1
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Comlekoglu T, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and treatments affect microvascular remodeling in fibrotic disease. PNAS NEXUS 2025; 4:pgae551. [PMID: 39720203 PMCID: PMC11667245 DOI: 10.1093/pnasnexus/pgae551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/13/2024] [Indexed: 12/26/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired and lung function declines. We integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (EC) and pericytes, the cells that comprise microvessels. Nintedanib, an Food and Drug Administration-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can predict and explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Samuel M J Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - David J Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony C Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Taylor G Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Tara N Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Tien Comlekoglu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Catherine A Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jeffrey J Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Lakeshia J Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - Shayn M Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
2
|
Pellowe AS, Wu MJ, Kang TY, Chung TD, Ledesma-Mendoza A, Herzog E, Levchenko A, Odell I, Varga J, Gonzalez AL. TGF-β1 Drives Integrin-Dependent Pericyte Migration and Microvascular Destabilization in Fibrotic Disease. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1171-1184. [PMID: 38548268 PMCID: PMC11220919 DOI: 10.1016/j.ajpath.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Interactions between endothelial cells (ECs) and mural pericytes (PCs) are critical in maintaining the stability and function of the microvascular wall. Abnormal interactions between these two cell types are a hallmark of progressive fibrotic diseases such as systemic sclerosis (also known as scleroderma). However, the role of PCs in signaling microvascular dysfunction remains underexplored. We hypothesized that integrin-matrix interactions contribute to PC migration from the vascular wall and conversion into interstitial myofibroblasts. Herein, pro-inflammatory tumor necrosis factor α (TNFα) or a fibrotic growth factor [transforming growth factor β1 (TGF-β1)] were used to evaluate human PC inflammatory and fibrotic phenotypes by assessing their migration, matrix deposition, integrin expression, and subsequent effects on endothelial dysfunction. Both TNFα and TGF-β1 treatment altered integrin expression and matrix protein deposition, but only fibrotic TGF-β1 drove PC migration in an integrin-dependent manner. In addition, integrin-dependent PC migration was correlated to changes in EC angiopoietin-2 levels, a marker of vascular instability. Finally, there was evidence of changes in vascular stability corresponding to disease state in human systemic sclerosis skin. This work shows that TNFα and TGF-β1 induce changes in PC integrin expression and matrix deposition that facilitate migration and reduce vascular stability, providing evidence that microvascular destabilization can be an early indicator of tissue fibrosis.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Michelle J Wu
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tae-Yun Kang
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Tracy D Chung
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | | | - Erica Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Ian Odell
- Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
3
|
Ucar EA, Ozkan E, Shomalizadeh N, Sekerdağ-Kilic E, Akpunar F, Sapanci S, Kesibi J, Ozler C, Bilgez AS, Gursoy-Ozdemir Y. Carbenoxolone mitigates extensive fibrosis formation in PLP-induced EAE model and multiple sclerosis serum-exposed pericyte culture. Front Cell Neurosci 2024; 18:1403974. [PMID: 38746079 PMCID: PMC11091252 DOI: 10.3389/fncel.2024.1403974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Introduction Multiple sclerosis (MS) is one of the most common causes of disability in young adults. Nearly, 85% of MS cases start with attacks and remissions, classified as relapsing-remitting multiple sclerosis (RRMS). With repeating attacks, MS causes brain-spinal cord atrophy and enhanced disability as disease progresses. PLP-induced EAE is one of the most established models for pathophysiology and treatment of RRMS. Recent studies demonstrated the possible role of pericytes in perivascular and intra-lesional fibrosis in PLP-induced EAE, whose importance remains elusive. Hence, we have investigated the possible role of pericytes in fibrosis formation and amelioration with a hemichannel blocker, Carbenoxolone (CBX). Methods PLP-induced experimental autoimmune encephalitis (EAE) model is used and the effect of CBX is investigated. Clinical scores were recorded and followed. Perivascular Collagen 1 and 3 accumulations were demonstrated as markers of fibrosis in the spinal cord. To delineate the role of pericytes, human brain vascular pericytes (HBVP) were incubated with the sera of MS patients to induce in-vitro MS model and the fibrosis formation was investigated. Results In the PLP induced in-vivo model, both intracerebroventricular and intraperitoneal CBX have significantly mitigated the disease progression followed by clinical scores, demyelination, and fibrosis. Moreover, CBX significantly mitigated MS-serum-induced fibrosis in the HBVP cell culture. Discussion The study demonstrated two important findings. First, CBX decreases fibrosis formation in both in-vivo and in-vitro MS models. Secondly, it improves neurological scores and decreases demyelination in the EAE model. Therefore, CBX can be potential novel therapeutic option in treating Multiple Sclerosis.
Collapse
Affiliation(s)
- Ege Anil Ucar
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Esra Ozkan
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
- Department of Neurology, Koç University, Istanbul, Türkiye
| | - Narges Shomalizadeh
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Emine Sekerdağ-Kilic
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Fatmanur Akpunar
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Selin Sapanci
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Judy Kesibi
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Ceyda Ozler
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Alara Su Bilgez
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
| | - Yasemin Gursoy-Ozdemir
- Research Center for Translational Medicine (KUTTAM), Koҫ University, Istanbul, Türkiye
- School of Medicine, Koç University, Istanbul, Türkiye
- Department of Neurology, Koç University, Istanbul, Türkiye
| |
Collapse
|
4
|
Leonard-Duke J, Agro SMJ, Csordas DJ, Bruce AC, Eggertsen TG, Tavakol TN, Barker TH, Bonham CA, Saucerman JJ, Taite LJ, Peirce SM. Multiscale computational model predicts how environmental changes and drug treatments affect microvascular remodeling in fibrotic disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585249. [PMID: 38559112 PMCID: PMC10979947 DOI: 10.1101/2024.03.15.585249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Investigating the molecular, cellular, and tissue-level changes caused by disease, and the effects of pharmacological treatments across these biological scales, necessitates the use of multiscale computational modeling in combination with experimentation. Many diseases dynamically alter the tissue microenvironment in ways that trigger microvascular network remodeling, which leads to the expansion or regression of microvessel networks. When microvessels undergo remodeling in idiopathic pulmonary fibrosis (IPF), functional gas exchange is impaired due to loss of alveolar structures and lung function declines. Here, we integrated a multiscale computational model with independent experiments to investigate how combinations of biomechanical and biochemical cues in IPF alter cell fate decisions leading to microvascular remodeling. Our computational model predicted that extracellular matrix (ECM) stiffening reduced microvessel area, which was accompanied by physical uncoupling of endothelial cell (ECs) and pericytes, the cells that comprise microvessels. Nintedanib, an FDA-approved drug for treating IPF, was predicted to further potentiate microvessel regression by decreasing the percentage of quiescent pericytes while increasing the percentage of pericytes undergoing pericyte-myofibroblast transition (PMT) in high ECM stiffnesses. Importantly, the model suggested that YAP/TAZ inhibition may overcome the deleterious effects of nintedanib by promoting EC-pericyte coupling and maintaining microvessel homeostasis. Overall, our combination of computational and experimental modeling can explain how cell decisions affect tissue changes during disease and in response to treatments.
