1
|
Wu Q, Nakano T, Ishida S, Komai T, Fujiwara Y, Yoshida T, Kawato M, Oka SI, Fujikura K, Miya M, Minamoto T. Development of universal PCR primers for the environmental DNA metabarcoding of cephalopod (Mollusca) diversity. MARINE ENVIRONMENTAL RESEARCH 2025; 208:107094. [PMID: 40245615 DOI: 10.1016/j.marenvres.2025.107094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 03/05/2025] [Accepted: 03/17/2025] [Indexed: 04/19/2025]
Abstract
Cephalopods play crucial roles in marine ecosystems, acting as both predators and prey for apex predators, thereby contributing to the distribution of energy and nutrients across the food web. Traditional net capture methods are often ineffective for studying cephalopods owing to their wide distribution in marine environments, necessitating the development of simple and efficient surveying techniques to assess cephalopod diversity. Therefore, in this study, we aimed to establish universal polymerase chain reaction primers specifically targeting mitochondrial 16S rRNA genes for environmental DNA metabarcoding in cephalopods. Two primer sets, Cep16S_D and Cep16S_O, were designed for squids and octopuses, respectively. Taxonomic specificity, resolution, and coverage of these primers were evaluated via in silico and in vitro analyses. Additionally, efficiency of these primer sets was assessed using tissue samples and mock communities. Finally, their applicability and performance were tested at various depths. The developed primers exhibited a relatively large amplification size with mixed bases that enhanced their amplification efficiency and sensitivity for cephalopod detection. We successfully identified cephalopod species with different body sizes, from small species, such as Heteroteuthis dagamensis, to large species, such as Architeuthis dux, at varying water depths. Overall, the primer sets established in this study serve as powerful tools to study cephalopod diversity and exhibit great potential for barcoding and genetic diversity investigations.
Collapse
Affiliation(s)
- Qianqian Wu
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe City, Hyogo, 657-8501, Japan.
| | - Tomoyuki Nakano
- Seto Marine Biological Laboratory, Field Science Education and Research Centre, Kyoto University, 459 Shirahama, Wakayama, 649-2211, Japan
| | - So Ishida
- Osaka Museum of Natural History, 1-23 Nagai Park, Higashi-Sumiyoshi, Osaka, 546-0034, Japan
| | - Tomoyuki Komai
- Natural History Museum and Institute, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan
| | - Yoshihiro Fujiwara
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Takao Yoshida
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Masaru Kawato
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Shin-Ichiro Oka
- Okinawa Churashima Foundation, 888 Aza Ishikawa, Kunigami-gun, Motobu-cho, Okinawa, 905-0206, Japan
| | - Katsunori Fujikura
- Research Institute for Global Change (RIGC), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, 237-0061, Japan
| | - Masaki Miya
- Natural History Museum and Institute, 955-2 Aoba-cho, Chuo-ku, Chiba, 260-8682, Japan
| | - Toshifumi Minamoto
- Graduate School of Human Development and Environment, Kobe University, 3-11, Tsurukabuto, Nada-ku, Kobe City, Hyogo, 657-8501, Japan
| |
Collapse
|
2
|
Beyer J, Ellingsen KE, Yoccoz NG, Buhl-Mortensen P, Bakke T. Environmental effects monitoring of offshore oil and gas activities on the Norwegian continental shelf: A review. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107166. [PMID: 40345121 DOI: 10.1016/j.marenvres.2025.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/24/2025] [Accepted: 04/18/2025] [Indexed: 05/11/2025]
Abstract
This review examines the evolution and findings of Norway's offshore environmental monitoring (OEM) program over the past five decades. The program targets soft sediments, water column organisms, and deep-water epifauna across the Norwegian Continental Shelf (NCS) to assess the impacts of offshore oil and gas activities. The program is required by Norwegian authorities and financed by oil and gas companies operating on the NCS. Initially prompted by widespread effects from oil-contaminated drill cuttings (OBM-DC) discharges, the first sediment quality monitoring came in 1973, and grew into a regional sediment quality monitoring program in 1995. A ban on discharge of OBM cuttings on the NCS was implemented in 1993, and the following years saw a clear reduction in areas with impacted sediments. Currently, significant contamination and macrofauna disturbances are typically confined within 250-500 m of DC discharge points. In the 1990s, concerns over increasing produced water (PW) discharges led to development of effect monitoring in the water column, with focus on fish and mussels as bioindicators. These in situ effect surveys have shown localized impacts near PW outlets. Other fish surveys have revealed elevated DNA adduct levels in demersal fish (haddock) in several areas on the NCS, but the causality of this phenomenon remains unclear. Deep-water petroleum exploration has necessitated visual surveys to map protected benthic epifauna communities, such as corals and sponges, though the methodology's suitability for assessing biological impact is uncertain. Future recommendations include redesigning sediment surveys to address combined stressors from the petroleum industry, fisheries, and climate change, adopting recent methodological and statistical advancements, and improving integration across program elements. This review describes how the offshore monitoring on the NCS has evolved in response to changing environmental concerns, regulations and industrial practices, providing insights for enhancing ecological protection in offshore petroleum activities.
Collapse
Affiliation(s)
- Jonny Beyer
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway; University of Oslo, Department of Biosciences, NO-0316, Oslo, Norway.
