from Critically Endangered to Vulnerable in the International Union for the Conservation of Nature Red List in 2020. By comparing historical, prebottleneck (130+ years old) and modern genomes, we uncovered a 10-fold loss of genetic diversity. Highly deleterious mutations were partly purged during the bottleneck, but mildly deleterious mutations accumulated. The genome shows signs of historical inbreeding during the bottleneck in the 1960s, but low levels of recent inbreeding after demographic recovery. Computer simulations suggest that the species long-term small Ne reduced the masked genetic load and made the species more resilient to inbreeding and extinction. However, the reduction in genetic diversity due to the chronically small Ne and the severe bottleneck is likely to have reduced the species adaptive potential to face environmental change, which together with a higher load, compromises its long-term population viability. Thus, small ancestral Ne offers short-term bottleneck resilience but hampers long-term adaptability to environmental shifts. In light of rapid global rates of population decline, our work shows that species can continue to suffer the effect of their decline even after recovery, highlighting the importance of considering genomic erosion and computer modeling in conservation assessments.
Collapse
Affiliation(s)
- Georgette Femerling
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, México
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Rachel M Bristol
- Mahe, Seychelles
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Jim Groombridge
- Division of Human and Social Sciences, Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - M Thomas P Gilbert
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Hernán E Morales
- Section for Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Reeves IM, Totterdell JA, Betty EL, Donnelly DM, George A, Holmes S, Moller L, Stockin KA, Wellard R, White C, Foote AD. Ancestry testing of "Old Tom," a killer whale central to mutualistic interactions with human whalers. J Hered 2023; 114:598-611. [PMID: 37821799 PMCID: PMC10650950 DOI: 10.1093/jhered/esad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cooperative hunting between humans and killer whales (Orcinus orca) targeting baleen whales was reported in Eden, New South Wales, Australia, for almost a century. By 1928, whaling operations had ceased, and local killer whale sightings became scarce. A killer whale from the group, known as "Old Tom," washed up dead in 1930 and his skeleton was preserved. How these killer whales from Eden relate to other populations globally and whether their genetic descendants persist today remains unknown. We extracted and sequenced DNA from Old Tom using ancient DNA techniques. Genomic sequences were then compared with a global dataset of mitochondrial and nuclear genomes. Old Tom shared a most recent common ancestor with killer whales from Australasia, the North Atlantic, and the North Pacific, having the highest genetic similarity with contemporary New Zealand killer whales. However, much of the variation found in Old Tom's genome was not shared with these widespread populations, suggesting ancestral rather than ongoing gene flow. Our genetic comparisons also failed to find any clear descendants of Tom, raising the possibility of local extinction of this group. We integrated Traditional Custodian knowledge to recapture the events in Eden and recognize that Indigenous Australians initiated the relationship with the killer whales before European colonization and the advent of commercial whaling locally. This study rectifies discrepancies in local records and provides new insight into the origins of the killer whales in Eden and the history of Australasian killer whales.
Collapse
Affiliation(s)
- Isabella M Reeves
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - John A Totterdell
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - Emma L Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | - David M Donnelly
- Killer Whales Australia, Mornington, Melbourne, Victoria, Australia
| | - Angela George
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Steven Holmes
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Luciana Moller
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Karen A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Charlie White
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Nigenda-Morales SF, Lin M, Nuñez-Valencia PG, Kyriazis CC, Beichman AC, Robinson JA, Ragsdale AP, Urbán R J, Archer FI, Viloria-Gómora L, Pérez-Álvarez MJ, Poulin E, Lohmueller KE, Moreno-Estrada A, Wayne RK. The genomic footprint of whaling and isolation in fin whale populations. Nat Commun 2023; 14:5465. [PMID: 37699896 PMCID: PMC10497599 DOI: 10.1038/s41467-023-40052-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/10/2023] [Indexed: 09/14/2023] Open
Abstract
Twentieth century industrial whaling pushed several species to the brink of extinction, with fin whales being the most impacted. However, a small, resident population in the Gulf of California was not targeted by whaling. Here, we analyzed 50 whole-genomes from the Eastern North Pacific (ENP) and Gulf of California (GOC) fin whale populations to investigate their demographic history and the genomic effects of natural and human-induced bottlenecks. We show that the two populations diverged ~16,000 years ago, after which the ENP population expanded and then suffered a 99% reduction in effective size during the whaling period. In contrast, the GOC population remained small and isolated, receiving less than one migrant per generation. However, this low level of migration has been crucial for maintaining its viability. Our study exposes the severity of whaling, emphasizes the importance of migration, and demonstrates the use of genome-based analyses and simulations to inform conservation strategies.
Collapse
Affiliation(s)
- Sergio F Nigenda-Morales
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico.
- Department of Biological Sciences, California State University San Marcos, San Marcos, CA, 92096, USA.
| | - Meixi Lin
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, 94305, USA.
| | - Paulina G Nuñez-Valencia
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Morelos, México
| | - Christopher C Kyriazis
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Annabel C Beichman
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Jacqueline A Robinson
- Institute for Human Genetics, University of California, San Francisco (UCSF), San Francisco, CA, 94143, USA
| | - Aaron P Ragsdale
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico
- Department of Integrative Biology, University of Wisconsin, Madison, WI, 53706, USA
| | - Jorge Urbán R
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz, Baja California Sur, Mexico
| | - Frederick I Archer
- Marine Mammal and Turtle Division, Southwest Fisheries Science Center, La Jolla, CA, 92037, USA
| | - Lorena Viloria-Gómora
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur (UABCS), La Paz, Baja California Sur, Mexico
| | - María José Pérez-Álvarez
- Escuela de Medicina Veterinaria, Facultad de Medicina y Ciencias de la Salud, Universidad Mayor, Santiago, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile
| | - Elie Poulin
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Universidad de Chile, Santiago, Chile
| | - Kirk E Lohmueller
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Interdepartmental Program in Bioinformatics, University of California, Los Angeles, CA, 90095, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Andrés Moreno-Estrada
- Advanced Genomics Unit, National Laboratory of Genomics for Biodiversity (Langebio), Center for Research and Advanced Studies (Cinvestav), Irapuato, Guanajuato, 36824, Mexico.