Collapse
Affiliation(s)
- Julie Leonard-Duke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samuel M. J. Agro
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - David J. Csordas
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Taylor G. Eggertsen
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Tara N. Tavakol
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Thomas H. Barker
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Catherine A. Bonham
- Department of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Jeffery J. Saucerman
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Lakeshia J. Taite
- Department of Chemical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
5
|
Scuderi L, Fragiotta S, Di Pippo M, Abdolrahimzadeh S. The Role of Diabetic Choroidopathy in the Pathogenesis and Progression of Diabetic Retinopathy. Int J Mol Sci 2023; 24:10167. [PMID: 37373315 DOI: 10.3390/ijms241210167] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic choroidopathy was first described on histopathological specimens of diabetic eyes. This alteration was characterized by the accumulation of PAS-positive material within the intracapillary stroma. Inflammation and polymorphonuclear neutrophils (PMNs) activation are crucial elements in choriocapillaris impairment. The evidence of diabetic choroidopathy in vivo was confirmed with multimodal imaging, which provides key quantitative and qualitative features to characterize the choroidal involvement. The choroid can be virtually affected in each vascular layer, from Haller's layer to the choriocapillaris. However, the damage on the outer retina and photoreceptor cells is essentially driven by a choriocapillaris deficiency, which can be assessed through optical coherence tomography angiography (OCTA). The identification of characteristic features of diabetic choroidopathy can be significant for understanding the potential pathogenic and prognostic implications in diabetic retinopathy.
Collapse
Affiliation(s)
- Luca Scuderi
- Department of Sense Organs, Sapienza University of Rome, 00161 Rome, Italy
| | - Serena Fragiotta
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- UOC Ophthalmology, Department of Surgical Areas, S.M. Goretti Hospital, 04100 Latina, Italy
| | - Mariachiara Di Pippo
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| | - Solmaz Abdolrahimzadeh
- Ophthalmology Unit, Neurosciences, Mental Health, and Sensory Organs (NESMOS) Department, Sapienza University of Rome, Via di Grottarossa 1035/1039, 00189 Rome, Italy
- St. Andrea Hospital, Via di Grottarossa 1035/1039, 00189 Rome, Italy
| |
Collapse
|
6
|
Oliveira F, Bondareva O, Rodríguez-Aguilera JR, Sheikh BN. Cultured brain pericytes adopt an immature phenotype and require endothelial cells for expression of canonical markers and ECM genes. Front Cell Neurosci 2023; 17:1165887. [PMID: 37201162 PMCID: PMC10185779 DOI: 10.3389/fncel.2023.1165887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 05/20/2023] Open
Abstract
Pericytes (PCs) are essential components of the blood brain barrier. Brain PCs are critical for dynamically regulating blood flow, for maintaining vascular integrity and their dysregulation is associated with a myriad of disorders such as Alzheimer's disease. To understand their physiological and molecular functions, studies have increasingly focused on primary brain PC isolation and culture. Multiple methods for PC culture have been developed over the years, however, it is still unclear how primary PCs compare to their in vivo counterparts. To address this question, we compared cultured brain PCs at passage 5 and 20 to adult and embryonic brain PCs directly isolated from mouse brains via single cell RNA-seq. Cultured PCs were highly homogeneous, and were most similar to embryonic PCs, while displaying a significantly different transcriptional profile to adult brain PCs. Cultured PCs downregulated canonical PC markers and extracellular matrix (ECM) genes. Importantly, expression of PC markers and ECM genes could be improved by co-culture with brain endothelial cells, showing the importance of the endothelium in maintaining PC identity and function. Taken together, these results highlight key transcriptional differences between cultured and in vivo PCs which should be considered when performing in vitro experiments with brain PCs.
Collapse
Affiliation(s)
- Fabiana Oliveira
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, Leipzig University, Leipzig, Germany
| | - Olga Bondareva
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, Leipzig University, Leipzig, Germany
| | - Jesús Rafael Rodríguez-Aguilera
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, Leipzig University, Leipzig, Germany
| | - Bilal N. Sheikh
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich, Leipzig, Germany
- Medical Faculty, Leipzig University, Leipzig, Germany
- *Correspondence: Bilal N. Sheikh,
| |
Collapse
|
7
|
Abdelazim H, Payne LB, Nolan K, Paralkar K, Bradley V, Kanodia R, Gude R, Ward R, Monavarfeshani A, Fox MA, Chappell JC. Pericyte heterogeneity identified by 3D ultrastructural analysis of the microvessel wall. Front Physiol 2022; 13:1016382. [PMID: 36589416 PMCID: PMC9800988 DOI: 10.3389/fphys.2022.1016382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Confident identification of pericytes (PCs) remains an obstacle in the field, as a single molecular marker for these unique perivascular cells remains elusive. Adding to this challenge is the recent appreciation that PC populations may be heterogeneous, displaying a range of morphologies within capillary networks. We found additional support on the ultrastructural level for the classification of these PC subtypes-"thin-strand" (TSP), mesh (MP), and ensheathing (EP)-based on distinct morphological characteristics. Interestingly, we also found several examples of another cell type, likely a vascular smooth muscle cell, in a medial layer between endothelial cells (ECs) and pericytes (PCs) harboring characteristics of the ensheathing type. A conserved feature across the different PC subtypes was the presence of extracellular matrix (ECM) surrounding the vascular unit and distributed in between neighboring cells. The thickness of this vascular basement membrane was remarkably consistent depending on its location, but never strayed beyond a range of 150-300 nm unless thinned to facilitate closer proximity of neighboring cells (suggesting direct contact). The density of PC-EC contact points ("peg-and-socket" structures) was another distinguishing feature across the different PC subtypes, as were the apparent contact locations between vascular cells and brain parenchymal cells. In addition to this thinning, the extracellular matrix (ECM) surrounding EPs displayed another unique configuration in the form of extensions that emitted out radially into the surrounding parenchyma. Knowledge of the origin and function of these structures is still emerging, but their appearance suggests the potential for being mechanical elements and/or perhaps signaling nodes via embedded molecular cues. Overall, this unique ultrastructural perspective provides new insights into PC heterogeneity and the presence of medial cells within the microvessel wall, the consideration of extracellular matrix (ECM) coverage as another PC identification criteria, and unique extracellular matrix (ECM) configurations (i.e., radial extensions) that may reveal additional aspects of PC heterogeneity.
