1
|
Stine W, Akiyama T, Weiss D, Kim M. Lineage-dependent variations in single-cell antibiotic susceptibility reveal the selective inheritance of phenotypic resistance in bacteria. Nat Commun 2025; 16:4655. [PMID: 40389422 DOI: 10.1038/s41467-025-59807-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/06/2025] [Indexed: 05/21/2025] Open
Abstract
Genetically identical bacterial cells often exhibit heterogeneous responses to antibiotics - some survive, others die. Here, we show that this heterogeneity propagates across generations to give rise to phenotypic resistance. Using real-time single-cell tracking, we exposed Escherichia coli to the β-lactam cefsulodin at its clinical breakpoint concentration and analyzed cell fate within genealogical trees statistically. Cell survival was strongly correlated among family members, driving the selective enrichment of robust lineages within an otherwise susceptible population. Our genealogical population model identified heritable phenotypic resistance as a key factor underlying this enrichment, which was validated experimentally. Comparing enrichment dynamics between the wild-type and a tolC knock-out strain, deficient in multidrug efflux, uncovered nuanced changes that increased the intergenerational memory of phenotypic resistance. Our findings provide evidence for heritable phenotypic resistance and demonstrate how its propagation through cell-to-cell heterogeneity enables the survival of minority cells within isogenic populations.
Collapse
Affiliation(s)
- Wesley Stine
- Department of Physics, Emory University, Atlanta, GA, USA
| | - Tatsuya Akiyama
- Department of Physics, Emory University, Atlanta, GA, USA
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
| | - David Weiss
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, GA, USA
- Antibiotic Research Center, Emory University, Atlanta, GA, USA
| | - Minsu Kim
- Department of Physics, Emory University, Atlanta, GA, USA.
- Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, USA.
- Antibiotic Research Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Duffey M, Jumde RP, da Costa RM, Ropponen HK, Blasco B, Piddock LJ. Extending the Potency and Lifespan of Antibiotics: Inhibitors of Gram-Negative Bacterial Efflux Pumps. ACS Infect Dis 2024; 10:1458-1482. [PMID: 38661541 PMCID: PMC11091901 DOI: 10.1021/acsinfecdis.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/26/2024]
Abstract
Efflux is a natural process found in all prokaryotic and eukaryotic cells that removes a diverse range of substrates from inside to outside. Many antibiotics are substrates of bacterial efflux pumps, and modifications to the structure or overexpression of efflux pumps are an important resistance mechanism utilized by many multidrug-resistant bacteria. Therefore, chemical inhibition of bacterial efflux to revitalize existing antibiotics has been considered a promising approach for antimicrobial chemotherapy over two decades, and various strategies have been employed. In this review, we provide an overview of bacterial multidrug resistance (MDR) efflux pumps, of which the resistance nodulation division (RND) efflux pumps are considered the most clinically relevant in Gram-negative bacteria, and describe over 50 efflux inhibitors that target such systems. Although numerous efflux inhibitors have been identified to date, none have progressed into clinical use because of formulation, toxicity, and pharmacokinetic issues or a narrow spectrum of inhibition. For these reasons, the development of efflux inhibitors has been considered a difficult and complex area of research, and few active preclinical studies on efflux inhibitors are in progress. However, recently developed tools, including but not limited to computational tools including molecular docking models, offer hope that further research on efflux inhibitors can be a platform for research and development of new bacterial efflux inhibitors.