| | - Kari E Ellingsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, 9296, Tromsø, Norway
| | - Nigel G Yoccoz
- Norwegian Institute for Nature Research (NINA), Fram Centre, 9296, Tromsø, Norway; Arctic University of Norway (UiT), 9296, Tromsø, Norway
| | - Pål Buhl-Mortensen
- Institute of Marine Research (IMR), Nordnesgaten 50, 5005, Bergen, Norway
| | - Torgeir Bakke
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway
| |
Collapse
|
3
|
Doorenspleet K, Mailli AA, van der Hoorn BB, Beentjes KK, De Backer A, Derycke S, Murk AJ, Reiss H, Nijland R. Advancing molecular macrobenthos biodiversity monitoring: a comparison between Oxford Nanopore and Illumina based metabarcoding and metagenomics. PeerJ 2025; 13:e19158. [PMID: 40247828 PMCID: PMC12005195 DOI: 10.7717/peerj.19158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 02/21/2025] [Indexed: 04/19/2025] Open
Abstract
DNA-based methods and developments of sequencing technologies are integral to macrobenthos biodiversity studies, and their implementation as standardized monitoring methods is approaching. Evaluating the efficacy and reliability of these technological developments is crucial for macrobenthos biodiversity assessments. In this study, we compared three DNA-based techniques for assessing the diversity of bulk macrobenthos samples from the Belgian North Sea. Specifically, we compared amplicon sequencing using Illumina MiSeq and portable real-time sequencing of Oxford Nanopore versus shotgun sequencing using Illumina NovaSeq sequencing. The 313 bp mitochondrial cytochrome c oxidase subunit I (COI) metabarcoding fragment served as the target region for the metabarcoding analysis. Our results indicate that Oxford Nanopore and MiSeq metabarcoding had similar performances in terms of alpha and beta diversity, revealing highly similar location-specific community compositions. The NovaSeq metagenomics method also resulted in similar alpha diversity, but slightly different community compositions compared to the metabarcoding approach. Despite these differences, location-specific community compositions were maintained across all platforms. Notably, read counts from the NovaSeq metagenomic analysis showed the weakest correlation to size corrected morphological abundance and there were mismatches between morphological identification and all DNA based findings which are likely caused by a combination of factors such as primer efficiency and an incomplete reference database. Our findings underscore the critical importance of database completeness prior to implementing DNA-based techniques as standardized monitoring method, especially for metagenomics. Nevertheless, our findings emphasize that Oxford Nanopore metabarcoding proves to be a viable alternative to the conventional Illumina MiSeq metabarcoding platform for macrobenthos biodiversity monitoring.
Collapse
Affiliation(s)
- Karlijn Doorenspleet
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| | | | | | | | - Annelies De Backer
- ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Sofie Derycke
- ILVO Marine Research, Flanders Research Institute for Agriculture, Fisheries and Food, Oostende, Belgium
| | - Albertinka J. Murk
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| | - Henning Reiss
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Reindert Nijland
- Marine Animal Ecology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
4
|
Shapkin V, Caboň M, Kolařík M, Adamčíková K, Baldrian P, Michalková T, Větrovský T, Adamčík S. Protein Coding Low-Copy rpb2 and ef1-α Regions Are Viable Fungal Metabarcoding DNA Markers Which Can Supplement ITS for Better Accuracy. Ecol Evol 2025; 15:e71352. [PMID: 40260151 PMCID: PMC12011493 DOI: 10.1002/ece3.71352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/31/2025] [Accepted: 04/10/2025] [Indexed: 04/23/2025] Open
Abstract
The nuclear ribosomal DNA Internal Transcribed Spacer (ITS) region is used as a universal fungal barcode marker, but often lacks a significant DNA barcoding gap between sister taxa. Here we tested the reliability of protein coding low-copy genes as alternative barcode markers. Mock communities of three unrelated agaric genera (Dermoloma, Hodophilus, and Russula) representing lineages of closely related species were sequenced by the Illumina platform targeting the ITS1, ITS2, the second largest subunit of RNA polymerase II gene (rpb2) and the transcription elongation factor 1-alpha gene (ef1-α) regions. Species representation and their relative abundances were similar across all tested barcode regions, despite a lower copy number in protein coding markers. ITS1 and ITS2 required more sophisticated sequence filtering because they produced a high number of chimeric sequences requiring reference-based chimera removal and had a higher number of sequence variants per species. Although clustering of filtered ITS sequences resulted in an average higher number of correctly clustered units at optimal similarity thresholds, these thresholds varied substantially among genera. Best-fitted thresholds of low-copy markers were more consistent across genera but frequently lacked species resolution due to low intraspecific variability. At some thresholds, we observed multiple species lumped together, and at the same time, species split into multiple partial clusters, which should be taken into consideration when assessing the best clustering thresholds and taxonomic identity of clusters. To achieve the best taxonomic resolution and improve species detection, we recommend combining different markers and applying additional reference-based sorting of clusters. The current availability of rpb2 and ef1-α reference sequences in public databases is far from being complete for all fungal groups, but a combined marker approach can be used for group-specific studies that can build reference data for their own purposes.
Collapse
Affiliation(s)
- Vasilii Shapkin
- Laboratory of Molecular Ecology and MycologyInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
| | - Miroslav Caboň
- Laboratory of Molecular Ecology and MycologyInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
- Department of Plant PathologyUniversity of FloridaGainesvilleFloridaUSA
| | - Miroslav Kolařík
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
- Department of Botany, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Katarína Adamčíková
- Department of Plant Pathology and MycologyInstitute of Forest Ecology, Slovak Academy of Sciences ZvolenNitraSlovakia
| | - Petr Baldrian
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Tereza Michalková
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Tomáš Větrovský
- Institute of Microbiology, Academy of Sciences of the Czech RepublicPragueCzech Republic
| | - Slavomír Adamčík
- Laboratory of Molecular Ecology and MycologyInstitute of Botany, Plant Science and Biodiversity Center, Slovak Academy of SciencesBratislavaSlovakia
- Department of Botany, Faculty of Natural SciencesComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
5
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2025; 42:324-358. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
6
|
Cantera I, Giachello S, Münkemüller T, Caccianiga M, Gobbi M, Losapio G, Marta S, Valle B, Zawierucha K, Thuiller W, Ficetola GF. Describing functional diversity of communities from environmental DNA. Trends Ecol Evol 2025; 40:170-179. [PMID: 39572353 DOI: 10.1016/j.tree.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 02/07/2025]
Abstract
Comprehensive assessments of functional diversity are needed to understand ecosystem alterations under global changes. The 'Fun-eDNA' approach characterises functional diversity by assigning traits to taxonomic units obtained through environmental DNA (eDNA) sampling. By simultaneously analysing an unprecedented number of taxa over broad spatial scales, the approach provides a whole-ecosystem perspective of functional diversity. Fun-eDNA is increasingly used to tackle multiple questions, but aligning eDNA with traits poses several conceptual and technical challenges. Enhancing trait databases, improving the annotation of eDNA-based taxonomic inventories, interdisciplinary collaboration, and conceptual harmonisation of traits are key steps to achieve a comprehensive assessment of diverse taxa. Overcoming these challenges can unlock the full potential of eDNA in leveraging measures of ecosystem functions from multi-taxa assessments.