Collapse
Affiliation(s)
- Hanaa Abdelazim
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Vascular and Heart Research, Roanoke, VA, United States
| | - Laura Beth Payne
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Vascular and Heart Research, Roanoke, VA, United States
| | - Kyle Nolan
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Karan Paralkar
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Vanessa Bradley
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Ronak Kanodia
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Rosalie Gude
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Rachael Ward
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Aboozar Monavarfeshani
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
| | - Michael A. Fox
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Neurobiology, Roanoke, VA, United States
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - John C. Chappell
- Fralin Biomedical Research Institute (FBRI) at Virginia Tech-Carilion (VTC), Roanoke, VA, United States
- FBRI Center for Vascular and Heart Research, Roanoke, VA, United States
- Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
8
|
Joglekar MM, Nizamoglu M, Fan Y, Nemani SSP, Weckmann M, Pouwels SD, Heijink IH, Melgert BN, Pillay J, Burgess JK. Highway to heal: Influence of altered extracellular matrix on infiltrating immune cells during acute and chronic lung diseases. Front Pharmacol 2022; 13:995051. [PMID: 36408219 PMCID: PMC9669433 DOI: 10.3389/fphar.2022.995051] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/19/2022] [Indexed: 10/31/2023] Open
Abstract
Environmental insults including respiratory infections, in combination with genetic predisposition, may lead to lung diseases such as chronic obstructive pulmonary disease, lung fibrosis, asthma, and acute respiratory distress syndrome. Common characteristics of these diseases are infiltration and activation of inflammatory cells and abnormal extracellular matrix (ECM) turnover, leading to tissue damage and impairments in lung function. The ECM provides three-dimensional (3D) architectural support to the lung and crucial biochemical and biophysical cues to the cells, directing cellular processes. As immune cells travel to reach any site of injury, they encounter the composition and various mechanical features of the ECM. Emerging evidence demonstrates the crucial role played by the local environment in recruiting immune cells and their function in lung diseases. Moreover, recent developments in the field have elucidated considerable differences in responses of immune cells in two-dimensional versus 3D modeling systems. Examining the effect of individual parameters of the ECM to study their effect independently and collectively in a 3D microenvironment will help in better understanding disease pathobiology. In this article, we discuss the importance of investigating cellular migration and recent advances in this field. Moreover, we summarize changes in the ECM in lung diseases and the potential impacts on infiltrating immune cell migration in these diseases. There has been compelling progress in this field that encourages further developments, such as advanced in vitro 3D modeling using native ECM-based models, patient-derived materials, and bioprinting. We conclude with an overview of these state-of-the-art methodologies, followed by a discussion on developing novel and innovative models and the practical challenges envisaged in implementing and utilizing these systems.
Collapse
Affiliation(s)
- Mugdha M. Joglekar
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Mehmet Nizamoglu
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - YiWen Fan
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
| | - Sai Sneha Priya Nemani
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Markus Weckmann
- Department of Paediatric Pneumology &Allergology, University Children’s Hospital, Schleswig-Holstein, Campus Lübeck, Germany
- Epigenetics of Chronic Lung Disease, Priority Research Area Chronic Lung Diseases; Leibniz Lung Research Center Borstel; Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Germany
| | - Simon D. Pouwels
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Irene H. Heijink
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, Netherlands
| | - Barbro N. Melgert
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, Groningen, Netherlands
| | - Janesh Pillay
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Department of Critical Care, Groningen, Netherlands
| | - Janette K. Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, Netherlands
- University of Groningen, University Medical Center Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science-FB41, Groningen, Netherlands
| |
Collapse
|
9
|
McCloskey MC, Zhang VZ, Ahmad SD, Walker S, Romanick SS, Awad HA, McGrath JL. Sourcing cells for in vitro models of human vascular barriers of inflammation. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:979768. [PMID: 36483299 PMCID: PMC9724237 DOI: 10.3389/fmedt.2022.979768] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/29/2022] [Indexed: 07/20/2023] Open
Abstract
The vascular system plays a critical role in the progression and resolution of inflammation. The contributions of the vascular endothelium to these processes, however, vary with tissue and disease state. Recently, tissue chip models have emerged as promising tools to understand human disease and for the development of personalized medicine approaches. Inclusion of a vascular component within these platforms is critical for properly evaluating most diseases, but many models to date use "generic" endothelial cells, which can preclude the identification of biomedically meaningful pathways and mechanisms. As the knowledge of vascular heterogeneity and immune cell trafficking throughout the body advances, tissue chip models should also advance to incorporate tissue-specific cells where possible. Here, we discuss the known heterogeneity of leukocyte trafficking in vascular beds of some commonly modeled tissues. We comment on the availability of different tissue-specific cell sources for endothelial cells and pericytes, with a focus on stem cell sources for the full realization of personalized medicine. We discuss sources available for the immune cells needed to model inflammatory processes and the findings of tissue chip models that have used the cells to studying transmigration.
Collapse
Affiliation(s)
- Molly C. McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Victor Z. Zhang
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - S. Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samuel Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Samantha S. Romanick
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| | - Hani A. Awad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, United States
| |
Collapse
|
10
|
Giblin MJ, Ontko CD, Penn JS. Effect of cytokine-induced alterations in extracellular matrix composition on diabetic retinopathy-relevant endothelial cell behaviors. Sci Rep 2022; 12:12955. [PMID: 35902594 PMCID: PMC9334268 DOI: 10.1038/s41598-022-12683-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
Retinal vascular basement membrane (BM) thickening is an early structural abnormality of diabetic retinopathy (DR). Recent studies suggest that BM thickening contributes to the DR pathological cascade; however, much remains to be elucidated about the exact mechanisms by which BM thickening develops and subsequently drives other pathogenic events in DR. Therefore, we undertook a systematic analysis to understand how human retinal microvascular endothelial cells (hRMEC) and human retinal pericytes (hRP) change their expression of key extracellular matrix (ECM) constituents when treated with diabetes-relevant stimuli designed to model the three major insults of the diabetic environment: hyperglycemia, dyslipidemia, and inflammation. TNFα and IL-1β caused the most potent and consistent changes in ECM expression in both hRMEC and hRP. We also demonstrate that conditioned media from IL-1β-treated human Müller cells caused dose-dependent, significant increases in collagen IV and agrin expression in hRMEC. After narrowing our focus to inflammation-induced changes, we sought to understand how ECM deposited by hRMEC and hRP under inflammatory conditions affects the behavior of naïve hRMEC. Our data demonstrated that diabetes-relevant alterations in ECM composition alone cause both increased adhesion molecule expression by and increased peripheral blood mononuclear cell (PBMC) adhesion to naïve hRMEC. Taken together, these data demonstrate novel roles for inflammation and pericytes in driving BM pathology and suggest that inflammation-induced ECM alterations may advance other pathogenic behaviors in DR, including leukostasis.