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
26
|
Lane MR, Lowe A, Vukcevic J, Clark RG, Madani G, Higgins DP, Silver L, Belov K, Hogg CJ, Marsh KJ. Health Assessments of Koalas after Wildfire: A Temporal Comparison of Rehabilitated and Non-Rescued Resident Individuals. Animals (Basel) 2023; 13:2863. [PMID: 37760263 PMCID: PMC10525633 DOI: 10.3390/ani13182863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/25/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Many koalas (Phascolarctos cinereus) required rehabilitation after the 2019/20 Australian megafires. Little is known about how the post-release health of rehabilitated koalas compares to non-rescued resident koalas. We evaluated health parameters in rehabilitated koalas and resident koalas in burnt and unburnt habitat in southern New South Wales, Australia. Health checks were undertaken within six weeks of fire (rehabilitated group), 5-9 months post-fire and 12-16 months post-fire. Body condition improved significantly over time in rehabilitated koalas, with similar condition between all groups at 12-16 months. Rehabilitated koalas therefore gained body condition at similar rates to koalas who remained and survived in the wild. The prevalence of Chlamydia pecorum was also similar between groups and timepoints, suggesting wildfire and rehabilitation did not exacerbate disease in this population. While there was some variation in measured serum biochemistry and haematology parameters between groups and timepoints, most were within normal reference ranges. Our findings show that koalas were generally healthy at the time of release and when recaptured nine months later. Landscapes in the Monaro region exhibiting a mosaic of burn severity can support koalas, and rehabilitated koala health is not compromised by returning them to burnt habitats 4-6 months post-fire.
Collapse
Affiliation(s)
- Murraya R. Lane
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| | - Arianne Lowe
- Stromlo Veterinary Services, P.O. Box 3963, Weston, ACT 2611, Australia;
| | | | - Robert G. Clark
- Research School of Finance, Actuarial Studies and Statistics, The Australian National University, Canberra, ACT 2601, Australia;
| | - George Madani
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia;
| | - Damien P. Higgins
- Sydney School of Veterinary Science, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Luke Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (L.S.); (K.B.); (C.J.H.)
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (L.S.); (K.B.); (C.J.H.)
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia; (L.S.); (K.B.); (C.J.H.)
| | - Karen J. Marsh
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia;
| |
Collapse
|
27
|
Sánchez-Barreiro F, De Cahsan B, Westbury MV, Sun X, Margaryan A, Fontsere C, Bruford MW, Russo IRM, Kalthoff DC, Sicheritz-Pontén T, Petersen B, Dalén L, Zhang G, Marquès-Bonet T, Gilbert MTP, Moodley Y. Historic Sampling of a Vanishing Beast: Population Structure and Diversity in the Black Rhinoceros. Mol Biol Evol 2023; 40:msad180. [PMID: 37561011 PMCID: PMC10500089 DOI: 10.1093/molbev/msad180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 08/11/2023] Open
Abstract
The black rhinoceros (Diceros bicornis L.) is a critically endangered species historically distributed across sub-Saharan Africa. Hunting and habitat disturbance have diminished both its numbers and distribution since the 19th century, but a poaching crisis in the late 20th century drove them to the brink of extinction. Genetic and genomic assessments can greatly increase our knowledge of the species and inform management strategies. However, when a species has been severely reduced, with the extirpation and artificial admixture of several populations, it is extremely challenging to obtain an accurate understanding of historic population structure and evolutionary history from extant samples. Therefore, we generated and analyzed whole genomes from 63 black rhinoceros museum specimens collected between 1775 and 1981. Results showed that the black rhinoceros could be genetically structured into six major historic populations (Central Africa, East Africa, Northwestern Africa, Northeastern Africa, Ruvuma, and Southern Africa) within which were nested four further subpopulations (Maasailand, southwestern, eastern rift, and northern rift), largely mirroring geography, with a punctuated north-south cline. However, we detected varying degrees of admixture among groups and found that several geographical barriers, most prominently the Zambezi River, drove population discontinuities. Genomic diversity was high in the middle of the range and decayed toward the periphery. This comprehensive historic portrait also allowed us to ascertain the ancestry of 20 resequenced genomes from extant populations. Lastly, using insights gained from this unique temporal data set, we suggest management strategies, some of which require urgent implementation, for the conservation of the remaining black rhinoceros diversity.