Collapse
Affiliation(s)
- Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy.
| | - Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Department of Sciences, Technologies and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy
| | - Tamara Münkemüller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Marco Caccianiga
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum of Trento, Trento, Italy
| | - Gianalberto Losapio
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy; Institute of Earth Surface Dynamics, University of Lausanne, Lausanne, Switzerland
| | - Silvio Marta
- Institute of Geosciences and Earth Resources, CNR, Via Moruzzi 1, 56124, Pisa, Italy
| | - Barbara Valle
- Università degli Studi di Siena, Siena, Italy; NBFC- Nature Biodiversity Future Center, Palermo, Italy
| | - Krzysztof Zawierucha
- Department of Animal Taxonomy and Ecology, Adam Mickiewicz University, Poznań, Poland
| | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| |
Collapse
|
7
|
Serrana JM, Li B, Watanabe K. Cross-taxa assessment of species diversity and phylogenetic structure of benthic communities in a dam-impacted river undergoing habitat restoration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177886. [PMID: 39644632 DOI: 10.1016/j.scitotenv.2024.177886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Exploring diversity and community composition patterns across evolutionary and functionally diverse organisms is critical for understanding the general processes that shape biodiversity in response to environmental changes. Knowledge of multi-trophic relationships offers valuable insights to support the effective assessment and management of freshwater ecosystems. In this study, we conducted a cross-taxa assessment of benthic macroinvertebrates and microorganisms using metabarcoding-based surveys to evaluate habitat restoration in a dam-impacted river. We found no correlation between the α-diversity of the benthic macroinvertebrate and microbial communities. This suggests that factors influencing the α-diversity of different trophic groups might operate independently or through different mechanisms, even within the same habitat. In contrast, we observed positively correlated β-diversity patterns between the two benthic communities influenced by dam fragmentation and gravel bar restoration. This suggests that environmental heterogeneity between sites may have a common influence on the patterns of pairwise dissimilarities in the benthic communities, even though they have significant differences in key traits, e.g., species composition, functional roles, or trophic level. Additionally, phylogenetic structure analysis revealed a greater dam impact on benthic macroinvertebrates than microbial communities. Benthic microorganisms consistently formed phylogenetically clustered communities regardless of dam impact, while the macroinvertebrates shifted from competitive exclusion to environmental filtering in response to dam fragmentation. Our cross-taxa assessment further explained the relationships among benthic communities and their associations with environmental factors in a river ecosystem undergoing habitat restoration. Our study highlights the significant implications of evaluating different biological communities across trophic levels for river restoration strategies and ecosystem assessment.
Collapse
Affiliation(s)
- Joeselle M Serrana
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan; Department of Environmental Science (ACES), and the Stockholm University Center for Circular and Sustainable Systems (SUCCeSS), Stockholm University, 106 91 Stockholm, Sweden
| | - Bin Li
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan; Institute of Environment and Ecology, College of Geography and Environment, Shandong Normal University, Jinan, Shandong, China
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
8
|
Giachello S, Cantera I, Carteron A, Bonin A, Guerrieri A, Ambrosini R, Caccianiga M, Gobbi M, Marta S, Ficetola GF. Functional changes of protist communities in soil after glacier retreat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177265. [PMID: 39489452 DOI: 10.1016/j.scitotenv.2024.177265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
Soil hosts key components of terrestrial biodiversity providing essential services to the below- and above-ground ecosystems. The worldwide retreat of glaciers is exposing new deglaciated terrains, offering a unique opportunity to understand the development of soil ecosystems under a changing climate. Many studies have investigated how biotic communities change after deglaciation, but protists have often been overlooked despite their key role in multiple ecosystem functions. Here, we aim to understand how protist communities develop along glacier forelands, describing their successional trajectories. Protist communities were characterized in 1251 soil samples from 46 glacier forelands across four continents. We used environmental DNA metabarcoding to identify the Molecular Operational Taxonomic Units (MOTUs) of protists based on a universal eukaryotic marker. The detected MOTUs were combined with information on multiple traits to assess how the functional diversity and composition of protist communities vary through time. Immediately after glacier retreat, protist communities are like those of polar and high-altitude habitats, with consumers being the dominant trophic group, followed by a relevant presence of phototrophs, while parasites were underrepresented. Over the succession, we detected an increase in taxonomic and functional diversity, but some highly specialized groups (e.g. phototrophic algae) declined. The use of a trait-based approach allowed us to identify distinct successional patterns depending on functional groups. Through the functional characterization of a crucial but understudied component of soil biotic communities, our study added one of the final pieces needed to predict how soil ecosystems will develop in the rapidly changing environment of glacier forelands.
Collapse
Affiliation(s)
- Simone Giachello
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Department of Sciences, Technologies and Society, University School for Advanced Studies IUSS Pavia, Pavia, Italy.
| | - Isabel Cantera
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Alexis Carteron
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Université de Toulouse, École d'Ingénieurs de Purpan, UMR INRAE-INPT DYNAFOR, 31076 Toulouse, France
| | - Aurelie Bonin
- Argaly, Bâtiment CleanSpace, 354 Voie Magellan, 73800 Sainte-Hélène-du-Lac, France
| | - Alessia Guerrieri
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Argaly, Bâtiment CleanSpace, 354 Voie Magellan, 73800 Sainte-Hélène-du-Lac, France
| | - Roberto Ambrosini
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Trento, Italy
| | - Silvio Marta
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milano, Italy; Institute of Geosciences and Earth Resources, CNR, Pisa, Italy
| | | |
Collapse
|
9
|
Douard M, Fernandez S, Garcia-Vazquez E, Planes S. Rapid expansion and ecosystem health risk of invasive biopollutants dispersed by maritime traffic in French Polynesia. MARINE POLLUTION BULLETIN 2024; 208:116927. [PMID: 39255672 DOI: 10.1016/j.marpolbul.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
The introduction of biopollutant species challenge ecosystem health and economy in remote islands. Here we checked the advance of invasive fouling species in five French Polynesian islands. Expansion of invasive species (Acantophora spicifera, Bugula neritina, Chthamalus proteus, Dendostrea frons) was detected using individual barcoding (COI for animals, RBLC for algae), and metabarcoding on biofouling (COI and 18S sequences). They were especially abundant in Port Phaeton (Tahiti), Bora Bora and Rangiroa atoll. Chthamalus proteus is a vector of bacterial diseases and may harm native French Polynesian mollusks. Dendostrea frons is a vector of Perkinsus, a parasite to which black pearl oysters, the mainstay of the Polynesian economy, are susceptible. High ecological and epidemiological risks were estimated for C. proteus and D. frons, and ecological risks also for A. spicifera and especially for B. neritina. Strengthening marine biosecurity measures is highly recommended to conserve these unique ecosystems and their associated services.