Collapse
Affiliation(s)
- Meredith J Giblin
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA.
| | - Cayla D Ontko
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
| | - John S Penn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
11
|
Beth Payne L, Tewari BP, Dunkenberger L, Bond S, Savelli A, Darden J, Zhao H, Willi C, Kanodia R, Gude R, Powell MD, Oestreich KJ, Sontheimer H, Dal-Pra S, Chappell JC. Pericyte Progenitor Coupling to the Emerging Endothelium During Vasculogenesis via Connexin 43. Arterioscler Thromb Vasc Biol 2022; 42:e96-e114. [PMID: 35139658 PMCID: PMC8957572 DOI: 10.1161/atvbaha.121.317324] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/24/2022] [Indexed: 01/23/2023]
Abstract
BACKGROUND Vascular pericytes stabilize blood vessels and contribute to their maturation, while playing other key roles in microvascular function. Nevertheless, relatively little is known about involvement of their precursors in the earliest stages of vascular development, specifically during vasculogenesis. METHODS We combined high-power, time-lapse imaging with transcriptional profiling of emerging pericytes and endothelial cells in reporter mouse and cell lines. We also analyzed conditional transgenic animals deficient in Cx43/Gja1 (connexin 43/gap junction alpha-1) expression within Ng2+ cells. RESULTS A subset of Ng2-DsRed+ cells, likely pericyte/mural cell precursors, arose alongside endothelial cell differentiation and organization and physically engaged vasculogenic endothelium in vivo and in vitro. We found no overlap between this population of differentiating pericyte/mural progenitors and other lineages including hemangiogenic and neuronal/glial cell types. We also observed cell-cell coupling and identified Cx43-based gap junctions contributing to pericyte-endothelial cell precursor communication during vascular assembly. Genetic loss of Cx43/Gja1 in Ng2+ pericyte progenitors compromised embryonic blood vessel formation in a subset of animals, while surviving mutants displayed little-to-no vessel abnormalities, suggesting a resilience to Cx43/Gja1 loss in Ng2+ cells or potential compensation by additional connexin isoforms. CONCLUSIONS Together, our data suggest that a distinct pericyte lineage emerges alongside vasculogenesis and directly communicates with the nascent endothelium via Cx43 during early vessel formation. Cx43/Gja1 loss in pericyte/mural cell progenitors can induce embryonic vessel dysmorphogenesis, but alternate connexin isoforms may be able to compensate. These data provide insight that may reshape the current framework of vascular development and may also inform tissue revascularization/vascularization strategies.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Bhanu P. Tewari
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA
| | - Logan Dunkenberger
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Samantha Bond
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Alyssa Savelli
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - Jordan Darden
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Huaning Zhao
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Caroline Willi
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Ronak Kanodia
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Rosalie Gude
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Michael D. Powell
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Harald Sontheimer
- Department of Neuroscience, University of Virginia, Charlottesville, VA 22903, USA
| | - Sophie Dal-Pra
- Division of Cardiovascular Medicine and Mandel Center for Hypertension Research and Division of Cardiovascular Medicine, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - John C. Chappell
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
- Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
12
|
Richardson IM, Calo CJ, Hind LE. Microphysiological Systems for Studying Cellular Crosstalk During the Neutrophil Response to Infection. Front Immunol 2021; 12:661537. [PMID: 33986752 PMCID: PMC8111168 DOI: 10.3389/fimmu.2021.661537] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Neutrophils are the primary responders to infection, rapidly migrating to sites of inflammation and clearing pathogens through a variety of antimicrobial functions. This response is controlled by a complex network of signals produced by vascular cells, tissue resident cells, other immune cells, and the pathogen itself. Despite significant efforts to understand how these signals are integrated into the neutrophil response, we still do not have a complete picture of the mechanisms regulating this process. This is in part due to the inherent disadvantages of the most-used experimental systems: in vitro systems lack the complexity of the tissue microenvironment and animal models do not accurately capture the human immune response. Advanced microfluidic devices incorporating relevant tissue architectures, cell-cell interactions, and live pathogen sources have been developed to overcome these challenges. In this review, we will discuss the in vitro models currently being used to study the neutrophil response to infection, specifically in the context of cell-cell interactions, and provide an overview of their findings. We will also provide recommendations for the future direction of the field and what important aspects of the infectious microenvironment are missing from the current models.
Collapse
Affiliation(s)
| | | | - Laurel E. Hind
- Department of Chemical and Biological Engineering, University of Colorado – Boulder, Boulder, CO, United States
| |
Collapse
|
13
|
Abstract
Purpose of review Pericytes are essential components of capillaries in many tissues and organs, contributing to vessel stability and integrity, with additional contributions to microvascular function still being discovered. We review current and foundational studies identifying pericyte differentiation mechanics and their roles in the earliest stages of vessel formation. Recent findings Recent advances in pericyte-focused tools and models have illuminated critical aspects of pericyte biology including their roles in vascular development.Pericytes likely collaborate with endothelial cells undergoing vasculogenesis, initiating direct interactions during sprouting and intussusceptive angiogenesis. Pericytes also provide important regulation of vascular growth including mechanisms underlying vessel pruning, rarefaction, and subsequent regrowth.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA
| | - Maruf Hoque
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA
| | - Clifton Houk
- Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.,Previous Affiliations
| | - Jordan Darden
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.,Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA 24061, USA.,Previous Affiliations
| | - John C Chappell
- Center for Heart and Reparative Medicine Research, Fralin Biomedical Research Institute at Virginia Tech-Carilion, Roanoke, VA 24016, USA.,Virginia Tech Carilion School of Medicine, Roanoke, VA, 24016, USA.,Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
14
|
Relevance of Microvascular Flow Assessments in Critically Ill Neonates and Children: A Systematic Review. Pediatr Crit Care Med 2020; 21:373-384. [PMID: 31834246 PMCID: PMC10061570 DOI: 10.1097/pcc.0000000000002201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Resolution of impaired microvascular flow may lag the normalization of macrocirculatory variables. The significance of microcirculatory dysfunction in critically ill children and neonates is unknown, but microcirculatory variables can be measured using Doppler or videomicroscopy imaging techniques. We outline the current understanding of the role of the microcirculation in critical illness, review methods for its assessment, and perform a systematic review of how it has been monitored in critically ill neonates and children. DESIGN Systematic review (PROSPERO CRD42019117993). SETTING Not applicable. SUBJECTS Not applicable. INTERVENTIONS None. MEASUREMENTS AND RESULTS We systematically searched MEDLINE, EMBASE, PubMed, and Web of Science. We included studies of critically ill patients 0 to 18 years old investigating microcirculatory blood flow. Two reviewers analyzed abstracts and articles. Results were qualitatively analyzed due to study heterogeneity. A total of 2,559 abstracts met search criteria, of which 94 underwent full-text review. Of those, 36 met inclusion criteria. Seven studies investigated microcirculatory changes in critically ill children. Twenty studies investigated the microcirculatory changes in neonates with variable diagnoses compared with a diverse set of clinical endpoints. Nine studies assessed the effects of age, sex, and birth weight on microvascular flow in neonates. Across all studies, microcirculatory dysfunction was associated with poor outcomes and may not correlate with observed macrovascular function. CONCLUSIONS Assessment of microvascular flow in critically ill children and neonates is possible, although significant challenges remain. In many such patients, microvascular blood flow is disrupted despite medical management targeting normalized macrovascular variables. Future studies are needed to define normal pediatric microvascular flow variables and to assess the impact of patient and treatment factors on its function.
