1
|
Li Q, Wang S, Wang J, Chen L, Liu W, Li Z, Xu J, Deng Z, Zhou Y. Mechanism of Phloretin Accumulation in Malus hupehensis Grown at High Altitudes: Evidence from Quantitative 4D Proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19526-19536. [PMID: 39166542 DOI: 10.1021/acs.jafc.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Phloretin is a natural dihydrochalcone (DHC) that exhibits various pharmacological and therapeutic activities. Malus hupehensis Rehd. (M. hupehensis) is widely planted in the middle of China and its leaves contain an extremely high content of phloridzin, a glycosylated derivative of phloretin. In the present study, we observed a significant increase in phloretin content in the leaves of M. hupehensis planted at high altitudes. To investigate the mechanisms of phloretin accumulation, we explored changes in the proteome profiles of M. hupehensis plants grown at various altitudes. The results showed that at high altitudes, photosynthesis- and DHC biosynthesis-related proteins were downregulated and upregulated, respectively, leading to reduced chlorophyll content and DHC accumulation in the leaves. Moreover, we identified a novel phloridzin-catalyzing glucosidase whose expression level was significantly increased in high-altitude-cultivated plants. This work provided a better understanding of the mechanism of phloretin accumulation and effective and economic strategies for phloretin production.
Collapse
Affiliation(s)
- Qing Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Shanshan Wang
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Junzhi Wang
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Lijun Chen
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Wenrui Liu
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ziyan Li
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Jingyuan Xu
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
| | - Zhangshuang Deng
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yiqing Zhou
- School of Biotechnology and Food Engineering, Changshu Institute of Technology, Suzhou 215500, China
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Wang X, Wang D, Zhang R, Qin X, Shen X, You C. Morphological Structure Identification, Comparative Mitochondrial Genomics and Population Genetic Analysis toward Exploring Interspecific Variations and Phylogenetic Implications of Malus baccata 'ZA' and Other Species. Biomolecules 2024; 14:912. [PMID: 39199300 PMCID: PMC11352593 DOI: 10.3390/biom14080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 09/01/2024] Open
Abstract
Malus baccata, a valuable germplasm resource in the genus Malus, is indigenous to China and widely distributed. However, little is known about the lineage composition and genetic basis of 'ZA', a mutant type of M. baccata. In this study, we compared the differences between 'ZA' and wild type from the perspective of morphology and ultrastructure and analyzed their chloroplast pigment content based on biochemical methods. Further, the complete mitogenome of M. baccata 'ZA' was assembled and obtained by next-generation sequencing. Subsequently, its molecular characteristics were analyzed using Geneious, MISA-web, and CodonW toolkits. Furthermore, by examining 106 Malus germplasms and 42 Rosaceae species, we deduced and elucidated the evolutionary position of M. baccata 'ZA', as well as interspecific variations among different individuals. In comparison, the total length of the 'ZA' mitogenome (GC content: 45.4%) is 374,023 bp, which is approximately 2.33 times larger than the size (160,202 bp) of the plastome (GC: 36.5%). The collinear analysis results revealed abundant repeats and genome rearrangements occurring between different Malus species. Additionally, we identified 14 plastid-driven fragment transfer events. A total of 54 genes have been annotated in the 'ZA' mitogenome, including 35 protein-coding genes, 16 tRNAs, and three rRNAs. By calculating nucleotide polymorphisms and selection pressure for 24 shared core mitochondrial CDSs from 42 Rosaceae species (including 'ZA'), we observed that the nad3 gene exhibited minimal variation, while nad4L appeared to be evolving rapidly. Population genetics analysis detected a total of 1578 high-quality variants (1424 SNPs, 60 insertions, and 94 deletions; variation rate: 1/237) among samples from 106 Malus individuals. Furthermore, by constructing phylogenetic trees based on both Malus and Rosaceae taxa datasets, it was preliminarily demonstrated that 'ZA' is closely related to M. baccata, M. sieversii, and other proximate species in terms of evolution. The sequencing data obtained in this study, along with our findings, contribute to expanding the mitogenomic resources available for Rosaceae research. They also hold reference significance for molecular identification studies as well as conservation and breeding efforts focused on excellent germplasms.