Collapse
Affiliation(s)
- Maëlle Duffey
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Ravindra P. Jumde
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Renata M.A. da Costa
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Henni-Karoliina Ropponen
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Benjamin Blasco
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| | - Laura J.V. Piddock
- Global
Antibiotic Research & Development Partnership (GARDP), Chemin Camille-Vidart 15, 1202 Geneva, Switzerland
| |
Collapse
|
3
|
Rong C, Chen H, Wang Z, Zhao S, Dong D, Qu J, Zheng N, Liu H, Hua X. Inactivation of antibiotic resistant bacteria by Fe 3O 4 @MoS 2 activated persulfate and control of antibiotic resistance dissemination risk. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133533. [PMID: 38286046 DOI: 10.1016/j.jhazmat.2024.133533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/31/2024]
Abstract
Antibiotic resistance poses a global environmental challenge that jeopardizes human health and ecosystem stability. Antibiotic resistant bacteria (ARB) significantly promote the spreading and diffusion of antibiotic resistance. This study investigated the efficiency and mechanism of inactivating tetracycline-resistant Escherichia coli (TR E. coli) using Fe3O4 @MoS2 activated persulfate (Fe3O4 @MoS2/PS). Under optimized conditions (200 mg/L Fe3O4 @MoS2, 4 mM PS, 35 °C), TR E. coli (∼7.5 log CFU/mL) could be fully inactivated within 20 min. The primary reactive oxygen species (ROS) responsible for TR E. coli inactivation in the Fe3O4 @MoS2/PS system were hydroxyl radicals (•OH) and superoxide radicals (•O2-). Remarkably, the efflux pump protein was targeted and damaged by the generated ROS during the inactivation process, resulting in cell membrane rupture and efflux of cell content. Additionally, the horizontal transmission ability of residual antibiotic resistance genes (ARGs) harboring in the TR E. coli was also reduced after the inactivation treatment. This study offers an efficient approach for TR E. coli inactivation and substantial mitigation of antibiotic resistance dissemination risk.
Collapse
Affiliation(s)
- Chang Rong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Haijun Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhuowen Wang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Shiyi Zhao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Haiyang Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China; School of Environment, Northeast Normal University, Changchun 130117, China.
| | - Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Dashtbani-Roozbehani A, Chitsaz M, Brown MH. The role of TMS 12 in the staphylococcal multidrug efflux protein QacA. J Antimicrob Chemother 2023:7143693. [PMID: 37100459 DOI: 10.1093/jac/dkad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
OBJECTIVES To elucidate the importance of a region in QacA predicted to be important in antimicrobial substrate recognition. METHODS A total of 38 amino acid residues within or flanking putative transmembrane helix segment (TMS) 12 of QacA were individually replaced with cysteine using site-directed mutagenesis. The impact of these mutations on protein expression, drug resistance, transport activity and interaction with sulphhydryl-binding compounds was determined. RESULTS Accessibility analysis of cysteine-substituted mutants identified the extents of TMS 12, which allowed for refinement of the QacA topology model. Mutation of Gly-361, Gly-379 and Ser-387 in QacA resulted in reduced resistance to at least one bivalent substrate. Interaction with sulphhydryl-binding compounds in efflux and binding assays demonstrated the role of Gly-361 and Ser-387 in the binding and transport pathway of specific substrates. The highly conserved residue Gly-379 was found to be important for the transport of bivalent substrates, commensurate with the role of glycine residues in helical flexibility and interhelical interactions. CONCLUSIONS TMS 12 and its external flanking loop is required for the structural and functional integrity of QacA and contains amino acids directly involved in the interaction with substrates.
Collapse
Affiliation(s)
| | - Mohsen Chitsaz
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
5
|
Ikujuni AP, Budiardjo SJ, Dhar R, Slusky JSG. Detergent headgroups control TolC folding in vitro. Biophys J 2023; 122:1185-1197. [PMID: 36772796 PMCID: PMC10111266 DOI: 10.1016/j.bpj.2023.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/29/2022] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
TolC is the trimeric outer membrane component of the efflux pump system in Escherichia coli that is responsible for antibiotic efflux from bacterial cells. Overexpression of efflux pumps has been reported to decrease susceptibility to antibiotics in a variety of bacterial pathogens. Reliable production of membrane proteins allows for the biophysical and structural characterization needed to better understand efflux and for the development of therapeutics. Preparation of recombinant protein for biochemical/structural studies often involves the production of proteins as inclusion body aggregates from which active proteins are recovered. Here, we find that the in vitro folding of TolC into its functional trimeric state from inclusion bodies is dependent on the headgroup composition of detergent micelles used. Nonionic detergent favors the formation of functional trimeric TolC, whereas zwitterionic detergents induce the formation of a non-native, oligomeric TolC fold. We also find that nonionic detergents with shorter alkyl lengths facilitate TolC folding. It remains to be seen whether the charges in lipid headgroups have similar effects on membrane insertion and folding in biological systems.