Collapse
Affiliation(s)
- Margaux Douard
- Centre de Recherche Insulaire et Observatoire de l'Environnement, Moorea, French Polynesia
| | - Sara Fernandez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006 Oviedo, Spain
| | - Eva Garcia-Vazquez
- Department of Functional Biology, University of Oviedo, C/Julian Claveria s/n, 33006 Oviedo, Spain.
| | - Serge Planes
- Centre de Recherche Insulaire et Observatoire de l'Environnement, Moorea, French Polynesia; USR3278 CRIOBE EPHE-CNRS-UPVD, 66860 Perpignan, France
| |
Collapse
|
10
|
Bruno A, Arnoldi I, Barzaghi B, Boffi M, Casiraghi M, Colombo B, Di Gennaro P, Epis S, Facciotti F, Ferrari N, Fesce E, Ficetola GF, Fumagalli S, Galimberti A, Ghisleni G, Nissim WG, Mainardi L, Manenti R, Messina V, Negri A, Palm E, Piga BEA, Rainisio N, Tommasi N, Labra M. The One Health approach in urban ecosystem rehabilitation: An evidence-based framework for designing sustainable cities. iScience 2024; 27:110959. [PMID: 39391715 PMCID: PMC11466616 DOI: 10.1016/j.isci.2024.110959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Rapid urbanization has led to negative, and sometimes unintended, consequences on biodiversity and human health. While cities offer numerous advantages in meeting the basic needs of a growing population, they also pose less apparent and longer-term health costs. To address the multifaceted impacts of urbanization, an evidence-based design framework for establishing mitigation and regeneration actions is essential. Via a "One Health" approach, this perspective provides recommendations and strategies for the urban ecosystem rehabilitation of future cities, placing biodiversity and ecosystem services at the core of designing healthy and sustainable urban spaces. The framework we propose is based on a Hub and Spoke model to integrate diverse perspectives from public and private sectors and declined in a six-building-blocks structure. This will ensure that efforts are sustainable, health-centered, socially inclusive, and grounded in high-quality data, reinforcing the essential connection between healthy environments and thriving communities.
Collapse
Affiliation(s)
- Antonia Bruno
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Irene Arnoldi
- Department of Biosciences, University of Milan, via Celoria, 26, 20133 Milan, Italy
| | - Benedetta Barzaghi
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133 Milan, Italy
| | - Marco Boffi
- Department of Cultural Heritage and Environment, University of Milan, via Noto, 6, 20142 Milan, Italy
| | - Maurizio Casiraghi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Beatrice Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Sara Epis
- Department of Biosciences, University of Milan, via Celoria, 26, 20133 Milan, Italy
| | - Federica Facciotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Sciences (DiVAS), University of Milan, via dell’Università, 6, 26900 Lodi, Italy
| | - Elisa Fesce
- Department of Veterinary Medicine and Animal Sciences (DiVAS), University of Milan, via dell’Università, 6, 26900 Lodi, Italy
| | | | - Sara Fumagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Giulia Ghisleni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Werther Guidi Nissim
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Luca Mainardi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, via Ponzio, 34, 20133 Milan, Italy
| | - Raoul Manenti
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133 Milan, Italy
| | - Valeria Messina
- Department of Environmental Science and Policy, University of Milan, via Celoria, 2, 20133 Milan, Italy
| | - Agata Negri
- Department of Biosciences, University of Milan, via Celoria, 26, 20133 Milan, Italy
| | - Emily Palm
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Barbara Ester Adele Piga
- Department of Architecture and Urban Studies, Laboratorio di Simulazione Urbana Fausto Curti, Politecnico di Milano, piazza da Vinci, 26, 20133 Milan, Italy
| | - Nicola Rainisio
- Department of Cultural Heritage and Environment, University of Milan, via Noto, 6, 20142 Milan, Italy
| | - Nicola Tommasi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, piazza della Scienza, 2, 20126 Milan, Italy
| |
Collapse
|
11
|
Macher JN, Martínez A, Çakir S, Cholley PE, Christoforou E, Curini Galletti M, van Galen L, García-Cobo M, Jondelius U, de Jong D, Leasi F, Lemke M, Rubio Lopez I, Sánchez N, Sørensen MV, Todaro MA, Renema W, Fontaneto D. Enhancing metabarcoding efficiency and ecological insights through integrated taxonomy and DNA reference barcoding: A case study on beach meiofauna. Mol Ecol Resour 2024; 24:e13997. [PMID: 39086104 DOI: 10.1111/1755-0998.13997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/03/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Molecular techniques like metabarcoding, while promising for exploring diversity of communities, are often impeded by the lack of reference DNA sequences available for taxonomic annotation. Our study explores the benefits of combining targeted DNA barcoding and morphological taxonomy to improve metabarcoding efficiency, using beach meiofauna as a case study. Beaches are globally important ecosystems and are inhabited by meiofauna, microscopic animals living in the interstitial space between the sand grains, which play a key role in coastal biodiversity and ecosystem dynamics. However, research on meiofauna faces challenges due to limited taxonomic expertise and sparse sampling. We generated 775 new cytochrome c oxidase I DNA barcodes from meiofauna specimens collected along the Netherlands' west coast and combined them with the NCBI GenBank database. We analysed alpha and beta diversity in 561 metabarcoding samples from 24 North Sea beaches, a region extensively studied for meiofauna, using both the enriched reference database and the NCBI database without the additional reference barcodes. Our results show a 2.5-fold increase in sequence annotation and a doubling of species-level Operational Taxonomic Units (OTUs) identification when annotating the metabarcoding data with the enhanced database. Additionally, our analyses revealed a bell-shaped curve of OTU richness across the intertidal zone, aligning more closely with morphological analysis patterns, and more defined community dissimilarity patterns between supralittoral and intertidal sites. Our research highlights the importance of expanding molecular reference databases and combining morphological taxonomy with molecular techniques for biodiversity assessments, ultimately improving our understanding of coastal ecosystems.