Collapse
Affiliation(s)
| | - Binia De Cahsan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | | - Xin Sun
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ashot Margaryan
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Claudia Fontsere
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
| | | | | | - Daniela C Kalthoff
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Thomas Sicheritz-Pontén
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Bent Petersen
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
| | - Love Dalén
- Department of Zoology, Centre for Palaeogenetics, Stockholm University, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People's Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, People's Republic of China
- BGI Research, BGI-Shenzhen, Shenzhen, People's Republic of China
| | - Tomás Marquès-Bonet
- Institut de Biologia Evolutiva (Consejo Superior de Investigaciones Científicas–Universitat Pompeu Fabra), Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
- National Centre for Genomic Analysis–Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
- Life & Medical Sciences, Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| | - M Thomas P Gilbert
- Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Natural History, NTNU University Museum, Trondheim, Norway
| | - Yoshan Moodley
- Department of Biological Sciences, University of Venda, Thohoyandou, Republic of South Africa
| |
Collapse
|
28
|
Moon KL, Huson HJ, Morrill K, Wang MS, Li X, Srikanth K, Zoonomia Consortium, Lindblad-Toh K, Svenson GJ, Karlsson EK, Shapiro B. Comparative genomics of Balto, a famous historic dog, captures lost diversity of 1920s sled dogs. Science 2023; 380:eabn5887. [PMID: 37104591 PMCID: PMC10184777 DOI: 10.1126/science.abn5887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 11/23/2022] [Indexed: 04/29/2023]
Abstract
We reconstruct the phenotype of Balto, the heroic sled dog renowned for transporting diphtheria antitoxin to Nome, Alaska, in 1925, using evolutionary constraint estimates from the Zoonomia alignment of 240 mammals and 682 genomes from dogs and wolves of the 21st century. Balto shares just part of his diverse ancestry with the eponymous Siberian husky breed. Balto's genotype predicts a combination of coat features atypical for modern sled dog breeds, and a slightly smaller stature. He had enhanced starch digestion compared with Greenland sled dogs and a compendium of derived homozygous coding variants at constrained positions in genes connected to bone and skin development. We propose that Balto's population of origin, which was less inbred and genetically healthier than that of modern breeds, was adapted to the extreme environment of 1920s Alaska.
Collapse
Affiliation(s)
- Katherine L. Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Heather J. Huson
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - Kathleen Morrill
- Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01655, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01655, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ming-Shan Wang
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01655, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01655, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Krishnamoorthy Srikanth
- Department of Animal Sciences, Cornell University College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | | | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University; Uppsala, 751 32, Sweden
| | | | - Elinor K. Karlsson
- Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01655, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01655, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| |
Collapse
|
29
|
Hewett AM, Stoffel MA, Peters L, Johnston SE, Pemberton JM. Selection, recombination and population history effects on runs of homozygosity (ROH) in wild red deer (Cervus elaphus). Heredity (Edinb) 2023; 130:242-250. [PMID: 36801920 PMCID: PMC10076382 DOI: 10.1038/s41437-023-00602-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 02/07/2023] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
The distribution of runs of homozygosity (ROH) may be shaped by a number of interacting processes such as selection, recombination and population history, but little is known about the importance of these mechanisms in shaping ROH in wild populations. We combined an empirical dataset of >3000 red deer genotyped at >35,000 genome-wide autosomal SNPs and evolutionary simulations to investigate the influence of each of these factors on ROH. We assessed ROH in a focal and comparison population to investigate the effect of population history. We investigated the role of recombination using both a physical map and a genetic linkage map to search for ROH. We found differences in ROH distribution between both populations and map types indicating that population history and local recombination rate have an effect on ROH. Finally, we ran forward genetic simulations with varying population histories, recombination rates and levels of selection, allowing us to further interpret our empirical data. These simulations showed that population history has a greater effect on ROH distribution than either recombination or selection. We further show that selection can cause genomic regions where ROH is common, only when the effective population size (Ne) is large or selection is particularly strong. In populations having undergone a population bottleneck, genetic drift can outweigh the effect of selection. Overall, we conclude that in this population, genetic drift resulting from a historical population bottleneck is most likely to have resulted in the observed ROH distribution, with selection possibly playing a minor role.
Collapse
Affiliation(s)
- Anna M Hewett
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - Martin A Stoffel
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Lucy Peters
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Susan E Johnston
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Josephine M Pemberton
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| |
Collapse
|
30
|
Kardos M, Zhang Y, Parsons KM, A Y, Kang H, Xu X, Liu X, Matkin CO, Zhang P, Ward EJ, Hanson MB, Emmons C, Ford MJ, Fan G, Li S. Inbreeding depression explains killer whale population dynamics. Nat Ecol Evol 2023; 7:675-686. [PMID: 36941343 DOI: 10.1038/s41559-023-01995-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 01/26/2023] [Indexed: 03/23/2023]
Abstract
Understanding the factors that cause endangered populations to either grow or decline is crucial for preserving biodiversity. Conservation efforts often address extrinsic threats, such as environmental degradation and overexploitation, that can limit the recovery of endangered populations. Genetic factors such as inbreeding depression can also affect population dynamics but these effects are rarely measured in the wild and thus often neglected in conservation efforts. Here we show that inbreeding depression strongly influences the population dynamics of an endangered killer whale population, despite genomic signatures of purging of deleterious alleles via natural selection. We find that the 'Southern Residents', which are currently endangered despite nearly 50 years of conservation efforts, exhibit strong inbreeding depression for survival. Our population models suggest that this inbreeding depression limits population growth and predict further decline if the population remains genetically isolated and typical environmental conditions continue. The Southern Residents also had more inferred homozygous deleterious alleles than three other, growing, populations, further suggesting that inbreeding depression affects population fitness. These results demonstrate that inbreeding depression can substantially limit the recovery of endangered populations. Conservation actions focused only on extrinsic threats may therefore fail to account for key intrinsic genetic factors that also limit population growth.
Collapse
Affiliation(s)
- Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- BGI-Shenzhen, Shenzhen, China
| | - Kim M Parsons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Yunga A
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Hui Kang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, China
| | - Xin Liu
- BGI-Shenzhen, Shenzhen, China
| | | | - Peijun Zhang
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Eric J Ward
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - M Bradley Hanson
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Candice Emmons
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Michael J Ford
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA.
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China.
- BGI-Shenzhen, Shenzhen, China.