Collapse
Affiliation(s)
| | - S Jimmy Budiardjo
- Center for Computational Biology, The University of Kansas, Lawrence, Kansas
| | - Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas
| | - Joanna S G Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, Kansas; Center for Computational Biology, The University of Kansas, Lawrence, Kansas.
| |
Collapse
|
6
|
Chodkowski JL, Shade A. A coevolution experiment between Flavobacterium johnsoniae and Burkholderia thailandensis reveals parallel mutations that reduce antibiotic susceptibility. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36724091 DOI: 10.1099/mic.0.001267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One interference mechanism of bacterial competition is the production of antibiotics. Bacteria exposed to antibiotics can resist antibiotic inhibition through intrinsic or acquired mechanisms. Here, we performed a coevolution experiment to understand the long-term consequences of antibiotic production and antibiotic susceptibility for two environmental bacterial strains. We grew five independent lines of the antibiotic-producing environmental strain, Burkholderia thailandensis E264, and the antibiotic-inhibited environmental strain, Flavobacterium johnsoniae UW101, together and separately on agar plates for 7.5 months (1.5 month incubations), transferring each line five times to new agar plates. We observed that the F. johnsoniae ancestor could tolerate the B. thailandensis-produced antibiotic through efflux mechanisms, but that the coevolved lines had reduced susceptibility. We then sequenced genomes from the coevolved and monoculture F. johnsoniae lines, and uncovered mutational ramifications for the long-term antibiotic exposure. The coevolved genomes from F. johnsoniae revealed four potential mutational signatures of reduced antibiotic susceptibility that were not observed in the evolved monoculture lines. Two mutations were found in tolC: one corresponding to a 33 bp deletion and the other corresponding to a nonsynonymous mutation. A third mutation was observed as a 1 bp insertion coding for a RagB/SusD nutrient uptake protein. The last mutation was a G83R nonsynonymous mutation in acetyl-coA carboxylayse carboxyltransferase subunit alpha (AccA). Deleting the 33 bp from tolC in the F. johnsoniae ancestor reduced antibiotic susceptibility, but not to the degree observed in coevolved lines. Furthermore, the accA mutation matched a previously described mutation conferring resistance to B. thailandensis-produced thailandamide. Analysis of B. thailandensis transposon mutants for thailandamide production revealed that thailandamide was bioactive against F. johnsoniae, but also suggested that additional B. thailandensis-produced antibiotics were involved in the inhibition of F. johnsoniae. This study reveals how multi-generational interspecies interactions, mediated through chemical exchange, can result in novel interaction-specific mutations, some of which may contribute to reductions in antibiotic susceptibility.
Collapse
Affiliation(s)
- John L Chodkowski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.,Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA.,Program in Ecology, Evolution and Behavior, Michigan State University, East Lansing, MI 48824, USA.,Univ Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1, Ecole Centrale de Lyon, Ampère, UMR5005, 69134, Ecully cedex, France
| |
Collapse
|
7
|
Quantification and surface localization of the hemolysin A type 1 secretion system at the endogenous level and under conditions of overexpression. Appl Environ Microbiol 2021; 88:e0189621. [PMID: 34851699 DOI: 10.1128/aem.01896-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Secretion systems are essential for Gram-negative bacteria as these nanomachineries allow a communication with the outside world by exporting proteins into the extracellular space or directly into the cytosol of a host cell. For example, type one secretion systems (T1SS) secrete a broad range of substrates across both membranes into the extracellular space. One well-known example is the hemolysin A (HlyA) T1SS from Escherichia coli (E. coli), which consists of an ABC transporter (HlyB), a membrane fusion protein (HlyD), the outer membrane protein TolC and the substrate HlyA, a member of the family of RTX (repeats in toxins) toxins. Here, we determined the amount of TolC at the endogenous level (parental strain, UTI89) and under conditions of overexpression (T7 expression system, BL21(DE3)-BD). The overall amount of TolC was not influenced by the overexpression of the HlyBD complex. Moving one step further, we determined the localization of the HlyA T1SS by super-resolution microscopy. In contrast to other bacterial secretion systems, no polarization was observed with respect to endogenous or overexpression levels. Additionally, the cell growth and division cycle did not influence the polarization. Most importantly, the size of the observed T1SS clusters did not correlate with the recently proposed outer membrane islands. These data indicate that T1SS cluster at the outer membrane generating domains of so far not described identity. Importance Uropathogenic Escherichia coli (UPEC) strains cause about 110 million urinary tract infections each year worldwide representing a global burden to the healthcare system. UPEC secrete many virulence factors among these the TX toxin hemolysin A via a cognate T1SS into the extracellular space. In this study, we determined the endogenous copy number of the HlyA T1SS in UTI89 and analyzed the surface localization in BL21(DE3)-BD and UTI89, respectively. With approximately 800 copies of the T1SS in UTI89, this is one of the highest expressed bacterial secretion systems. Furthermore and in clear contrast to other secretion systems, no polarized surface localization was detected. Finally, quantitative analysis of the super-resolution data revealed that clusters of the HlyA T1SS are not related to the recently identified outer membrane protein islands. These data provide insights into the quantitative molecular architecture of the HlyA T1SS.
