1
|
Delclos PJ, Adhikari K, Mai AB, Hassan O, Oderhowho AA, Sriskantharajah V, Trinh T, Meisel R. Trans regulation of an odorant binding protein by a proto-Y chromosome affects male courtship in house fly. eLife 2024; 13:e90349. [PMID: 39422654 PMCID: PMC11488852 DOI: 10.7554/elife.90349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
The male-limited inheritance of Y chromosomes favors alleles that increase male fitness, often at the expense of female fitness. Determining the mechanisms underlying these sexually antagonistic effects is challenging because it can require studying Y-linked alleles while they still segregate as polymorphisms. We used a Y chromosome polymorphism in the house fly, Musca domestica, to address this challenge. Two male determining Y chromosomes (YM and IIIM) segregate as stable polymorphisms in natural populations, and they differentially affect multiple traits, including male courtship performance. We identified differentially expressed genes encoding odorant binding proteins (in the Obp56h family) as candidate agents for the courtship differences. Through network analysis and allele-specific expression measurements, we identified multiple genes on the house fly IIIM chromosome that could serve as trans regulators of Obp56h gene expression. One of those genes is homologous to Drosophila melanogaster CG2120, which encodes a transcription factor that binds near Obp56h. Upregulation of CG2120 in D. melanogaster nervous tissues reduces copulation latency, consistent with this transcription factor acting as a negative regulator of Obp56h expression. The transcription factor gene, which we name speed date, demonstrates a molecular mechanism by which a Y-linked gene can evolve male-beneficial effects.
Collapse
Affiliation(s)
- Pablo J Delclos
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Kiran Adhikari
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Alexander B Mai
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Oluwatomi Hassan
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | | | | | - Tammie Trinh
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| | - Richard Meisel
- Department of Biology & Biochemistry, University of HoustonHoustonUnited States
| |
Collapse
|
2
|
Li X, Visser S, Son JH, Geuverink E, Kıvanç EN, Wu Y, Schmeing S, Pippel M, Anvar SY, Schenkel MA, Marec F, Robinson MD, Meisel RP, Wimmer EA, van de Zande L, Bopp D, Beukeboom LW. Divergent evolution of male-determining loci on proto-Y chromosomes of the housefly. Nat Commun 2024; 15:5984. [PMID: 39013946 PMCID: PMC11252125 DOI: 10.1038/s41467-024-50390-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
Houseflies provide a good experimental model to study the initial evolutionary stages of a primary sex-determining locus because they possess different recently evolved proto-Y chromosomes that contain male-determining loci (M) with the same male-determining gene, Mdmd. We investigate M-loci genomically and cytogenetically revealing distinct molecular architectures among M-loci. M on chromosome V (MV) has two intact Mdmd copies in a palindrome. M on chromosome III (MIII) has tandem duplications containing 88 Mdmd copies (only one intact) and various repeats, including repeats that are XY-prevalent. M on chromosome II (MII) and the Y (MY) share MIII-like architecture, but with fewer repeats. MY additionally shares MV-specific sequence arrangements. Based on these data and karyograms using two probes, one derives from MIII and one Mdmd-specific, we infer evolutionary histories of polymorphic M-loci, which have arisen from unique translocations of Mdmd, embedded in larger DNA fragments, and diverged independently into regions of varying complexity.
Collapse
Affiliation(s)
- Xuan Li
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| | - Sander Visser
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jae Hak Son
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Elzemiek Geuverink
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ece Naz Kıvanç
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Yanli Wu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Stephan Schmeing
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Martin Pippel
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Seyed Yahya Anvar
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn A Schenkel
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
- Department of Biology, Georgetown University, Washington, DC, USA
| | - František Marec
- Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Mark D Robinson
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zurich, Zürich, Switzerland
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach Institute of Zoology and Anthropology, Göttingen Center of Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Daniel Bopp
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
3
|
Dogantzis KA, Raffiudin R, Putra RE, Shaleh I, Conflitti IM, Pepinelli M, Roberts J, Holmes M, Oldroyd BP, Zayed A, Gloag R. Post-invasion selection acts on standing genetic variation despite a severe founding bottleneck. Curr Biol 2024; 34:1349-1356.e4. [PMID: 38428415 DOI: 10.1016/j.cub.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Invasive populations often have lower genetic diversity relative to the native-range populations from which they derive.1,2 Despite this, many biological invaders succeed in their new environments, in part due to rapid adaptation.3,4,5,6 Therefore, the role of genetic bottlenecks in constraining the adaptation of invaders is debated.7,8,9,10 Here, we use whole-genome resequencing of samples from a 10-year time-series dataset, representing the natural invasion of the Asian honey bee (Apis cerana) in Australia, to investigate natural selection occurring in the aftermath of a founding event. We find that Australia's A. cerana population was founded by as few as one colony, whose arrival was followed by a period of rapid population expansion associated with an increase of rare variants.11 The bottleneck resulted in a steep loss of overall genetic diversity, yet we nevertheless detected loci with signatures of positive selection during the first years post-invasion. When we investigated the origin of alleles under selection, we found that selection acted primarily on the variation introduced by founders and not on the variants that arose post-invasion by mutation. In all, our data highlight that selection on standing genetic variation can occur in the early years post-invasion, even where founding bottlenecks are severe.