Collapse
Affiliation(s)
- Xun Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Daru Wang
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Ruifen Zhang
- Qingdao Apple Rootstock Research and Development Center, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China;
| | - Xin Qin
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Xiang Shen
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| | - Chunxiang You
- Apple Technology Innovation Center of Shandong Province, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, National Key Laboratory of Wheat Improvement, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China; (X.W.); (D.W.); (X.Q.)
| |
Collapse
|
3
|
Walas Ł, Alipour S, Haq SM, Alamri S. The potential range of west Asian apple species Malus orientalis Uglitzk. under climate change. BMC PLANT BIOLOGY 2024; 24:381. [PMID: 38724902 PMCID: PMC11080264 DOI: 10.1186/s12870-024-05081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
The wild relatives of cultivated apples would be an ideal source of diversity for breeding new varieties, which could potentially grow in diverse habitats shaped by climate change. However, there is still a lack of knowledge about the potential distribution of these species. The aim of the presented work was the understand the impacts of climate change on the potential distribution and habitat fragmentation of Caucasian crab apple (Malus orientalis Uglitzk.) and the designation of areas of high interest according to climatic conditions. We used the MaxEnt models and Morphological-Spatial Analysis (MSPA) to evaluate the potential distribution, suitability changes, habitat fragmentation, and connectivity throughout the species range in Turkey, Armenia, Georgia, Russia, and Iran. The results revealed that the potentially suitable range of M. orientalis encompasses 858,877 km², 635,279 km² and 456,795 km² under the present, RCP4.5 and RCP8.5 scenario, respectively. The range fragmentation analysis demonstrated a notable shift in the edge/core ratio, which increased from 50.95% in the current scenario to even 67.70% in the future. The northern part of the range (Armenia, northern Georgia, southern Russia), as well as the central and western parts of Hyrcania will be a core of the species range with suitable habitats and a high connectivity between M. orientalis populations and could work as major refugia for the studied species. However, in the Zagros and central Turkey, the potential range will shrink due to the lack of suitable climatic conditions, and the edge/core ratio will grow. In the southern part of the range, a decline of M. orientalis habitats is expected due to changing climatic conditions. The future outlook suggests that the Hyrcanian forest and the Caucasus region could serve as important refuges for M. orientalis. This study helps to understand spatial changes in species' range in response to climate change and can help develop conservation strategies. This is all the more important given the species' potential use in future breeding programs aimed at enriching the gene pool of cultivated apple varieties.
Collapse
Affiliation(s)
- Łukasz Walas
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Shirin Alipour
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, Kórnik, 62-035, Poland.
| | - Shiekh Marifatul Haq
- Department of Ethnobotany, Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Bina H, Yousefzadeh H, Venon A, Remoué C, Rousselet A, Falque M, Faramarzi S, Chen X, Samanchina J, Gill D, Kabaeva A, Giraud T, Hosseinpour B, Abdollahi H, Gabrielyan I, Nersesyan A, Cornille A. Evidence of an additional centre of apple domestication in Iran, with contributions from the Caucasian crab apple Malus orientalis Uglitzk. to the cultivated apple gene pool. Mol Ecol 2022; 31:5581-5601. [PMID: 35984725 DOI: 10.1111/mec.16667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/08/2022] [Accepted: 08/09/2022] [Indexed: 12/29/2022]
Abstract
Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.
Collapse
Affiliation(s)
- Hamid Bina
- Department of Forestry, Tarbiat Modares University, Noor, Iran
| | - Hamed Yousefzadeh
- Department of Environmental Science, Biodiversity Branch, Natural Resources Faculty, Tarbiat Modares University, Noor, Iran
| | - Anthony Venon
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Carine Remoué
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Agnès Rousselet
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Matthieu Falque
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | - Shadab Faramarzi
- Department of Plant Production and Genetics, Faculty of Agriculture, Razi University, Kermanshah, Iran
| | - Xilong Chen
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| | | | - David Gill
- Fauna & Flora International, Cambridge, UK
| | | | - Tatiana Giraud
- Ecologie Systematique Evolution, Universite Paris-Saclay, CNRS, AgroParisTech, Gif-sur-Yvette, France
| | - Batool Hosseinpour
- Department of Agriculture, Iranian Research Organization for Science and Technology (IROST), Institute of Agriculture, Tehran, Iran
| | - Hamid Abdollahi
- Temperate Fruits Research Centre, Horticultural Sciences Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Ivan Gabrielyan
- Department of Palaeobotany, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Anush Nersesyan
- Department of Conservation of Genetic Resources of Armenian Flora, A. Takhtajyan Institute of Botany, Armenian National Academy of Sciences, Yerevan, Armenia
| | - Amandine Cornille
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Gif-sur-Yvette, France
| |
Collapse
|