Collapse
|
8
|
D’Cunha N, Moniruzzaman M, Haynes K, Malloci G, Cooper CJ, Margiotta E, Vargiu AV, Uddin MR, Leus IV, Cao F, Parks JM, Rybenkov VV, Ruggerone P, Zgurskaya HI, Walker JK. Mechanistic Duality of Bacterial Efflux Substrates and Inhibitors: Example of Simple Substituted Cinnamoyl and Naphthyl Amides. ACS Infect Dis 2021; 7:2650-2665. [PMID: 34379382 DOI: 10.1021/acsinfecdis.1c00100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Antibiotic resistance poses an immediate and growing threat to human health. Multidrug efflux pumps are promising targets for overcoming antibiotic resistance with small-molecule therapeutics. Previously, we identified a diaminoquinoline acrylamide, NSC-33353, as a potent inhibitor of the AcrAB-TolC efflux pump in Escherichia coli. This inhibitor potentiates the antibacterial activities of novobiocin and erythromycin upon binding to the membrane fusion protein AcrA. It is also a substrate for efflux and lacks appreciable intrinsic antibacterial activity of its own in wild-type cells. Here, we have modified the substituents of the cinnamoyl group of NSC-33353, giving rise to analogs that retain the ability to inhibit efflux, lost the features of the efflux substrates, and gained antibacterial activity in wild-type cells. The replacement of the cinnamoyl group with naphthyl isosteres generated compounds that lack antibacterial activity but are both excellent efflux pump inhibitors and substrates. Surprisingly, these inhibitors potentiate the antibacterial activity of novobiocin but not erythromycin. Surface plasmon resonance experiments and molecular docking suggest that the replacement of the cinnamoyl group with naphthyl shifts the affinity of the compounds away from AcrA to the AcrB transporter, making them better efflux substrates and changing their mechanism of inhibition. These results provide new insights into the duality of efflux substrate/inhibitor features in chemical scaffolds that will facilitate the development of new efflux pump inhibitors.
Collapse
Affiliation(s)
- Napoleon D’Cunha
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Keith Haynes
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Connor J. Cooper
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Enrico Margiotta
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Attilio V. Vargiu
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Muhammad R. Uddin
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Inga V. Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Feng Cao
- John Cochran Division, Department of Veteran Affairs Medical Center, St. Louis, Missouri 63106, United States
| | - Jerry M. Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V. Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, Cagliari 09042, Italy
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - John K. Walker
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
9
|
Rajapaksha P, Ojo I, Yang L, Pandeya A, Abeywansha T, Wei Y. Insight into the AcrAB-TolC Complex Assembly Process Learned from Competition Studies. Antibiotics (Basel) 2021; 10:antibiotics10070830. [PMID: 34356751 PMCID: PMC8300762 DOI: 10.3390/antibiotics10070830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/30/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
The RND family efflux pump AcrAB-TolC in E. coli and its homologs in other Gram-negative bacteria are major players in conferring multidrug resistance to the cells. While the structure of the pump complex has been elucidated with ever-increasing resolution through crystallography and Cryo-EM efforts, the dynamic assembly process remains poorly understood. Here, we tested the effect of overexpressing functionally defective pump components in wild type E. coli cells to probe the pump assembly process. Incorporation of a defective component is expected to reduce the efflux efficiency of the complex, leading to the so called "dominant negative" effect. Being one of the most intensively studied bacterial multidrug efflux pumps, many AcrA and AcrB mutations have been reported that disrupt efflux through different mechanisms. We examined five groups of AcrB and AcrA mutants, defective in different aspects of assembly and substrate efflux. We found that none of them demonstrated the expected dominant negative effect, even when expressed at concentrations many folds higher than their genomic counterpart. The assembly of the AcrAB-TolC complex appears to have a proof-read mechanism that effectively eliminated the formation of futile pump complex.