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China.
| | - Songhai Li
- Marine Mammal and Marine Bioacoustics Laboratory, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
31
|
Hogg CJ, Silver L, McLennan EA, Belov K. Koala Genome Survey: An Open Data Resource to Improve Conservation Planning. Genes (Basel) 2023; 14:genes14030546. [PMID: 36980819 PMCID: PMC10048327 DOI: 10.3390/genes14030546] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Genome sequencing is a powerful tool that can inform the management of threatened species. Koalas (Phascolarctos cinereus) are a globally recognized species that captured the hearts and minds of the world during the 2019/2020 Australian megafires. In 2022, koalas were listed as ‘Endangered’ in Queensland, New South Wales, and the Australian Capital Territory. Populations have declined because of various threats such as land clearing, habitat fragmentation, and disease, all of which are exacerbated by climate change. Here, we present the Koala Genome Survey, an open data resource that was developed after the Australian megafires. A systematic review conducted in 2020 demonstrated that our understanding of genomic diversity within koala populations was scant, with only a handful of SNP studies conducted. Interrogating data showed that only 6 of 49 New South Wales areas of regional koala significance had meaningful genome-wide data, with only 7 locations in Queensland with SNP data and 4 locations in Victoria. In 2021, we launched the Koala Genome Survey to generate resequenced genomes across the Australian east coast. We have publicly released 430 koala genomes (average coverage: 32.25X, range: 11.3–66.8X) on the Amazon Web Services Open Data platform to accelerate research that can inform current and future conservation planning.
Collapse
|
32
|
Lozier JD, Strange JP, Heraghty SD. Whole genome demographic models indicate divergent effective population size histories shape contemporary genetic diversity gradients in a montane bumble bee. Ecol Evol 2023; 13:e9778. [PMID: 36744081 PMCID: PMC9889631 DOI: 10.1002/ece3.9778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size (N e) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate N e variation and climate-associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Bombus vancouverensis Cresson (Hymenoptera: Apidae: Bombus Latreille) in western North America. We analyze whole genomes from a latitude-elevation cline using sequentially Markovian coalescent models of N e through time to test whether relatively low diversity in southern high-elevation populations is a result of long-term differences in N e. We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. N e fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater N e over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large N e. A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial-period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long-term differences in N e dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.
Collapse
Affiliation(s)
- Jeffrey D. Lozier
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - James P. Strange
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| | - Sam D. Heraghty
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| |
Collapse
|
33
|
Martin CA, Sheppard EC, Illera JC, Suh A, Nadachowska-Brzyska K, Spurgin LG, Richardson DS. Runs of homozygosity reveal past bottlenecks and contemporary inbreeding across diverging populations of an island-colonizing bird. Mol Ecol 2023; 32:1972-1989. [PMID: 36704917 DOI: 10.1111/mec.16865] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/28/2023]
Abstract
Genomes retain evidence of the demographic history and evolutionary forces that have shaped populations and drive speciation. Across island systems, contemporary patterns of genetic diversity reflect population demography, including colonization events, bottlenecks, gene flow and genetic drift. Here, we investigate genome-wide diversity and the distribution of runs of homozygosity (ROH) using whole-genome resequencing of individuals (>22× coverage) from six populations across three archipelagos of Berthelot's pipit (Anthus berthelotii)-a passerine that has recently undergone island speciation. We show the most dramatic reduction in diversity occurs between the mainland sister species (the tawny pipit) and Berthelot's pipit and is lowest in the populations that have experienced sequential bottlenecks (i.e., the Madeiran and Selvagens populations). Pairwise sequential Markovian coalescent (PSMC) analyses estimated that Berthelot's pipit diverged from its sister species ~2 million years ago, with the Madeiran archipelago founded 50,000 years ago, and the Selvagens colonized 8000 years ago. We identify many long ROH (>1 Mb) in these most recently colonized populations. Population expansion within the last 100 years may have eroded long ROH in the Madeiran archipelago, resulting in a prevalence of short ROH (<1 Mb). However, the extensive long and short ROH detected in the Selvagens suggest strong recent inbreeding and bottleneck effects, with as much as 38% of the autosomes consisting of ROH >250 kb. These findings highlight the importance of demographic history, as well as selection and genetic drift, in shaping contemporary patterns of genomic diversity across diverging populations.
Collapse
Affiliation(s)
- Claudia A Martin
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Terrestrial Ecology Unit, Biology Department, Ghent University, Ghent, Belgium
| | | | - Juan Carlos Illera
- Biodiversity Research Institute (CSIC-Oviedo University-Principality of Asturias), University of Oviedo, Mieres, Asturias, Spain
| | - Alexander Suh
- School of Biological Sciences, University of East Anglia, Norfolk, UK.,Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre (EBC), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norfolk, UK
| | | |
Collapse
|
34
|
Wootton E, Robert C, Taillon J, Côté SD, Shafer ABA. Genomic health is dependent on long-term population demographic history. Mol Ecol 2023; 32:1943-1954. [PMID: 36704858 DOI: 10.1111/mec.16863] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/08/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Current genetic methods of population assessment in conservation biology have been challenged by genome-scale analyses due to their quantitatively novel insights. These analyses include assessments of runs-of-homozygosity (ROH), genomic evolutionary rate profiling (GERP), and mutational load. Here, we aim to elucidate the relationships between these measures using three divergent ungulates: white-tailed deer, caribou, and mountain goat. The white-tailed deer is currently expanding, while caribou are in the midst of a significant decline. Mountain goats remain stable, having suffered a large historical bottleneck. We assessed genome-wide signatures of inbreeding using the inbreeding coefficient F and %ROH (FROH ) and identified evolutionarily constrained regions with GERP. Mutational load was estimated by identifying mutations in highly constrained elements (CEs) and sorting intolerant from tolerant (SIFT) mutations. Our results showed that F and FROH are higher in mountain goats than in caribou and white-tailed deer. Given the extended bottleneck and low Ne of the mountain goat, this supports the idea that the genome-wide effects of demographic change take time to accrue. Similarly, we found that mountain goats possess more highly constrained CEs and the lowest dN/dS values, both of which are indicative of greater purifying selection; this is also reflected by fewer mutations in CEs and deleterious mutations identified by SIFT. In contrast, white-tailed deer presented the highest mutational load with both metrics, in addition to dN/dS, while caribou were intermediate. Our results demonstrate that extended bottlenecks may lead to reduced diversity and increased FROH in ungulates, but not necessarily an increase in mutational load, probably due to the purging of deleterious alleles in small populations.