Collapse
|
15
|
Mota RI, Morgan SE, Bahnson EM. Diabetic vasculopathy: macro and microvascular injury. CURRENT PATHOBIOLOGY REPORTS 2020; 8:1-14. [PMID: 32655983 PMCID: PMC7351096 DOI: 10.1007/s40139-020-00205-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Diabetes is a common and prevalent medical condition as it affects many lives around the globe. Specifically, type-2 Diabetes (T2D) is characterized by chronic systemic inflammation alongside hyperglycemia and insulin resistance in the body, which can result in atherosclerotic legion formation in the arteries and thus progression of related conditions called diabetic vasculopathies. T2D patients are especially at risk for vascular injury; adjunct in many of these patients heir cholesterol and triglyceride levels reach dangerously high levels and accumulate in the lumen of their vascular system. RECENT FINDINGS Microvascular and macrovascular vasculopathies as complications of diabetes can accentuate the onset of organ illnesses, thus it is imperative that research efforts help identify more effective methods for prevention and diagnosis of early vascular injuries. Current research into vasculopathy identification/treatment will aid in the amelioration of diabetes-related symptoms and thus reduce the large number of deaths that this disease accounts annually. SUMMARY This review aims to showcase the evolution and effects of diabetic vasculopathy from development to clinical disease as macrovascular and microvascular complications with a concerted reference to sex-specific disease progression as well.
Collapse
Affiliation(s)
- Roberto I. Mota
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599
| | - Samuel E. Morgan
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
| | - Edward M. Bahnson
- Department of Surgery, Division of Vascular Surgery; University of North Carolina at Chapel Hill, NC 27599
- Center for Nanotechnology in Drug Delivery; University of North Carolina at Chapel Hill, NC 27599
- McAllister Heart Institute, University of North Carolina at Chapel Hill, NC 27599
- Department of Cell Biology and Physiology. University of North Carolina at Chapel Hill, NC 27599
| |
Collapse
|
16
|
Kosyakova N, Kao DD, Figetakis M, López-Giráldez F, Spindler S, Graham M, James KJ, Won Shin J, Liu X, Tietjen GT, Pober JS, Chang WG. Differential functional roles of fibroblasts and pericytes in the formation of tissue-engineered microvascular networks in vitro. NPJ Regen Med 2020; 5:1. [PMID: 31934351 PMCID: PMC6944695 DOI: 10.1038/s41536-019-0086-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 12/05/2019] [Indexed: 12/20/2022] Open
Abstract
Formation of a perfusable microvascular network (μVN) is critical for tissue engineering of solid organs. Stromal cells can support endothelial cell (EC) self-assembly into a μVN, but distinct stromal cell populations may play different roles in this process. Here we describe the differential effects that two widely used stromal cell populations, fibroblasts (FBs) and pericytes (PCs), have on μVN formation. We examined the effects of adding defined stromal cell populations on the self-assembly of ECs derived from human endothelial colony forming cells (ECFCs) into perfusable μVNs in fibrin gels cast within a microfluidic chamber. ECs alone failed to fully assemble a perfusable μVN. Human lung FBs stimulated the formation of EC-lined μVNs within microfluidic devices. RNA-seq analysis suggested that FBs produce high levels of hepatocyte growth factor (HGF). Addition of recombinant HGF improved while the c-MET inhibitor, Capmatinib (INCB28060), reduced μVN formation within devices. Human placental PCs could not substitute for FBs, but in the presence of FBs, PCs closely associated with ECs, formed a common basement membrane, extended microfilaments intercellularly, and reduced microvessel diameters. Different stromal cell types provide different functions in microvessel assembly by ECs. FBs support μVN formation by providing paracrine growth factors whereas PCs directly interact with ECs to modify microvascular morphology.
Collapse
Affiliation(s)
- Natalia Kosyakova
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Derek D. Kao
- Yale College of Undergraduate Studies, Yale University, New Haven, CT 06520 USA
| | - Maria Figetakis
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| | | | - Susann Spindler
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Morven Graham
- Yale Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Kevin J. James
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Jee Won Shin
- Yale College of Undergraduate Studies, Yale University, New Haven, CT 06520 USA
| | - Xinran Liu
- Yale Center for Cellular and Molecular Imaging, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Gregory T. Tietjen
- Department of Biomedical Engineering, Yale University School of Medicine, New Haven, CT 06520 USA
| | - Jordan S. Pober
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519 USA
| | - William G. Chang
- Department of Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT 06520 USA
| |
Collapse
|
17
|
Payne LB, Zhao H, James CC, Darden J, McGuire D, Taylor S, Smyth JW, Chappell JC. The pericyte microenvironment during vascular development. Microcirculation 2019; 26:e12554. [PMID: 31066166 PMCID: PMC6834874 DOI: 10.1111/micc.12554] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 04/29/2019] [Accepted: 05/03/2019] [Indexed: 12/22/2022]
Abstract
Vascular pericytes provide critical contributions to the formation and integrity of the blood vessel wall within the microcirculation. Pericytes maintain vascular stability and homeostasis by promoting endothelial cell junctions and depositing extracellular matrix (ECM) components within the vascular basement membrane, among other vital functions. As their importance in sustaining microvessel health within various tissues and organs continues to emerge, so does their role in a number of pathological conditions including cancer, diabetic retinopathy, and neurological disorders. Here, we review vascular pericyte contributions to the development and remodeling of the microcirculation, with a focus on the local microenvironment during these processes. We discuss observations of their earliest involvement in vascular development and essential cues for their recruitment to the remodeling endothelium. Pericyte involvement in the angiogenic sprouting context is also considered with specific attention to crosstalk with endothelial cells such as through signaling regulation and ECM deposition. We also address specific aspects of the collective cell migration and dynamic interactions between pericytes and endothelial cells during angiogenic sprouting. Lastly, we discuss pericyte contributions to mechanisms underlying the transition from active vessel remodeling to the maturation and quiescence phase of vascular development.
Collapse
Affiliation(s)
- Laura Beth Payne
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
| | - Carissa C. James
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Jordan Darden
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - David McGuire
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Sarah Taylor
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
| | - James W. Smyth
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biological Sciences, College of Science, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| | - John C. Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, Roanoke, VA 24016, USA
- Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061, USA
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
| |
Collapse
|
18
|
Shammout B, Johnson JR. Pericytes in Chronic Lung Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:299-317. [PMID: 31147884 DOI: 10.1007/978-3-030-16908-4_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Pericytes are supportive mesenchymal cells located on the abluminal surface of the microvasculature, with key roles in regulating microvascular homeostasis, leukocyte extravasation, and angiogenesis. A subpopulation of pericytes with progenitor cell function has recently been identified, with evidence demonstrating the capacity of tissue-resident pericytes to differentiate into the classic MSC triad, i.e., osteocytes, chondrocytes, and adipocytes. Beyond the regenerative capacity of these cells, studies have shown that pericytes play crucial roles in various pathologies in the lung, both acute (acute respiratory distress syndrome and sepsis-related pulmonary edema) and chronic (pulmonary hypertension, lung tumors, idiopathic pulmonary fibrosis, asthma, and chronic obstructive pulmonary disease). Taken together, this body of evidence suggests that, in the presence of acute and chronic pulmonary inflammation, pericytes are not associated with tissue regeneration and repair, but rather transform into scar-forming myofibroblasts, with devastating outcomes regarding lung structure and function. It is hoped that further studies into the mechanisms of pericyte-to-myofibroblast transition and migration to fibrotic foci will clarify the roles of pericytes in chronic lung disease and open up new avenues in the search for novel treatments for human pulmonary pathologies.