Collapse
|
10
|
Rybenkov VV, Zgurskaya HI, Ganguly C, Leus IV, Zhang Z, Moniruzzaman M. The Whole Is Bigger than the Sum of Its Parts: Drug Transport in the Context of Two Membranes with Active Efflux. Chem Rev 2021; 121:5597-5631. [PMID: 33596653 PMCID: PMC8369882 DOI: 10.1021/acs.chemrev.0c01137] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell envelope plays a dual role in the life of bacteria by simultaneously protecting it from a hostile environment and facilitating access to beneficial molecules. At the heart of this ability lie the restrictive properties of the cellular membrane augmented by efflux transporters, which preclude intracellular penetration of most molecules except with the help of specialized uptake mediators. Recently, kinetic properties of the cell envelope came into focus driven on one hand by the urgent need in new antibiotics and, on the other hand, by experimental and theoretical advances in studies of transmembrane transport. A notable result from these studies is the development of a kinetic formalism that integrates the Michaelis-Menten behavior of individual transporters with transmembrane diffusion and offers a quantitative basis for the analysis of intracellular penetration of bioactive compounds. This review surveys key experimental and computational approaches to the investigation of transport by individual translocators and in whole cells, summarizes key findings from these studies and outlines implications for antibiotic discovery. Special emphasis is placed on Gram-negative bacteria, whose envelope contains two separate membranes. This feature sets these organisms apart from Gram-positive bacteria and eukaryotic cells by providing them with full benefits of the synergy between slow transmembrane diffusion and active efflux.
Collapse
Affiliation(s)
- Valentin V Rybenkov
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V Leus
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Zhen Zhang
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Mohammad Moniruzzaman
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
11
|
Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN. Structure, Assembly, and Function of Tripartite Efflux and Type 1 Secretion Systems in Gram-Negative Bacteria. Chem Rev 2021; 121:5479-5596. [PMID: 33909410 PMCID: PMC8277102 DOI: 10.1021/acs.chemrev.1c00055] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Tripartite efflux pumps and the related type 1 secretion systems (T1SSs) in Gram-negative organisms are diverse in function, energization, and structural organization. They form continuous conduits spanning both the inner and the outer membrane and are composed of three principal components-the energized inner membrane transporters (belonging to ABC, RND, and MFS families), the outer membrane factor channel-like proteins, and linking the two, the periplasmic adaptor proteins (PAPs), also known as the membrane fusion proteins (MFPs). In this review we summarize the recent advances in understanding of structural biology, function, and regulation of these systems, highlighting the previously undescribed role of PAPs in providing a common architectural scaffold across diverse families of transporters. Despite being built from a limited number of basic structural domains, these complexes present a staggering variety of architectures. While key insights have been derived from the RND transporter systems, a closer inspection of the operation and structural organization of different tripartite systems reveals unexpected analogies between them, including those formed around MFS- and ATP-driven transporters, suggesting that they operate around basic common principles. Based on that we are proposing a new integrated model of PAP-mediated communication within the conformational cycling of tripartite systems, which could be expanded to other types of assemblies.