Collapse
Affiliation(s)
- Eric Wootton
- Biochemistry and Molecular Biology, Trent University, Peterborough, Ontario, Canada
| | - Claude Robert
- Département des Sciences Animales, Université Laval, Québec, Québec, Canada
| | - Joëlle Taillon
- Direction de l'Expertise sur la Faune Terrestre, l'Herpétofaune et l'Avifaune, Ministère des Forêts, de la Faune et des Parcs, Gouvernement du Québec, Québec, Québec, Canada
| | - Steeve D Côté
- Département de Biologie, Caribou Ungava and Centre d'Études Nordiques, Université Laval, Québec, Québec, Canada
| | - Aaron B A Shafer
- Environmental and Life Sciences Graduate Programme, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
35
|
Duntsch L, Whibley A, de Villemereuil P, Brekke P, Bailey S, Ewen JG, Santure AW. Genomic signatures of inbreeding depression for a threatened Aotearoa New Zealand passerine. Mol Ecol 2023; 32:1893-1907. [PMID: 36655901 DOI: 10.1111/mec.16855] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/19/2022] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
For small and isolated populations, the increased chance of mating between related individuals can result in a substantial reduction in individual and population fitness. Despite the increasing availability of genomic data to measure inbreeding accurately across the genome, inbreeding depression studies for threatened species are still scarce due to the difficulty of measuring fitness in the wild. Here, we investigate inbreeding and inbreeding depression for the extensively monitored Tiritiri Mātangi island population of a threatened Aotearoa New Zealand passerine, the hihi (Notiomystis cincta). First, using a custom 45 k single nucleotide polymorphism (SNP) array, we explore genomic inbreeding patterns by inferring homozygous segments across the genome. Although all individuals have similar levels of ancient inbreeding, highly inbred individuals are affected by recent inbreeding, which can probably be explained by bottleneck effects such as habitat loss after European arrival and their translocation to the island in the 1990s. Second, we investigate genomic inbreeding effects on fitness, measured as lifetime reproductive success, and its three components, juvenile survival, adult annual survival and annual reproductive success, in 363 hihi. We find that global inbreeding significantly affects juvenile survival but none of the remaining fitness traits. Finally, we employ a genome-wide association approach to test the locus-specific effects of inbreeding on fitness, and identify 13 SNPs significantly associated with lifetime reproductive success. Our findings suggest that inbreeding depression does impact hihi, but at different genomic scales for different traits, and that purging has therefore failed to remove all variants with deleterious effects from this population of conservation concern.
Collapse
Affiliation(s)
- Laura Duntsch
- Centre for Biodiversity and Biosecurity (CBB), School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annabel Whibley
- Centre for Biodiversity and Biosecurity (CBB), School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Pierre de Villemereuil
- Institut de Systématique, Évolution, Biodiversité (ISYEB), École Pratique des Hautes Études, PSL, MNHN, CNRS, SU, UA, Paris, France
| | - Patricia Brekke
- Institute of Zoology, Zoological Society of London, London, UK
| | - Sarah Bailey
- Centre for Biodiversity and Biosecurity (CBB), School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - John G Ewen
- Institute of Zoology, Zoological Society of London, London, UK
| | - Anna W Santure
- Centre for Biodiversity and Biosecurity (CBB), School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Deschepper P, Vanbergen S, Zhang Y, Li Z, Hassani IM, Patel NA, Rasolofoarivao H, Singh S, Wee SL, De Meyer M, Virgilio M, Delatte H. Bactrocera dorsalis in the Indian Ocean: A tale of two invasions. Evol Appl 2023; 16:48-61. [PMID: 36699130 PMCID: PMC9850006 DOI: 10.1111/eva.13507] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
An increasing number of invasive fruit fly pests are colonizing new grounds. With this study, we aimed to uncover the invasion pathways of the oriental fruit fly, Bactrocera dorsalis into the islands of the Indian Ocean. By using genome-wide SNP data and a multipronged approach consisting of PCA, ancestry analysis, phylogenetic inference, and kinship networks, we were able to resolve two independent invasion pathways. A western invasion pathway involved the stepping-stone migration of B. dorsalis from the east African coast into the Comoros, along Mayotte and into Madagascar with a decreasing genetic diversity. The Mascarene islands (Reunion and Mauritius), on the contrary, were colonized directly from Asia and formed a distinct cluster. The low nucleotide diversity suggests that only a few genotypes invaded the Mascarenes. The presence of many long runs of homozygosity (ROH) in the introduced populations is indicative of population bottlenecks, with evidence of a more severe bottleneck for populations along the western migration pathway than on the Mascarene islands. More strict phytosanitary regulations are recommended in order to prevent the further spread of B. dorsalis.