Collapse
Affiliation(s)
- Bushra Shammout
- Biosciences Department, School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Jill R Johnson
- Biosciences Department, School of Life and Health Sciences, Aston University, Birmingham, UK.
| |
Collapse
|
19
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
20
|
Zhao H, Chappell JC. Microvascular bioengineering: a focus on pericytes. J Biol Eng 2019; 13:26. [PMID: 30984287 PMCID: PMC6444752 DOI: 10.1186/s13036-019-0158-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/15/2019] [Indexed: 12/26/2022] Open
Abstract
Capillaries within the microcirculation are essential for oxygen delivery and nutrient/waste exchange, among other critical functions. Microvascular bioengineering approaches have sought to recapitulate many key features of these capillary networks, with an increasing appreciation for the necessity of incorporating vascular pericytes. Here, we briefly review established and more recent insights into important aspects of pericyte identification and function within the microvasculature. We then consider the importance of including vascular pericytes in various bioengineered microvessel platforms including 3D culturing and microfluidic systems. We also discuss how vascular pericytes are a vital component in the construction of computational models that simulate microcirculation phenomena including angiogenesis, microvascular biomechanics, and kinetics of exchange across the vessel wall. In reviewing these topics, we highlight the notion that incorporating pericytes into microvascular bioengineering applications will increase their utility and accelerate the translation of basic discoveries to clinical solutions for vascular-related pathologies.
Collapse
Affiliation(s)
- Huaning Zhao
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA
| | - John C Chappell
- Center for Heart and Reparative Medicine, Fralin Biomedical Research Institute, 2 Riverside Circle, Roanoke, VA 24016 USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic State Institute and State University, Blacksburg, VA 24061 USA.,3Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016 USA
| |
Collapse
|
21
|
Morikawa S, Iribar H, Gutiérrez-Rivera A, Ezaki T, Izeta A. Pericytes in Cutaneous Wound Healing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1147:1-63. [DOI: 10.1007/978-3-030-16908-4_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
22
|
Zhao H, Darden J, Chappell JC. Establishment and characterization of an embryonic pericyte cell line. Microcirculation 2018; 25:e12461. [PMID: 29770525 DOI: 10.1111/micc.12461] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/07/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Pericytes are specialized perivascular cells embedded within the basement membrane. These cells envelope the abluminal surface of endothelial cells and promote microvessel homeostasis. Recent discoveries of unique pericyte functions, particularly in neural tissues, underscore the need for overcoming existing challenges in establishing a functionally validated pericyte cell line. Here, we present methodologies for addressing these challenges as well as an embryonic pericyte cell line for use with in vitro and ex vivo experimental models. METHODS We isolated an enriched population of NG2:DsRed+ pericytes from E12.5 mice. This pericyte cell line was compared to MEFs with respect to gene expression, cell morphology and migration, and engagement with endothelial cells during junction stabilization and angiogenesis. RESULTS NG2+ pericytes displayed gene expression patterns, cell morphology, and 2D migration behaviors distinct from MEFs. In three different vessel formation models, pericytes from this line migrated to and incorporated into developing vessels. When co-cultured with HUVECs, these pericytes stimulated more robust VE-Cadherin junctions between HUVECs as compared to MEFs, as well as contributed to HUVEC organization into primitive vascular structures. CONCLUSIONS Our data support use of this pericyte cell line in a broad range of models to further understand pericyte functionality during normal and pathological conditions.
Collapse
Affiliation(s)
- Huaning Zhao
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jordan Darden
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - John C Chappell
- Center for Heart and Regenerative Medicine, Virginia Tech Carilion Research Institute, Roanoke, VA, USA.,Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Graduate Program in Translational Biology, Medicine, and Health, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA
| |
Collapse
|
23
|
Sava P, Ramanathan A, Dobronyi A, Peng X, Sun H, Ledesma-Mendoza A, Herzog EL, Gonzalez AL. Human pericytes adopt myofibroblast properties in the microenvironment of the IPF lung. JCI Insight 2017; 2:96352. [PMID: 29263297 DOI: 10.1172/jci.insight.96352] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/23/2017] [Indexed: 12/20/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal disease of unknown etiology characterized by a compositionally and mechanically altered extracellular matrix. Poor understanding of the origin of α-smooth muscle actin (α-SMA) expressing myofibroblasts has hindered curative therapies. Though proposed as a source of myofibroblasts in mammalian tissues, identification of microvascular pericytes (PC) as contributors to α-SMA-expressing populations in human IPF and the mechanisms driving this accumulation remain unexplored. Here, we demonstrate enhanced detection of α-SMA+ cells coexpressing the PC marker neural/glial antigen 2 in the human IPF lung. Isolated human PC cultured on decellularized IPF lung matrices adopt expression of α-SMA, demonstrating that these cells undergo phenotypic transition in response to direct contact with the extracellular matrix (ECM) of the fibrotic human lung. Using potentially novel human lung-conjugated hydrogels with tunable mechanical properties, we decoupled PC responses to matrix composition and stiffness to show that α-SMA+ PC accumulate in a mechanosensitive manner independent of matrix composition. PC activated with TGF-β1 remodel the normal lung matrix, increasing tissue stiffness to facilitate the emergence of α-SMA+ PC via MKL-1/MTRFA mechanotranduction. Nintedanib, a tyrosine-kinase inhibitor approved for IPF treatment, restores the elastic modulus of fibrotic lung matrices to reverse the α-SMA+ phenotype. This work furthers our understanding of the role that microvascular PC play in the evolution of IPF, describes the creation of an ex vivo platform that advances the study of fibrosis, and presents a potentially novel mode of action for a commonly used antifibrotic therapy that has great relevance for human disease.
Collapse
Affiliation(s)
- Parid Sava
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Anand Ramanathan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Amelia Dobronyi
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| | - Xueyan Peng
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Huanxing Sun
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | | | - Erica L Herzog
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
24
|
Jiang Q, Gao Y, Wang C, Tao R, Wu Y, Zhan K, Liao M, Lu N, Lu Y, Wilcox CS, Luo J, Jiang LH, Yang W, Han F. Nitration of TRPM2 as a Molecular Switch Induces Autophagy During Brain Pericyte Injury. Antioxid Redox Signal 2017; 27:1297-1316. [PMID: 28292196 DOI: 10.1089/ars.2016.6873] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
AIMS Dysfunction of neurovascular pericytes underlies breakdown of the blood-brain barrier, but the molecular mechanisms are largely unknown. In this study, we evaluated the role of the transient receptor potential melastatin-related 2 (TRPM2) channel and autophagy during brain pericyte injury both in vitro and in vivo. RESULTS A rapid induction in autophagy in human brain vascular pericytes, in the zinc oxide nanoparticles (ZnO-NP)-induced cell stress model, was paralleled with an increase in the expression of the TRPM2-S truncated isoform, which was abolished by treatment with a nitric oxide synthase inhibitor and a peroxynitrite scavenger. Furthermore, Y1485 in the C-terminus of the TRPM2 protein was identified as the tyrosine nitration substrate by mass spectrometry. Overexpression of the Y1485S TRPM2 mutant reduced LC3-II accumulation and pericyte injury induced by ZnO-NP. Consistently, LC3-II accumulation was reduced and pericytes were better preserved in intact brain microvessels of the TRPM2 knockout mice after ZnO-NP-induced vascular injury. Innovation and Conclusions: Our present study has revealed a novel mechanism of autophagy disturbance secondary to nitrosative stress-induced tyrosine nitration of TRPM2 during pericyte injury. Antioxid. Redox Signal. 27, 1297-1316.