Collapse
Affiliation(s)
- Jan-Niklas Macher
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Department of Environmental Biology, Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Alejandro Martínez
- National Research Council of Italy (CNR), Water Research Institute (IRSA), Verbania Pallanza, Italy
| | - Sude Çakir
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | | | - Eleni Christoforou
- Cyprus Marine and Maritime Institute, CMMI House, Larnaca, Cyprus
- Department of Chemical Engineering, Cyprus University of Technology, Limassol, Cyprus
| | - Marco Curini Galletti
- Dipartimento di Medicina Veterinaria, Università di Sassari, Sassari, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Lotte van Galen
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Marta García-Cobo
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | - Ulf Jondelius
- Department of Zoology, Swedish Museum of Natural History, Stockholm, Sweden
| | - Daphne de Jong
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Francesca Leasi
- Department of Biology, Geology, and Environmental Science, University of Tennessee at Chattanooga, Chattanooga, Tennessee, USA
| | - Michael Lemke
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
| | - Iñigo Rubio Lopez
- National Research Council of Italy (CNR), Water Research Institute (IRSA), Verbania Pallanza, Italy
- Laboratory of Environmental Microbiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague 2, Czech Republic
| | - Nuria Sánchez
- Department of Biodiversity, Ecology and Evolution, Universidad Complutense de Madrid, Madrid, Spain
| | | | - M Antonio Todaro
- National Biodiversity Future Center (NBFC), Palermo, Italy
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Willem Renema
- Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Diego Fontaneto
- National Research Council of Italy (CNR), Water Research Institute (IRSA), Verbania Pallanza, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| |
Collapse
|
12
|
Ficetola GF, Marta S, Guerrieri A, Cantera I, Bonin A, Cauvy-Fraunié S, Ambrosini R, Caccianiga M, Anthelme F, Azzoni RS, Almond P, Alviz Gazitúa P, Ceballos Lievano JL, Chand P, Chand Sharma M, Clague JJ, Cochachín Rapre JA, Compostella C, Encarnación RC, Dangles O, Deline P, Eger A, Erokhin S, Franzetti A, Gielly L, Gili F, Gobbi M, Hågvar S, Kaufmann R, Khedim N, Meneses RI, Morales-Martínez MA, Peyre G, Pittino F, Proietto A, Rabatel A, Sieron K, Tielidze L, Urseitova N, Yang Y, Zaginaev V, Zerboni A, Zimmer A, Diolaiuti GA, Taberlet P, Poulenard J, Fontaneto D, Thuiller W, Carteron A. The development of terrestrial ecosystems emerging after glacier retreat. Nature 2024; 632:336-342. [PMID: 39085613 DOI: 10.1038/s41586-024-07778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
The global retreat of glaciers is dramatically altering mountain and high-latitude landscapes, with new ecosystems developing from apparently barren substrates1-4. The study of these emerging ecosystems is critical to understanding how climate change interacts with microhabitat and biotic communities and determines the future of ice-free terrains1,5. Here, using a comprehensive characterization of ecosystems (soil properties, microclimate, productivity and biodiversity by environmental DNA metabarcoding6) across 46 proglacial landscapes worldwide, we found that all the environmental properties change with time since glaciers retreated, and that temperature modulates the accumulation of soil nutrients. The richness of bacteria, fungi, plants and animals increases with time since deglaciation, but their temporal patterns differ. Microorganisms colonized most rapidly in the first decades after glacier retreat, whereas most macroorganisms took longer. Increased habitat suitability, growing complexity of biotic interactions and temporal colonization all contribute to the increase in biodiversity over time. These processes also modify community composition for all the groups of organisms. Plant communities show positive links with all other biodiversity components and have a key role in ecosystem development. These unifying patterns provide new insights into the early dynamics of deglaciated terrains and highlight the need for integrated surveillance of their multiple environmental properties5.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France.
| | - Silvio Marta
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.
- CNR - Institute of Geosciences and Earth Resources, Pisa, Italy.
| | - Alessia Guerrieri
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | - Isabel Cantera
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Aurélie Bonin
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Argaly, Bâtiment CleanSpace, Sainte-Hélène-du-Lac, France
| | | | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Fabien Anthelme
- AMAP, University of Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Roberto Sergio Azzoni
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | - Peter Almond
- Department of Soil and Physical Sciences, Lincoln University, Lincoln, New Zealand
| | - Pablo Alviz Gazitúa
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile
| | | | - Pritam Chand
- Department of Geography, School of Environment and Earth Sciences, Central University of Punjab, VPO-Ghudda, Bathinda, India
| | - Milap Chand Sharma
- Centre for the Study of Regional Development, School of Social Sciences, Jawaharlal Nehru University, New Delhi, India
| | - John J Clague
- Department of Earth Sciences, Simon Fraser University, Burnaby, British Colombia, Canada
| | | | - Chiara Compostella
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | | | - Olivier Dangles
- CEFE, University of Montpellier, CNRS, EPHE, IRD, University of Paul Valéry Montpellier 3, Montpellier, France
| | - Philip Deline
- University of Savoie Mont Blanc, University of Grenoble Alpes, EDYTEM, Chambéry, France
| | - Andre Eger
- Mannaki Whenua - Landcare Research, Soils and Landscapes, Lincoln, New Zealand
| | - Sergey Erokhin
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
| | - Ludovic Gielly
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Fabrizio Gili
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Mauro Gobbi
- Research and Museum Collections Office, Climate and Ecology Unit, MUSE-Science Museum, Trento, Italy
| | - Sigmund Hågvar
- Faculty of Environmental Sciences and Natural Resource Management (INA), Norwegian University of Life Sciences, Ås, Norway
| | - Rüdiger Kaufmann
- Department of Ecology, University of Innsbruck, Innsbruck, Austria
| | - Norine Khedim
- University of Savoie Mont Blanc, University of Grenoble Alpes, EDYTEM, Chambéry, France
| | - Rosa Isela Meneses
- Herbario Nacional de Bolivia: La Paz, La Paz, Bolivia
- Millenium Nucleus in Andean Peatlands, Arica, Chile
| | | | - Gwendolyn Peyre
- Department of Civil and Environmental Engineering, University of the Andes, Bogotá, Colombia
| | - Francesca Pittino