Collapse
Affiliation(s)
- Pablo Deschepper
- Invertebrates SectionRoyal Museum for Central AfricaTervurenBelgium
| | - Sam Vanbergen
- Invertebrates SectionRoyal Museum for Central AfricaTervurenBelgium
| | - Yue Zhang
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Key Laboratory of Surveillance and Management for Plant Quarantine PestsMinistry of Agriculture and Rural AffairsBeijingChina
| | - Zhihong Li
- College of Plant ProtectionChina Agricultural UniversityBeijingChina
- Key Laboratory of Surveillance and Management for Plant Quarantine PestsMinistry of Agriculture and Rural AffairsBeijingChina
| | - Issa Mze Hassani
- National Research Institute for Agriculture, Fisheries and Environment, Ex‐CEFADERMdeComoros
| | | | | | - Sandeep Singh
- Department of Fruit SciencePunjab Agricultural UniversityLudhianaIndia
| | - Suk Ling Wee
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Centre for Insect SystematicsUniversiti Kebangsaan MalaysiaBangiMalaysia
| | - Marc De Meyer
- Invertebrates SectionRoyal Museum for Central AfricaTervurenBelgium
| | | | - Hélène Delatte
- FOFIFA CENRADERU‐DRAAmbatobeMadagascar
- CIRAD, UMR PVBMTAntananarivoMadagascar
| |
Collapse
|
37
|
Heino MT, Nyman T, Palo JU, Harmoinen J, Valtonen M, Pilot M, Översti S, Salmela E, Kunnasranta M, Väinölä R, Hoelzel AR, Aspi J. Museum specimens of a landlocked pinniped reveal recent loss of genetic diversity and unexpected population connections. Ecol Evol 2023; 13:e9720. [PMID: 36699566 PMCID: PMC9849707 DOI: 10.1002/ece3.9720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
The Saimaa ringed seal (Pusa hispida saimensis) is endemic to Lake Saimaa in Finland. The subspecies is thought to have originated when parts of the ringed seal population of the Baltic region were trapped in lakes emerging due to postglacial bedrock rebound around 9000 years ago. During the 20th century, the population experienced a drastic human-induced bottleneck. Today encompassing a little over 400 seals with extremely low genetic diversity, it is classified as endangered. We sequenced sections of the mitochondrial control region from 60 up to 125-years-old museum specimens of the Saimaa ringed seal. The generated dataset was combined with publicly available sequences. We studied how genetic variation has changed through time in this subspecies and how it is phylogenetically related to other ringed seal populations from the Baltic Sea, Lake Ladoga, North America, Svalbard, and the White Sea. We observed temporal fluctuations in haplotype frequencies and loss of haplotypes accompanied by a recent reduction in female effective population size. In apparent contrast with the traditionally held view of the Baltic origin of the population, the Saimaa ringed seal mtDNA variation also shows affinities to North American ringed seals. Our results suggest that the Saimaa ringed seal has experienced recent genetic drift associated with small population size. The results further suggest that extant Baltic ringed seal is not representative of the ancestral population of the Saimaa ringed seal, which calls for re-evaluation of the deep history of this subspecies.
Collapse
Affiliation(s)
- Matti T. Heino
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Department of Forensic MedicineUniversity of HelsinkiHelsinkiFinland
| | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research StationNorwegian Institute of Bioeconomy ResearchSvanvikNorway
| | - Jukka U. Palo
- Department of Forensic MedicineUniversity of HelsinkiHelsinkiFinland
- Forensic Chemistry Unit/Forensic GeneticsFinnish Institute for Health and WelfareHelsinkiFinland
| | - Jenni Harmoinen
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
- Wildlife Ecology GroupNatural Resources Institute FinlandHelsinkiFinland
| | - Mia Valtonen
- Wildlife Ecology GroupNatural Resources Institute FinlandHelsinkiFinland
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Małgorzata Pilot
- School of Biological and Biomedical SciencesDurham UniversityDurhamUK
- Museum and Institute of ZoologyPolish Academy of SciencesGdańskPoland
- Faculty of BiologyUniversity of GdańskGdańskPoland
| | - Sanni Översti
- Transmission, Infection, Diversification and Evolution GroupMax‐Planck Institute for the Science of Human HistoryJenaGermany
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elina Salmela
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Department of Biology, Faculty of ScienceUniversity of TurkuTurkuFinland
| | - Mervi Kunnasranta
- University of Eastern FinlandJoensuuFinland
- Natural Resources Institute FinlandJoensuuFinland
| | - Risto Väinölä
- Finnish Museum of Natural HistoryUniversity of HelsinkiHelsinkiFinland
| | | | - Jouni Aspi
- Ecology and Genetics Research UnitUniversity of OuluOuluFinland
| |
Collapse
|
38
|
Dedato MN, Robert C, Taillon J, Shafer ABA, Côté SD. Demographic history and conservation genomics of caribou ( Rangifer tarandus) in Québec. Evol Appl 2022; 15:2043-2053. [PMID: 36540642 PMCID: PMC9753816 DOI: 10.1111/eva.13495] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/31/2022] [Accepted: 10/06/2022] [Indexed: 08/04/2023] Open
Abstract
The loss of genetic diversity is a challenge many species are facing, with genomics being a potential tool to inform and prioritize decision-making. Most caribou (Rangifer tarandus) populations have experienced significant recent declines throughout Québec, Canada, and are considered of concern, threatened or endangered. Here, we calculated the ancestral and contemporary patterns of genomic diversity of five representative caribou populations and applied a comparative population genomics framework to assess the interplay between demographic events and genomic diversity. We first calculated a caribou specific mutation rate, μ, by extracting orthologous genes from related ungulates and estimating the rate of synonymous mutations. Whole genome re-sequencing was then completed on 67 caribou: from these data we calculated nucleotide diversity, θ π and estimated the coalescent or ancestral effective population size (N e), which ranged from 12,030 to 15,513. When compared to the census size, N C, the endangered Gaspésie Mountain caribou population had the highest ancestral N e:N C ratio which is consistent with recent work suggesting high ancestral N e:N C is of conservation concern. In contrast, values of contemporary N e, estimated from linkage-disequilibrium, ranged from 11 to 162, with Gaspésie having among the highest contemporary N e:N C ratio. Importantly, classic conservation genetics theory would predict this population to be of less concern based on this ratio. Interestingly, F varied only slightly between populations, and despite evidence of bottlenecks across the province, runs of homozygosity were not abundant in the genome. Tajima's D estimates mirrored the demographic models and current conservation status. Our study highlights how genomic patterns are nuanced and potentially misleading if viewed only through a contemporary lens; we argue a holistic conservation genomics view should integrate ancestral N e and Tajima's D into management decisions.