Collapse
Affiliation(s)
- Quan Jiang
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China
| | - Yinping Gao
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China .,2 School of Medicine, Zhejiang University City College , Hangzhou, Zhejiang, China
| | - Chengkun Wang
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China
| | - Rongrong Tao
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China
| | - Yan Wu
- 3 Key Laboratory of Medical Neurobiology, Department of Neurobiology, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Kaiyu Zhan
- 3 Key Laboratory of Medical Neurobiology, Department of Neurobiology, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Meihua Liao
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China
| | - Nannan Lu
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China
| | - Yingmei Lu
- 2 School of Medicine, Zhejiang University City College , Hangzhou, Zhejiang, China
| | - Christopher S Wilcox
- 4 Hypertension, Kidney, and Vascular Research Center, Georgetown University Medical Center , Washington, District of Columbia
| | - Jianhong Luo
- 3 Key Laboratory of Medical Neurobiology, Department of Neurobiology, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Lin-Hua Jiang
- 5 Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds , Leeds, United Kingdom .,6 Sino-UK Joint Laboratory of Brain Function and Injury, and Department of Physiology and Neurobiology, Xinxiang Medical University , Henan, China
| | - Wei Yang
- 3 Key Laboratory of Medical Neurobiology, Department of Neurobiology, Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine , Hangzhou, Zhejiang, China
| | - Feng Han
- 1 Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Discovery of High-Affinity PDGF-VEGFR Interactions: Redefining RTK Dynamics. Sci Rep 2017; 7:16439. [PMID: 29180757 PMCID: PMC5704011 DOI: 10.1038/s41598-017-16610-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 11/14/2017] [Indexed: 01/15/2023] Open
Abstract
Nearly all studies of angiogenesis have focused on uni-family ligand-receptor binding, e.g., VEGFs bind to VEGF receptors, PDGFs bind to PDGF receptors, etc. The discovery of VEGF-PDGFRs binding challenges this paradigm and calls for investigation of other ligand-receptor binding possibilities. We utilized surface plasmon resonance to identify and measure PDGF-to-VEGFR binding rates, establishing cut-offs for binding and non-binding interactions. We quantified the kinetics of the recent VEGF-A:PDGFRβ interaction for the first time with KD = 340 pM. We discovered new PDGF:VEGFR2 interactions with PDGF-AA:R2 KD = 530 nM, PDGF-AB:R2 KD = 110 pM, PDGF-BB:R2 KD = 40 nM, and PDGF-CC:R2 KD = 70 pM. We computationally predict that cross-family PDGF binding could contribute up to 96% of VEGFR2 ligation in healthy conditions and in cancer. Together the identification, quantification, and simulation of these novel cross-family interactions posits new mechanisms for understanding anti-angiogenic drug resistance and presents an expanded role of growth factor signaling with significance in health and disease.
Collapse
|
26
|
Lauridsen HM, Pellowe AS, Ramanathan A, Liu R, Miller-Jensen K, McNiff JM, Pober JS, Gonzalez AL. Tumor Necrosis Factor-α and IL-17A Activation Induces Pericyte-Mediated Basement Membrane Remodeling in Human Neutrophilic Dermatoses. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1893-1906. [PMID: 28609645 DOI: 10.1016/j.ajpath.2017.04.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/03/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
Sweet syndrome (SS) is a prototypical neutrophilic dermatosis, a class of inflammatory diseases marked by elevated levels of tumor necrosis factor (TNF)-α and IL-17A, pathologic neutrophil recruitment, and microvascular remodeling. Histologic analyses of four matrix proteins-collagen I and IV, laminin, and fibronectin-in skin biopsies of patients with SS reveal that the basement membrane of dermal postcapillary venules undergoes changes in structure and composition. Increased neutrophil recruitment in vivo was associated with increases in collagen IV, decreases in laminin, and varied changes in fibronectin. In vitro studies using TNF-α and IL-17A were conducted to dissect basement membrane remodeling. Prolonged dual activation of cultured human pericytes with TNF-α and IL-17A augmented collagen IV production, similar to in vivo remodeling. Co-activation of pericytes with TNF-α and IL-17A also elevated fibronectin levels with little direct effect on laminin. However, the expression of fibronectin- and laminin-specific matrix metalloproteinases (MMPs), particularly MMP-3, was significantly up-regulated. Interactions between pericytes and neutrophils in culture yielded even higher levels of active MMPs, facilitating fibronectin and laminin degradation, and likely contributing to the varied levels of detectable fibronectin and the decreases in laminin observed in vivo. These data indicate that pericyte-neutrophil interactions play a role in mediating microvascular changes in SS and suggest that targeting MMP-3 may be effective in protecting vascular wall integrity.
Collapse
Affiliation(s)
- Holly M Lauridsen
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Anand Ramanathan
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut
| | - Rebecca Liu
- Department of Immunobiology, Yale University, New Haven, Connecticut
| | | | - Jennifer M McNiff
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Jordan S Pober
- Department of Immunobiology, Yale University, New Haven, Connecticut; Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Anjelica L Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut.
| |
Collapse
|
27
|
Valvassori SS, Resende WR, Varela RB, Arent CO, Gava FF, Peterle BR, Dal-Pont GC, Carvalho AF, Andersen ML, Quevedo J. The Effects of Histone Deacetylase Inhibition on the Levels of Cerebral Cytokines in an Animal Model of Mania Induced by Dextroamphetamine. Mol Neurobiol 2017; 55:1430-1439. [PMID: 28168425 DOI: 10.1007/s12035-017-0384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 01/12/2023]
Abstract
Studies have suggested the involvement of inflammatory processes in the physiopathology of bipolar disorder. Preclinical evidences have shown that histone deacetylase inhibitors may act as mood-stabilizing agents and protect the brain in models of mania and depression. The aim of the present study was to evaluate the effects of sodium butyrate (SB) and valproate (VPA) on behavioral changes, histone deacetylase activity, and the levels of cytokines in an animal model of mania induced by dextroamphetamine (d-AMPH). Wistar rats were first given d-AMPH or saline (Sal) for a period of 14 days, and then, between the 8th and 14th days, the rats were treated with SB, VPA, or Sal. The activity of histone deacetylase and the levels of cytokines (interleukin (IL) IL-4, IL-6, and IL-10 and tumor necrosis factor-alpha (TNF-α)) were evaluated in the frontal cortex and striatum of the rats. The administration of d-AMPH increased the activity of histone deacetylase in the frontal cortex. Administration of SB or VPA decreased the levels of histone deacetylase activity in the frontal cortex and striatum of rats. SB per se increased the levels of cytokines in both of the brain structures evaluated. AMPH increased the levels of cytokines in both of the brain structures evaluated, and VPA reversed this alteration. The effects of SB on d-AMPH-induced cytokine alterations were dependent on the brain structure and the cytokine evaluated. Despite VPA and SB having a similar mechanism of action, both being histone deacetylase inhibitors, they showed different effects on the levels of cytokines. The present study reinforces the need for more research into histone deacetylase inhibitors being used as a possible target for new medications in the treatment of bipolar disorder.