Collapse
Affiliation(s)
- Ilyas Alav
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Jessica Kobylka
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Miriam S. Kuth
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Klaas M. Pos
- Institute
of Biochemistry, Biocenter, Goethe Universität
Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Martin Picard
- Laboratoire
de Biologie Physico-Chimique des Protéines Membranaires, CNRS
UMR 7099, Université de Paris, 75005 Paris, France
- Fondation
Edmond de Rothschild pour le développement de la recherche
Scientifique, Institut de Biologie Physico-Chimique, 75005 Paris, France
| | - Jessica M. A. Blair
- Institute
of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School
of Life Sciences, University of Essex, Colchester, CO4 3SQ United Kingdom
| |
Collapse
|
12
|
Liu D, Wang Y, Wang X, Ou D, Ling N, Zhang J, Wu Q, Ye Y. Role of the multiple efflux pump protein TolC on growth, morphology, and biofilm formation under nitric oxide stress in Cronobacter malonaticus. JDS COMMUNICATIONS 2021; 2:98-103. [PMID: 36339506 PMCID: PMC9623651 DOI: 10.3168/jdsc.2020-0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/19/2021] [Indexed: 06/13/2023]
Abstract
Nitric oxide (NO) is a biological signal molecule that can control and prevent the growth of most pathogens. Cronobacter species are a group of gram-negative foodborne pathogens that cause severe diseases, including neonatal meningitis, septicemia, and necrotizing enterocolitis, especially among newborns and infants consuming contaminated powdered infant formula. Cronobacter species might be tolerant to NO, resulting in severe infections. However, the specific mechanism of tolerance to NO in Cronobacter species is unclear. Here, we explore the effects of a key component, the protein TolC, of a multiple efflux pump on the growth, morphological changes, and biofilm formation of Cronobacter malonaticus under NO stress. We found that deletion of tolC resulted in a decreased growth rate under 100 mM sodium nitroprusside (NO donor) and led to more disruptive morphological injury to the bacterial cells. Furthermore, C. malonaticus lacking the TolC protein (ΔtolC mutant) showed weaker biofilm formation than the wild-type strain under normal or NO stress conditions. We have proved that TolC plays an important role in cell growth and biofilm formation of C. malonaticus. Therefore, our results may provide valuable theoretical basis for formulating clinical guidelines for treatment of disease caused by C. malonaticus and ensuring food safety.
Collapse
Affiliation(s)
- Dengyu Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yaping Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dexin Ou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Na Ling
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Yingwang Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
13
|
Zgurskaya HI, Walker JK, Parks JM, Rybenkov VV. Multidrug Efflux Pumps and the Two-Faced Janus of Substrates and Inhibitors. Acc Chem Res 2021; 54:930-939. [PMID: 33539084 PMCID: PMC8208102 DOI: 10.1021/acs.accounts.0c00843] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Antibiotics are miracle drugs that can cure infectious bacterial diseases. However, their utility is challenged by antibiotic-resistant bacteria emerging in clinics and straining modern medicine and our ways of life. Certain bacteria such as Gram-negative (Gram(-)) and Mycobacteriales species are intrinsically resistant to most clinical antibiotics and can further gain multidrug resistance through mutations and plasmid acquisition. These species stand out by the presence of an additional external lipidic membrane, the outer membrane (OM), that is composed of unique glycolipids. Although formidable, the OM is a passive permeability barrier that can reduce penetration of antibiotics but cannot affect intracellular steady-state concentrations of drugs. The two-membrane envelopes are further reinforced by active efflux transporters that expel antibiotics from cells against their concentration gradients. The major mechanism of antibiotic resistance in Gram(-) pathogens is the active efflux of drugs, which acts synergistically with the low permeability barrier of the OM and other mutational and plasmid-borne mechanisms of antibiotic resistance.The synergy between active efflux and slow uptake offers Gram(-) bacteria an impressive degree of protection from potentially harmful chemicals, but it is also their Achilles heel. Kinetic studies have revealed that even small changes in the efficiency of either of the two factors can have dramatic effects on drug penetration into the cell. In line with these expectations, two major approaches to overcome this antibiotic resistance mechanism are currently being explored: (1) facilitation of antibiotic penetration across the outer membranes and (2) avoidance and inhibition of clinically relevant multidrug efflux pumps. Herein we summarize the progress in the latter approach with a focus on efflux pumps from the resistance-nodulation-division (RND) superfamily. The ability to export various substrates across the OM at the expense of the proton-motive force acting on the inner membrane and the engagement of accessory proteins for their functions are the major mechanistic advantages of these pumps. Both the RND transporters and their accessory proteins are being targeted in the discovery of efflux pump inhibitors, which in combination with antibiotics can potentiate antibacterial activities. We discuss intriguing relationships between substrates and inhibitors of efflux pumps, as these two types of ligands face similar barriers and binding sites in the transporters and accessory proteins and both types of activities often occur with the same chemical scaffold. Several distinct chemical classes of efflux inhibitors have been discovered that are as structurally diverse as the substrates of efflux pumps. Recent mechanistic insights, both empirical and computational, have led to the identification of features that distinguish OM permeators and efflux pump avoiders as well as efflux inhibitors from substrates. These findings suggest a path forward for optimizing the OM permeation and efflux-inhibitory activities in antibiotics and other chemically diverse compounds.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - John K Walker