Collapse
Affiliation(s)
- Morgan N. Dedato
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
| | - Claude Robert
- Département des Sciences AnimalesUniversité LavalQuébecQuébecCanada
| | - Joëlle Taillon
- Direction de l'expertise sur la Faune Terrestre, l'herpétofaune et l'avifaune, Ministère des Forêts, de la faune et des parcsGouvernement du QuébecQuébecQuébecCanada
| | - Aaron B. A. Shafer
- Environmental and Life Sciences Graduate ProgramTrent UniversityPeterboroughOntarioCanada
- Forensics DepartmentTrent UniversityPeterboroughOntarioCanada
| | - Steeve D. Côté
- Département de Biologie, Caribou Ungava and Centre d'Études NordiquesUniversité LavalQuébecQuébecCanada
| |
Collapse
|
39
|
Carley LN, Morris WF, Walsh R, Riebe D, Mitchell‐Olds T. Are genetic variation and demographic performance linked? Evol Appl 2022; 15:1888-1906. [PMID: 36426131 PMCID: PMC9679243 DOI: 10.1111/eva.13487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 09/12/2022] [Indexed: 12/13/2022] Open
Abstract
Quantifying relationships between genetic variation and population viability is important from both basic biological and applied conservation perspectives, yet few populations have been monitored with both long-term demographic and population genetics approaches. To empirically test whether and how genetic variation and population dynamics are related, we present one such paired approach. First, we use eight years of historical demographic data from five populations of Boechera fecunda (Brassicaceae), a rare, self-compatible perennial plant endemic to Montana, USA, and use integral projection models to estimate the stochastic population growth rate (λ S) and extinction risk of each population. We then combine these demographic estimates with previously published metrics of genetic variation in the same populations to test whether genetic diversity within populations is linked to demographic performance. Our results show that in this predominantly inbred species, standing genetic variation and demography are weakly positively correlated. However, the inbreeding coefficient was not strongly correlated with demographic performance, suggesting that more inbred populations are not necessarily less viable or at higher extinction risk than less inbred populations. A contemporary re-census of these populations revealed that neither genetic nor demographic parameters were consistently strong predictors of current population density, although populations showing lower probabilities of extinction in demographic models had larger population sizes at present. In the absence of evidence for inbreeding depression decreasing population viability in this species, we recommend conservation of distinct, potentially locally adapted populations of B. fecunda rather than alternatives such as translocations or reintroductions.
Collapse
Affiliation(s)
- Lauren N. Carley
- University Program in EcologyDuke UniversityDurhamNorth CarolinaUSA
- Biology DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Department of Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| | | | - Roberta Walsh
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Donna Riebe
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| | - Tom Mitchell‐Olds
- Biology DepartmentDuke UniversityDurhamNorth CarolinaUSA
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
40
|
Foote A, Bunskoek P, Wellcome Sanger Institute Tree of Life programme, Wellcome Sanger Institute Scientific Operations: DNA Pipelines collective, Tree of Life Core Informatics collective, Darwin Tree of Life Consortium. The genome sequence of the killer whale, Orcinus orca (Linnaeus, 1758). Wellcome Open Res 2022; 7:250. [PMID: 36974126 PMCID: PMC10039322 DOI: 10.12688/wellcomeopenres.18278.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2022] [Indexed: 11/20/2022] Open
Abstract
We present a genome assembly from an individual female Orcinus orca (the killer whale; Chordata; Mammalia; Artiodactyla; Delphinidae). The genome sequence is 2.65 gigabases in span. The majority of the assembly (93.76%) is scaffolded into 22 chromosomal pseudomolecules with the X sex chromosome assembled. The complete mitochondrial genome was also assembled and is 16.4 kilobases in length.
Collapse
Affiliation(s)
- Andrew Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | | | | | | - Tree of Life Core Informatics collective
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Dolfinarium Harderwijk, Harderwijk, Netherlands Antilles
| | | |
Collapse
|
41
|
de Greef E, Einfeldt AL, Miller PJO, Ferguson SH, Garroway CJ, Lefort KJ, Paterson IG, Bentzen P, Feyrer LJ. Genomics reveal population structure, evolutionary history, and signatures of selection in the northern bottlenose whale, Hyperoodon ampullatus. Mol Ecol 2022; 31:4919-4931. [PMID: 35947506 PMCID: PMC9804413 DOI: 10.1111/mec.16643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 01/05/2023]
Abstract
Information on wildlife population structure, demographic history, and adaptations are fundamental to understanding species evolution and informing conservation strategies. To study this ecological context for a cetacean of conservation concern, we conducted the first genomic assessment of the northern bottlenose whale, Hyperoodon ampullatus, using whole-genome resequencing data (n = 37) from five regions across the North Atlantic Ocean. We found a range-wide pattern of isolation-by-distance with a genetic subdivision distinguishing three subgroups: the Scotian Shelf, western North Atlantic, and Jan Mayen regions. Signals of elevated levels of inbreeding in the Endangered Scotian Shelf population indicate this population may be more vulnerable than the other two subgroups. In addition to signatures of inbreeding, evidence of local adaptation in the Scotian Shelf was detected across the genome. We found a long-term decline in effective population size for the species, which poses risks to their genetic diversity and may be exacerbated by the isolating effects of population subdivision. Protecting important habitat and migratory corridors should be prioritized to rebuild population sizes that were diminished by commercial whaling, strengthen gene flow, and ensure animals can move across regions in response to environmental changes.