- Department of Earth and Environmental Sciences (DISAT), University of Milano-Bicocca, Milan, Italy
- Swiss Federal Institute for Forest, Snow and Landscape Research, Birmensdorf, Switzerland
| | - Angela Proietto
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy
| | - Antoine Rabatel
- University of Grenoble Alpes, CNRS, IRD, INRAE, Grenoble-INP, Institut des Géosciences de l'Environnement (IGE UMR 5001), Grenoble, France
| | - Katrin Sieron
- Universidad Veracruzana, Centro de Ciencias de la Tierra, Xalapa, Veracruz, Mexico
| | - Levan Tielidze
- Securing Antarctica's Environmental Future, School of Earth, Atmosphere and Environment, Monash University, Clayton, Victoria, Australia
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Nurai Urseitova
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
| | - Yan Yang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Vitalii Zaginaev
- Institute of Water Problems and Hydro-Energy, Kyrgyz National Academy of Sciences, Bishkek, Kyrgyzstan
- Mountain Societies Research Institute, University of Central Asia, Bishkek, Kyrgyzstan
| | - Andrea Zerboni
- Dipartimento di Scienze della Terra "Ardito Desio", Università degli Studi di Milano, Milan, Italy
| | - Anaïs Zimmer
- Department of Geography and the Environment, University of Texas at Austin, Austin, TX, USA
| | | | - Pierre Taberlet
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| | - Jerome Poulenard
- University of Savoie Mont Blanc, University of Grenoble Alpes, EDYTEM, Chambéry, France
| | - Diego Fontaneto
- CNR - Water Research Institute, Verbania, Italy
- NBFC - National Biodiversity Future Center, Palermo, Italy
| | - Wilfried Thuiller
- University of Grenoble Alpes, University of Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | - Alexis Carteron
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Milan, Italy.
- Université de Toulouse, École d'Ingénieurs de PURPAN, UMR INRAE-INPT DYNAFOR, Toulouse, France.
| |
Collapse
|
13
|
Jarman S, Alexander JB, Dawkins KL, Lukehurst SS, Nester GM, Wilkinson S, Marnane MJ, McDonald JI, Elsdon TS, Harvey ES. Marine eDNA sampling from submerged surfaces with paint rollers. Mar Genomics 2024; 76:101127. [PMID: 38905943 DOI: 10.1016/j.margen.2024.101127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Environmental DNA (eDNA) analyses of species present in marine environments is the most effective biological diversity measurement tool currently available. eDNA sampling methods are an intrinsically important part of the eDNA biodiversity analysis process. Identification and development of eDNA sampling methods that are as rapid, affordable, versatile and practical as possible will improve rates of detection of marine species. Optimal outcomes of eDNA biodiversity surveys come from studies employing high levels of sampling replication, so any methods that make sampling faster and cheaper will improve scientific outcomes. eDNA sampling methods that can be applied more widely will also enable sampling from a greater range of marine surface micro-habitats, resulting in detection of a wider range of organisms. In this study, we compared diversity detection by several methods for sampling eDNA from submerged marine surfaces: polyurethane foam, nylon swabs, microfibre paint rollers, and sediment scoops. All of the methods produced a diverse range of species identifications, with >250 multicellular species represented by eDNA at the study site. We found that widely-available small paint rollers were an effective, readily available and affordable method for sampling eDNA from underwater marine surfaces. This approach enables the sampling of marine eDNA using extended poles, or potentially by remotely operated vehicles, where surface sampling by hand is impractical.
Collapse
Affiliation(s)
- Simon Jarman
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; eDNA Frontiers, Curtin University, Bentley, WA, Australia.
| | - Jason B Alexander
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | | | | | - Georgia M Nester
- Minderoo-UWA Deep Sea Research Centre, University of Western Australia, Crawley, WA, Australia
| | - Shaun Wilkinson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Wilderlab, Miramar, Wellington, New Zealand
| | - Michael J Marnane
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Justin I McDonald
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Sustainability and Biosecurity, Department of Primary Industries and Regional Development (DPIRD), Hillarys, 6025, Western Australia, Australia
| | - Travis S Elsdon
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia; Chevron Technical Center, Perth, Western Australia, Australia
| | - Euan S Harvey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
14
|
Fueyo Á, Sánchez O, Carleos C, Escudero A, Cordón J, Granero‐Castro J, Borrell YJ. Unlocking rivers' hidden diversity and ecological status using DNA metabarcoding in Northwest Spain. Ecol Evol 2024; 14:e70110. [PMID: 39100209 PMCID: PMC11294579 DOI: 10.1002/ece3.70110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/05/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Rivers are crucial ecosystems supporting biodiversity and human well-being, yet they face increasing degradation globally. Traditional river biomonitoring methods based on morphological identification of macroinvertebrates present challenges in terms of taxonomic resolution and scalability. This study explores the application of DNA metabarcoding analysis in both bulk and environmental DNA (eDNA) samples for comprehensive assessment of macrozoobenthic biodiversity, detection of invasive and endangered species, and evaluation of river ecological status in northwestern Spain. DNA metabarcoding of homogenized bulk samples and water eDNA revealed a mean of 100 and 87 macrozoobenthos species per sample respectively. However, the specific composition was significantly different with only 27.3% of the total species being shared. It was not possible to identify all the OTUs to species level; only 17.43% and 49.4% of the OTUs generated could be identified to species level in the bulk and eDNA samples, respectively. Additionally, a total of 11 exotic species (two first records for the Iberian Peninsula and another three first records for Asturias region) and one endangered species were detected by molecular tools. Molecular methods showed significant correlations with morphological identification for EQR values (Ecological Quality Ratio) of IBMWP index, yet differences in inferred river ecological status were noted, with bulk samples tending to indicate higher status. Overall, DNA metabarcoding offers a promising approach for river biomonitoring, providing insights into biodiversity, invasive species, and ecological status within a single analysis. Further optimization and intercalibration are required for its implementation in routine biomonitoring programmes, but its scalability and multi-tasking capabilities position it as a valuable tool for integrated monitoring of river ecosystems.