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri 63104, United States
| | - Jerry M Parks
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| |
Collapse
|
14
|
Salcedo-Sora JE, Jindal S, O'Hagan S, Kell DB. A palette of fluorophores that are differentially accumulated by wild-type and mutant strains of Escherichia coli: surrogate ligands for profiling bacterial membrane transporters. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001016. [PMID: 33406033 PMCID: PMC8131027 DOI: 10.1099/mic.0.001016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
Our previous work demonstrated that two commonly used fluorescent dyes that were accumulated by wild-type Escherichia coli MG1655 were differentially transported in single-gene knockout strains, and also that they might be used as surrogates in flow cytometric transporter assays. We summarize the desirable properties of such stains, and here survey 143 candidate dyes. We eventually triage them (on the basis of signal, accumulation levels and cost) to a palette of 39 commercially available and affordable fluorophores that are accumulated significantly by wild-type cells of the 'Keio' strain BW25113, as measured flow cytometrically. Cheminformatic analyses indicate both their similarities and their (much more considerable) structural differences. We describe the effects of pH and of the efflux pump inhibitor chlorpromazine on the accumulation of the dyes. Even the 'wild-type' MG1655 and BW25113 strains can differ significantly in their ability to take up such dyes. We illustrate the highly differential uptake of our dyes into strains with particular lesions in, or overexpressed levels of, three particular transporters or transporter components (yhjV, yihN and tolC). The relatively small collection of dyes described offers a rapid, inexpensive, convenient and informative approach to the assessment of microbial physiology and phenotyping of membrane transporter function.
Collapse
Affiliation(s)
- Jesus Enrique Salcedo-Sora
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Srijan Jindal
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
| | - Steve O'Hagan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Douglas B. Kell
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Crown St, Liverpool L69 7ZB, UK
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs Lyngby, Denmark
| |
Collapse
|
15
|
Marshall RL, Bavro VN. Mutations in the TolC Periplasmic Domain Affect Substrate Specificity of the AcrAB-TolC Pump. Front Mol Biosci 2020; 7:166. [PMID: 32850959 PMCID: PMC7396618 DOI: 10.3389/fmolb.2020.00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
TolC and the other members of the outer membrane factor (OMF) family are outer membrane proteins forming trimeric channels that serve as a conduit for most actively effluxed substrates in Gram-negative bacteria by providing a key component in a multitude of tripartite efflux-pumps. Current models of tripartite pump assembly ascribe substrate selection to the inner-membrane transporter and periplasmic-adapter protein (PAP) assembly, suggesting that TolC is a passive, non-selective channel. While the membrane-embedded portion of the protein adopts a porin-like fold, the periplasmic domain of TolC presents a unique "alpha-barrel" architecture. This alpha-barrel consists of pseudo-continuous α-helices forming curved coiled-coils, whose tips form α-helical hairpins, relaxation of which results in a transition of TolC from a closed to an open-aperture state allowing effective efflux of substrates through its channel. Here, we analyzed the effects of site-directed mutations targeting the alpha-barrel of TolC, of the principal tripartite efflux-pump Escherichia coli AcrAB-TolC, on the activity and specificity of efflux. Live-cell functional assays with these TolC mutants revealed that positions both at the periplasmic tip of, and partway up the TolC coiled-coil alpha-barrel domain are involved in determining the functionality of the complex. We report that mutations affecting the electrostatic properties of the channel, particularly the D371V mutation, significantly impact growth even in the absence of antibiotics, causing hyper-susceptibility to all tested efflux-substrates. These results suggest that inhibition of TolC functionality is less well-tolerated than deletion of tolC, and such inhibition may have an antibacterial effect. Significantly and unexpectedly, we identified antibiotic-specific phenotypes associated with novel TolC mutations, suggesting that substrate specificity may not be determined solely by the transporter protein or the PAP, but may reside at least partially with the TolC-channel. Furthermore, some of the effects of mutations are difficult to reconcile with the currently prevalent tip-to-tip model of PAP-TolC interaction due to their location higher-up on the TolC alpha-barrel relative to the proposed PAP-docking sites. Taken together our results suggest a possible new role for TolC in vetting of efflux substrates, alongside its established role in tripartite complex assembly.