Collapse
Affiliation(s)
- Evelien de Greef
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada,Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | | | | | | | - Colin J. Garroway
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Kyle J. Lefort
- Department of Biological SciencesUniversity of ManitobaWinnipegManitobaCanada
| | - Ian G. Paterson
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Laura J. Feyrer
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada,Fisheries and Oceans CanadaBedford Institute of OceanographyDartmouthNova ScotiaCanada
| |
Collapse
|
42
|
Colpitts J, McLoughlin PD, Poissant J. Runs of homozygosity in Sable Island feral horses reveal the genomic consequences of inbreeding and divergence from domestic breeds. BMC Genomics 2022; 23:501. [PMID: 35820826 PMCID: PMC9275264 DOI: 10.1186/s12864-022-08729-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding inbreeding and its impact on fitness and evolutionary potential is fundamental to species conservation and agriculture. Long stretches of homozygous genotypes, known as runs of homozygosity (ROH), result from inbreeding and their number and length can provide useful population-level information on inbreeding characteristics and locations of signatures of selection. However, the utility of ROH for conservation is limited for natural populations where baseline data and genomic tools are lacking. Comparing ROH metrics in recently feral vs. domestic populations of well understood species like the horse could provide information on the genetic health of those populations and offer insight into how such metrics compare between managed and unmanaged populations. Here we characterized ROH, inbreeding coefficients, and ROH islands in a feral horse population from Sable Island, Canada, using ~41 000 SNPs and contrasted results with those from 33 domestic breeds to assess the impacts of isolation on ROH abundance, length, distribution, and ROH islands. RESULTS ROH number, length, and ROH-based inbreeding coefficients (FROH) in Sable Island horses were generally greater than in domestic breeds. Short runs, which typically coalesce many generations prior, were more abundant than long runs in all populations, but run length distributions indicated more recent population bottlenecks in Sable Island horses. Nine ROH islands were detected in Sable Island horses, exhibiting very little overlap with those found in domestic breeds. Gene ontology (GO) enrichment analysis for Sable Island ROH islands revealed enrichment for genes associated with 3 clusters of biological pathways largely associated with metabolism and immune function. CONCLUSIONS This study indicates that Sable Island horses tend to be more inbred than their domestic counterparts and that most of this inbreeding is due to historical bottlenecks and founder effects rather than recent mating between close relatives. Unique ROH islands in the Sable Island population suggest adaptation to local selective pressures and/or strong genetic drift and highlight the value of this population as a reservoir of equine genetic variation. This research illustrates how ROH analyses can be applied to gain insights into the population history, genetic health, and divergence of wild or feral populations of conservation concern.
Collapse
Affiliation(s)
- Julie Colpitts
- Department of Biology, University of Saskatchewan, Saskatchewan, Canada.
| | | | - Jocelyn Poissant
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
43
|
Wolf M, de Jong M, Daníel Halldórsson S, Árnason Ú, Janke A. Genomic impact of whaling in North Atlantic fin whales. Mol Biol Evol 2022; 39:6580755. [PMID: 35512360 PMCID: PMC9113106 DOI: 10.1093/molbev/msac094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
It is generally recognized that large-scale whaling in the 19th and 20th century led to a substantial reduction of the size of many cetacean populations, particularly those of the baleen whales (Mysticeti). The impact of these operations on genomic diversity of one of the most hunted whales, the fin whale (Balaenoptera physalus), has remained largely unaddressed because of the paucity of adequate samples and the limitation of applicable techniques. Here, we have examined the effect of whaling on the North Atlantic fin whale based on genomes of 51 individuals from Icelandic waters, representing three temporally separated intervals, 1989, 2009 and 2018 and provide a reference genome for the species. Demographic models suggest a noticeable drop of the effective population size of the North Atlantic fin whale around a century ago. The present results suggest that the genome-wide heterozygosity is not markedly reduced and has remained comparable with other baleen whale species. Similarly, there are no signs of apparent inbreeding, as measured by the proportion of long runs of homozygosity, or of a distinctively increased mutational load, as measured by the amount of putative deleterious mutations. Compared with other baleen whales, the North Atlantic fin whale appears to be less affected by anthropogenic influences than other whales such as the North Atlantic right whale, consistent with the presence of long runs of homozygosity and higher levels of mutational load in an otherwise more heterozygous genome. Thus, genome-wide assessments of other species and populations are essential for future, more specific, conservation efforts.
Collapse
Affiliation(s)
- Magnus Wolf
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany
| | - Menno de Jong
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany
| | | | - Úlfur Árnason
- Department of Clinical Sciences Lund, Lund University, Sweden, Department of Neurosurgery, Skane University Hospital in Lund, Sweden
| | - Axel Janke
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Georg-Voigt-Strasse 14-16, Frankfurt am Main, Germany.,Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Strasse. 9, Frankfurt am Main, Germany.,LOEWE-Centre for Translational Biodiversity Genomics (TBG), Senckenberg Nature Research Society, Georg-Voigt-Straße 14-16, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Rieseberg L, Warschefsky E, O'Boyle B, Taberlet P, Ortiz-Barrientos D, Kane NC, Sibbett B. Editorial 2022. Mol Ecol 2021; 31:1-30. [PMID: 34957606 DOI: 10.1111/mec.16328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/10/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Loren Rieseberg
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Pierre Taberlet
- Laboratoire d'Ecologie Alpine, CNRS UMR 5553, Université Univ. Grenoble Alpes, Grenoble Cedex 9, France
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences, The University of Queenland, St. Lucia, Queensland, Australia
| | - Nolan C Kane
- University of Colorado at Boulder, Boulder, Colorado, USA
| | | |
Collapse
|
45
|
Taylor RS, Jensen EL, Coltman DW, Foote AD, Lamichhaney S. Seeing the whole picture: What molecular ecology is gaining from whole genomes. Mol Ecol 2021; 30:5917-5922. [PMID: 34845797 DOI: 10.1111/mec.16282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Rebecca S Taylor
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Evelyn L Jensen
- School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon Tyne, UK
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.,Biology Department, Western University, London, Ontario, Canada
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | | |
Collapse
|