Collapse
Affiliation(s)
- Kathleen A Dogantzis
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Rika Raffiudin
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ramadhani Eka Putra
- Bandung Institute of Technology, School of Life Sciences and Technology, Bandung 40132, West Java, Indonesia
| | - Ismail Shaleh
- IPB University, Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor 16680, Indonesia
| | - Ida M Conflitti
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Mateus Pepinelli
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - John Roberts
- Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Michael Holmes
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Benjamin P Oldroyd
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia
| | - Amro Zayed
- York University, Department of Biology, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Rosalyn Gloag
- University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia.
| |
Collapse
|
4
|
Schenkel MA, Billeter JC, Beukeboom LW, Pen I. Divergent evolution of genetic sex determination mechanisms along environmental gradients. Evol Lett 2023; 7:132-147. [PMID: 37251583 PMCID: PMC10210438 DOI: 10.1093/evlett/qrad011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 10/28/2023] Open
Abstract
Sex determination (SD) is a crucial developmental process, but its molecular underpinnings are very diverse, both between and within species. SD mechanisms have traditionally been categorized as either genetic (GSD) or environmental (ESD), depending on the type of cue that triggers sexual differentiation. However, mixed systems, with both genetic and environmental components, are more prevalent than previously thought. Here, we show theoretically that environmental effects on expression levels of genes within SD regulatory mechanisms can easily trigger within-species evolutionary divergence of SD mechanisms. This may lead to the stable coexistence of multiple SD mechanisms and to spatial variation in the occurrence of different SD mechanisms along environmental gradients. We applied the model to the SD system of the housefly, a global species with world-wide latitudinal clines in the frequencies of different SD systems, and found that it correctly predicted these clines if specific genes in the housefly SD system were assumed to have temperature-dependent expression levels. We conclude that environmental sensitivity of gene regulatory networks may play an important role in diversification of SD mechanisms.
Collapse
Affiliation(s)
- Martijn A Schenkel
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Leo W Beukeboom
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Ido Pen
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Li X, Lin F, van de Zande L, Beukeboom LW. Strong variation in frequencies of male and female determiners between neighboring housefly populations. INSECT SCIENCE 2022; 29:1470-1482. [PMID: 35196409 PMCID: PMC9790194 DOI: 10.1111/1744-7917.13017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Sex-determination mechanisms evolve rapidly and vary between species. Occasionally, polymorphic systems are found, like in the housefly. Studying the dynamics and stability of such systems can provide a better understanding of the evolution of sex-determination systems. In the housefly, dominant male-determining loci (M) can lie not only on the Y chromosome (MY ), but also on autosomes (MA ) or the X chromosome (MX ). M enforces male development by inhibiting the female-determining gene transformer (tra). A mutant tra allele, traD , is insensitive to M and is a dominant female determiner. MY prevails at high latitudes and polymorphic M loci together with traD at low latitudes. To get more insight into the stability and frequencies of these sex determiners with mutually exclusive dominance, we investigated 5 regional Spanish populations. We found strong variation among populations. Two populations with hemizygous MIII were found, 2 contained homozygous MX with additional hemizygous MI and MII in 1 population. One population contained homozygous and hemizygous MX with additionally hemizygous MII . All females in populations with homozygous M, had traD , whereas no traD was found in populations without homozygous M. Our results indicate locally stable systems may either harbor a single hemizygous M and no traD , corresponding to a male heterogametic system, or homozygous and/or multiple M and heterozygous traD , reminiscent of a female heterogametic system. They support that M loci can accumulate in the presence of a dominant female determiner. Limited migration between populations may contribute to the stability of these systems.
Collapse
Affiliation(s)
- Xuan Li
- Groningen Institute for Evolutionary Life SciencesFaculty of Science and EngineeringUniversity of GroningenGroningenthe Netherlands
| | - Fangfei Lin
- Groningen Institute for Evolutionary Life SciencesFaculty of Science and EngineeringUniversity of GroningenGroningenthe Netherlands
| | - Louis van de Zande
- Groningen Institute for Evolutionary Life SciencesFaculty of Science and EngineeringUniversity of GroningenGroningenthe Netherlands
| | - Leo W. Beukeboom
- Groningen Institute for Evolutionary Life SciencesFaculty of Science and EngineeringUniversity of GroningenGroningenthe Netherlands
| |
Collapse
|
6
|
Meisel RP. Ecology and the evolution of sex chromosomes. J Evol Biol 2022; 35:1601-1618. [PMID: 35950939 DOI: 10.1111/jeb.14074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Sex chromosomes are common features of animal genomes, often carrying a sex determination gene responsible for initiating the development of sexually dimorphic traits. The specific chromosome that serves as the sex chromosome differs across taxa as a result of fusions between sex chromosomes and autosomes, along with sex chromosome turnover-autosomes becoming sex chromosomes and sex chromosomes 'reverting' back to autosomes. In addition, the types of genes on sex chromosomes frequently differ from the autosomes, and genes on sex chromosomes often evolve faster than autosomal genes. Sex-specific selection pressures, such as sexual antagonism and sexual selection, are hypothesized to be responsible for sex chromosome turnovers, the unique gene content of sex chromosomes and the accelerated evolutionary rates of genes on sex chromosomes. Sex-specific selection has pronounced effects on sex chromosomes because their sex-biased inheritance can tilt the balance of selection in favour of one sex. Despite the general consensus that sex-specific selection affects sex chromosome evolution, most population genetic models are agnostic as to the specific sources of these sex-specific selection pressures, and many of the details about the effects of sex-specific selection remain unresolved. Here, I review the evidence that ecological factors, including variable selection across heterogeneous environments and conflicts between sexual and natural selection, can be important determinants of sex-specific selection pressures that shape sex chromosome evolution. I also explain how studying the ecology of sex chromosome evolution can help us understand important and unresolved aspects of both sex chromosome evolution and sex-specific selection.
Collapse
Affiliation(s)
- Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| |
Collapse
|