Collapse
Affiliation(s)
- Álvaro Fueyo
- Environment and Sustainability Area, Taxus Medio AmbienteOviedoSpain
- Department of Functional Biology, GeneticsUniversity of OviedoOviedoSpain
| | - Omar Sánchez
- Environment and Sustainability Area, Taxus Medio AmbienteOviedoSpain
- Department of Organisms and Systems Biology, ZoologyUniversity of OviedoOviedoSpain
| | - Carlos Carleos
- Department of Statistics and Operations Research and Mathematics DidacticsUniversity of OviedoOviedoSpain
| | - Amando Escudero
- Environment and Sustainability Area, Taxus Medio AmbienteOviedoSpain
| | - Javier Cordón
- Environment and Sustainability Area, Taxus Medio AmbienteOviedoSpain
| | | | | |
Collapse
|
15
|
Mottola A, Piredda R, Lorusso L, Ranieri L, Intermite C, Barresi C, Galli C, Di Pinto A. Decoding Seafood: Multi-Marker Metabarcoding for Authenticating Processed Seafood. Foods 2024; 13:2382. [PMID: 39123573 PMCID: PMC11311639 DOI: 10.3390/foods13152382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Given the recognized nutritional value of fish and shifting consumer lifestyles, processed seafood has become increasingly prevalent, comprising a significant portion of global food production. Although current European Union labeling regulations do not require species declaration for these products, food business operators often voluntarily provide this information on ingredient lists. Next Generation Sequencing (NGS) approaches are currently the most effective methods for verifying the accuracy of species declarations on processed seafood labels. This study examined the species composition of 20 processed seafood products, each labeled as containing a single species, using two DNA metabarcoding markers targeting the mitochondrial cytochrome c oxidase I (COI) and 16S rRNA genes. The combined use of these markers revealed that the majority of the products contained multiple species. Furthermore, two products were found to be mislabeled, as the declared species were not detected. These findings underscore that NGS is a robust technique that could be adopted to support routine food industry activities and official control programs, thereby enhancing the 'From Boat to Plate' strategy and combating fraudulent practices in the complex fisheries supply chain.
Collapse
Affiliation(s)
- Anna Mottola
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima 62, Km 3, 70010 Valenzano, Italy; (A.M.); (R.P.); (L.R.); (C.I.); (A.D.P.)
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima 62, Km 3, 70010 Valenzano, Italy; (A.M.); (R.P.); (L.R.); (C.I.); (A.D.P.)
| | - Lucilia Lorusso
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima 62, Km 3, 70010 Valenzano, Italy; (A.M.); (R.P.); (L.R.); (C.I.); (A.D.P.)
| | - Lucia Ranieri
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima 62, Km 3, 70010 Valenzano, Italy; (A.M.); (R.P.); (L.R.); (C.I.); (A.D.P.)
| | - Chiara Intermite
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima 62, Km 3, 70010 Valenzano, Italy; (A.M.); (R.P.); (L.R.); (C.I.); (A.D.P.)
| | - Concettina Barresi
- Laboratory of Modena, Department of Central Inspectorate for Fraud Repression and Quality Protection of the Agri-Food Products and Foodstuffs, Ministry of Agriculture, Food Sovereignty and Forests (ICQRF-MASAF), Via Domenico Cucchiari, 12, 41124 Modena, Italy;
| | - Carmela Galli
- Laboratory of Salerno, Department of Central Inspectorate for Fraud Repression and Quality Protection of the Agri-Food Products and Foodstuffs, Ministry of Agriculture, Food Sovereignty and Forests (ICQRF-MASAF), Via Frà Giacomo Acquaviva n. 1, 84135 Salerno, Italy;
| | - Angela Di Pinto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Prov. le Casamassima 62, Km 3, 70010 Valenzano, Italy; (A.M.); (R.P.); (L.R.); (C.I.); (A.D.P.)
| |
Collapse
|
16
|
Zhang SY, Yan Q, Zhao J, Liu Y, Yao M. Distinct multitrophic biodiversity composition and community organization in a freshwater lake and a hypersaline lake on the Tibetan Plateau. iScience 2024; 27:110124. [PMID: 38957787 PMCID: PMC11217615 DOI: 10.1016/j.isci.2024.110124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/07/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Alpine lakes play pivotal roles in plateau hydrological processes but are highly sensitive to climate change, yet we lack comprehensive knowledge of their multitrophic biodiversity patterns. Here, we compared the biodiversity characteristics of diverse taxonomic groups across water depths and in surface sediments from a freshwater lake and a hypersaline lake on the northwestern Tibetan Plateau. Using multi-marker environmental DNA metabarcoding, we detected 134 cyanobacteria, 443 diatom, 1,519 invertebrate, and 28 vertebrate taxa. Each group had a substantially different community composition in the two lakes, and differences were also found between water and sediments within each lake. Cooccurrence network analysis revealed higher network complexity, lower modularity, and fewer negative cohesions in the hypersaline lake, suggesting that high salinity may destabilize ecological networks. Our results provide the first holistic view of Tibetan lake biodiversity under contrasting salinity levels and reveal structural differences in the ecological networks that may impact ecosystem resilience.
Collapse
Affiliation(s)
- Si-Yu Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Qi Yan
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yongqin Liu
- Center for Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Bernatchez L, Ferchaud AL, Berger CS, Venney CJ, Xuereb A. Genomics for monitoring and understanding species responses to global climate change. Nat Rev Genet 2024; 25:165-183. [PMID: 37863940 DOI: 10.1038/s41576-023-00657-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2023] [Indexed: 10/22/2023]
Abstract
All life forms across the globe are experiencing drastic changes in environmental conditions as a result of global climate change. These environmental changes are happening rapidly, incur substantial socioeconomic costs, pose threats to biodiversity and diminish a species' potential to adapt to future environments. Understanding and monitoring how organisms respond to human-driven climate change is therefore a major priority for the conservation of biodiversity in a rapidly changing environment. Recent developments in genomic, transcriptomic and epigenomic technologies are enabling unprecedented insights into the evolutionary processes and molecular bases of adaptation. This Review summarizes methods that apply and integrate omics tools to experimentally investigate, monitor and predict how species and communities in the wild cope with global climate change, which is by genetically adapting to new environmental conditions, through range shifts or through phenotypic plasticity. We identify advantages and limitations of each method and discuss future research avenues that would improve our understanding of species' evolutionary responses to global climate change, highlighting the need for holistic, multi-omics approaches to ecosystem monitoring during global climate change.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Laure Ferchaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada.