Collapse
Affiliation(s)
- Samira S Valvassori
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil. .,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Wilson R Resende
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Roger B Varela
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Fernanda F Gava
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - Bruna R Peterle
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil.,Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gustavo C Dal-Pont
- Laboratory of Neuronal Signaling and Psychopharmacology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC University), Criciúma, SC, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Monica L Andersen
- Departamento de Psicobiologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.,Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.,Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth) Medical School, Houston, TX, USA.,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| |
Collapse
|
28
|
Mayo JN, Bearden SE. Driving the Hypoxia-Inducible Pathway in Human Pericytes Promotes Vascular Density in an Exosome-Dependent Manner. Microcirculation 2015; 22:711-23. [PMID: 26243428 PMCID: PMC4715585 DOI: 10.1111/micc.12227] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 07/29/2015] [Indexed: 12/13/2022]
Abstract
OBJECTIVES The mechanisms involved in activating pericytes, cells that ensheath capillaries, to engage in the formation of new capillaries, angiogenesis, remain unknown. In this study, the hypothesis was tested that pericytes could be stimulated to promote angiogenesis by driving the HIF pathway. METHODS Pericytes were stimulated with CoCl2 to activate the HIF pathway. Stimulated pericytes were cocultured with endothelial cells in a wound healing assay and in a 3D collagen matrix assay of angiogenesis. A culture system of spinal cord tissue was used to assess microvascular outcomes after treatment with stimulated pericytes. Pharmaceutical inhibition of exosome production was also performed. RESULTS Treatment with stimulated pericytes resulted in faster wound healing (1.92 ± 0.18 fold increase, p < 0.05), greater endothelial cord formation (2.9 ± 0.14 fold increase, p < 0.05) in cell culture assays, and greater vascular density (1.78 ± 0.23 fold increase, p < 0.05) in spinal cord tissue. Exosome secretion and the physical presence of stimulated pericytes were necessary in the promotion of angiogenic outcomes. CONCLUSIONS These results elucidate a mechanism that may be exploited to enhance features of angiogenesis in the CNS.
Collapse
Affiliation(s)
- Jamie N. Mayo
- Department of Biological Sciences, Idaho State University, 921 S. 8th Ave Stop 8007, Pocatello, ID, 83209
| | - Shawn E. Bearden
- Department of Biological Sciences, Idaho State University, 921 S. 8th Ave Stop 8007, Pocatello, ID, 83209
- ISU Biomedical Research Institute, Idaho State University, 921 S. 8th Ave Stop 8046, Pocatello, ID, 83209
| |
Collapse
|
29
|
Kim ND, Luster AD. The role of tissue resident cells in neutrophil recruitment. Trends Immunol 2015; 36:547-55. [PMID: 26297103 DOI: 10.1016/j.it.2015.07.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/14/2015] [Accepted: 07/17/2015] [Indexed: 01/09/2023]
Abstract
Neutrophils are first responders of the immune system, rapidly migrating into affected tissues in response to injury or infection. To effectively call in this first line of defense, strategically placed cells within the vasculature and tissue respond to noxious stimuli by sending out coordinated signals that recruit neutrophils. Regulation of organ-specific neutrophil entry occurs at two levels. First, the vasculature supplying the organ provides cues for neutrophil egress out of the bloodstream in a manner dependent upon its unique cellular composition and architectural features. Second, resident immune cells and stromal cells within the organ send coordinated signals that guide neutrophils to their final destination. Here, we review recent findings that highlight the importance of these tissue-specific responses in the regulation of neutrophil recruitment and the initiation and resolution of inflammation.
Collapse
Affiliation(s)
- Nancy D Kim
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew D Luster
- Division of Rheumatology, Allergy and Immunology, Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
30
|
|
31
|
Pellowe AS, Gonzalez AL. Extracellular matrix biomimicry for the creation of investigational and therapeutic devices. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 8:5-22. [PMID: 26053111 DOI: 10.1002/wnan.1349] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/26/2015] [Accepted: 03/27/2015] [Indexed: 01/24/2023]
Abstract
The extracellular matrix (ECM) is a web of fibrous proteins that serves as a scaffold for tissues and organs, and is important for maintaining homeostasis and facilitating cellular adhesion. Integrin transmembrane receptors are the primary adhesion molecules that anchor cells to the ECM, thus integrating cells with their microenvironments. Integrins play a critical role in facilitating cell-matrix interactions and promoting signal transduction, both from the cell to the ECM and vice versa, ultimately mediating cell behavior. For this reason, many advanced biomaterials employ biomimicry by replicating the form and function of fibrous ECM proteins. The ECM also acts as a reservoir for small molecules and growth factors, wherein fibrous proteins directly bind and present these bioactive moieties that facilitate cell activity. Therefore biomimicry can be enhanced by incorporating small molecules into ECM-like substrates. Biomimetic ECM materials have served as invaluable research tools for studying interactions between cells and the surrounding ECM, revealing that cell-matrix signaling is driven by mechanical forces, integrin engagement, and small molecules. Mimicking pathological ECMs has also elucidated disease specific cell behaviors. For example, biomimetic tumor microenvironments have been used to induce metastatic cell behaviors, and have thereby shown promise for in vitro cancer drug testing and targeting. Further, ECM-like substrates have been successfully employed for autologous cell recolonization for tissue engineering and wound healing. As we continue to learn more about the mechanical and biochemical characteristics of the ECM, these properties can be harnessed to develop new biomaterials, biomedical devices, and therapeutics.
Collapse
Affiliation(s)
- Amanda S Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | |
Collapse
|
32
|
Wong SP, Rowley JE, Redpath AN, Tilman JD, Fellous TG, Johnson JR. Pericytes, mesenchymal stem cells and their contributions to tissue repair. Pharmacol Ther 2015; 151:107-20. [PMID: 25827580 DOI: 10.1016/j.pharmthera.2015.03.006] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 03/18/2015] [Indexed: 12/13/2022]
Abstract
Regenerative medicine using mesenchymal stem cells for the purposes of tissue repair has garnered considerable public attention due to the potential of returning tissues and organs to a normal, healthy state after injury or damage has occurred. To achieve this, progenitor cells such as pericytes and bone marrow-derived mesenchymal stem cells can be delivered exogenously, mobilised and recruited from within the body or transplanted in the form organs and tissues grown in the laboratory from stem cells. In this review, we summarise the recent evidence supporting the use of endogenously mobilised stem cell populations to enhance tissue repair along with the use of mesenchymal stem cells and pericytes in the development of engineered tissues. Finally, we conclude with an overview of currently available therapeutic options to manipulate endogenous stem cells to promote tissue repair.
Collapse
Affiliation(s)
- Suet-Ping Wong
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jessica E Rowley
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Andia N Redpath
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jessica D Tilman
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Tariq G Fellous
- National Heart and Lung Institute, Imperial College London, United Kingdom
| | - Jill R Johnson
- National Heart and Lung Institute, Imperial College London, United Kingdom
| |
Collapse
|