- Parks Canada, Office of the Chief Ecosystem Scientist, Protected Areas Establishment, Quebec City, Quebec, Canada.
| | - Chloé Suzanne Berger
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Clare J Venney
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Amanda Xuereb
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
18
|
Hartig F, Abrego N, Bush A, Chase JM, Guillera-Arroita G, Leibold MA, Ovaskainen O, Pellissier L, Pichler M, Poggiato G, Pollock L, Si-Moussi S, Thuiller W, Viana DS, Warton DI, Zurell D, Yu DW. Novel community data in ecology-properties and prospects. Trends Ecol Evol 2024; 39:280-293. [PMID: 37949795 DOI: 10.1016/j.tree.2023.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 11/12/2023]
Abstract
New technologies for monitoring biodiversity such as environmental (e)DNA, passive acoustic monitoring, and optical sensors promise to generate automated spatiotemporal community observations at unprecedented scales and resolutions. Here, we introduce 'novel community data' as an umbrella term for these data. We review the emerging field around novel community data, focusing on new ecological questions that could be addressed; the analytical tools available or needed to make best use of these data; and the potential implications of these developments for policy and conservation. We conclude that novel community data offer many opportunities to advance our understanding of fundamental ecological processes, including community assembly, biotic interactions, micro- and macroevolution, and overall ecosystem functioning.
Collapse
Affiliation(s)
- Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany.
| | - Nerea Abrego
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland
| | - Alex Bush
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | | | - Otso Ovaskainen
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35 (Survontie 9C), FI-40014 Jyväskylä, Finland; Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 65, Helsinki 00014, Finland
| | - Loïc Pellissier
- Ecosystems and Landscape Evolution, Institute of Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zürich, 8092 Zurich, Switzerland; Unit of Land Change Science, Swiss Federal Research Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | | | - Giovanni Poggiato
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Laura Pollock
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Sara Si-Moussi
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | - Wilfried Thuiller
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, F38000, Grenoble, France
| | | | | | | | - Douglas W Yu
- Kunming Institute of Zoology; Yunnan, China; University of East Anglia, Norfolk, UK
| |
Collapse
|
19
|
Rieseberg L, Warschefsky E, Burton J, Huang K, Sibbett B. Editorial 2024. Mol Ecol 2024; 33:e17239. [PMID: 38146175 DOI: 10.1111/mec.17239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Affiliation(s)
- Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Emily Warschefsky
- William L. Brown Center, Missouri Botanical Garden, Saint Louis, MO, USA
| | - Jade Burton
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| | - Kaichi Huang
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Sibbett
- John Wiley & Sons, Atrium Southern Gate, Chichester, West Sussex, UK
| |
Collapse
|
20
|
Gillespie RG, Bik HM, Hickerson MJ, Krehenwinkel H, Overcast I, Rominger AJ. Insights into Ecological & Evolutionary Processes via community metabarcoding. Mol Ecol 2023; 32:6083-6092. [PMID: 37999451 DOI: 10.1111/mec.17208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/05/2023] [Accepted: 11/03/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Rosemary G Gillespie
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California, USA
| | - Holly M Bik
- Department of Marine Sciences and Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Michael J Hickerson
- Graduate Center of the City University of New York, New York City, New York, USA
- Biology Department, City College of New York, New York City, New York, USA
- Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
| | | | - Isaac Overcast
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- Department of Vertebrate Zoology, Division of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA
- California Academy of Sciences, San Francisco, California, USA
| | - Andrew J Rominger
- School of Biology and Ecology, University of Maine, Orono, Maine, USA
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
21
|
Marinchel N, Marchesini A, Nardi D, Girardi M, Casabianca S, Vernesi C, Penna A. Mock community experiments can inform on the reliability of eDNA metabarcoding data: a case study on marine phytoplankton. Sci Rep 2023; 13:20164. [PMID: 37978238 PMCID: PMC10656442 DOI: 10.1038/s41598-023-47462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023] Open
Abstract
Environmental DNA metabarcoding is increasingly implemented in biodiversity monitoring, including phytoplankton studies. Using 21 mock communities composed of seven unicellular diatom and dinoflagellate algae, assembled with different composition and abundance by controlling the number of cells, we tested the accuracy of an eDNA metabarcoding protocol in reconstructing patterns of alpha and beta diversity. This approach allowed us to directly evaluate both qualitative and quantitative metabarcoding estimates. Our results showed non-negligible rates (17-25%) of false negatives (i.e., failure to detect a taxon in a community where it was included), for three taxa. This led to a statistically significant underestimation of metabarcoding-derived alpha diversity (Wilcoxon p = 0.02), with the detected species richness being lower than expected (based on cell numbers) in 8/21 mock communities. Considering beta diversity, the correlation between metabarcoding-derived and expected community dissimilarities was significant but not strong (R2 = 0.41), indicating suboptimal accuracy of metabarcoding results. Average biovolume and rDNA gene copy number were estimated for the seven taxa, highlighting a potential, though not exhaustive, role of the latter in explaining the recorded biases. Our findings highlight the importance of mock communities for assessing the reliability of phytoplankton eDNA metabarcoding studies and identifying their limitations.
Collapse
Affiliation(s)
- Nadia Marinchel
- Department of Pure and Applied Sciences, University of Urbino, Urbino, Italy.
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
| | - Alexis Marchesini
- Research Institute on Terrestrial Ecosystems (IRET), National Research Council (CNR), Porano, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Davide Nardi
- DAFNAE, University of Padova, Legnaro, PD, Italy
| | - Matteo Girardi
- Conservation Genomics Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Silvia Casabianca
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy
- Fano Marine Center, Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy
| | - Cristiano Vernesi
- National Biodiversity Future Center, Palermo, Italy
- Forest Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, S. Michele all'Adige, Italy
| | - Antonella Penna
- Department of Biomolecular Sciences, University of Urbino, Urbino, Italy.
- Fano Marine Center, Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, Fano, Italy.
- CoNISMa, National Inter-University Consortium for Marine Sciences, Rome, Italy.
| |
Collapse
|