Collapse
Affiliation(s)
- Robert L. Marshall
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Vassiliy N. Bavro
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| |
Collapse
|
16
|
Feng Z, Liu D, Wang L, Wang Y, Zang Z, Liu Z, Song B, Gu L, Fan Z, Yang S, Chen J, Cui Y. A Putative Efflux Transporter of the ABC Family, YbhFSR, in Escherichia coli Functions in Tetracycline Efflux and Na +(Li +)/H + Transport. Front Microbiol 2020; 11:556. [PMID: 32390957 PMCID: PMC7190983 DOI: 10.3389/fmicb.2020.00556] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/16/2020] [Indexed: 12/20/2022] Open
Abstract
ATP-binding cassette transporters are ubiquitous in almost all organisms. The Escherichia coli genome is predicted to encode 69 ABC transporters. Eleven of the ABC transporters are presumed to be exporters, of which seven are possible drug export transporters. There has been minimal research on the function of YbhFSR, which is one of the putative drug resistance exporters. In this study, the ybhF gene of this transporter was characterized. Overexpression and knockout strains of ybhF were constructed. The ATPase activity of YbhF was studied using the malachite green assay, and the efflux abilities of knockout strains were demonstrated by using ethidium bromide (EB) as a substrate. The substrates of YbhFSR efflux, examined with the minimum inhibitory concentration (MIC), were determined to be tetracycline, oxytetracycline, chlortetracycline, doxycycline, EB, and Hoechst33342. Furthermore, tetracycline and EB efflux and accumulation experiments confirmed that the substrates of YbhFSR were tetracyclines and EB. The MIC assay and the fluorescence test results showed that tetracyclines are likely to be the major antibiotic substrate of YbhFSR. The existence of the signature NatA motif suggested that YbhFSR may also function as a Na+/H+ transporter. Overexpression of YbhF in E. coli KNabc lacking crucial Na+/H+ transporters conferred tolerance to NaCl, LiCl, and an alkaline pH. Together, the results showed that YbhFSR exhibited dual functions as a drug efflux pump and a Na+ (Li+)/H+ antiporter.
Collapse
Affiliation(s)
- Zhenyue Feng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Defu Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Lizi Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yanhong Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhongjing Zang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhenhua Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Baifen Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Liwei Gu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Zhaowei Fan
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Siyu Yang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Jing Chen
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yudong Cui
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| |
Collapse
|
17
|
Wang Y, Alenzy R, Song D, Liu X, Teng Y, Mowla R, Ma Y, Polyak SW, Venter H, Ma S. Structural optimization of natural product nordihydroguaretic acid to discover novel analogues as AcrB inhibitors. Eur J Med Chem 2019; 186:111910. [PMID: 31801655 DOI: 10.1016/j.ejmech.2019.111910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 12/27/2022]
Abstract
Drug efflux pumps confer multidrug resistance to dangerous bacterial pathogens which makes these proteins promising drug targets. Herein, we present initial chemical optimization and structure-activity relationship (SAR) data around a previously described efflux pump inhibitor, nordihydroguaretic acid (NDGA). Four series of novel NDGA analogues that target Escherichia coli AcrB were designed, synthesized and evaluated for their ability to potentiate the activity of antibiotics, to inhibit AcrB-mediated substrate efflux and reduce off-target activity. Nine novel structures were identified that increased the efficacy of a panel of antibiotics, inhibited drug efflux and reduced permeabilization of the bacterial outer and inner membranes. Among them, WA7, WB11 and WD6 possessing broad-spectrum antimicrobial sensitization activity were identified as NDGA analogues with favorable properties as potential AcrB inhibitors, demonstrating moderate improvement in potency as compared to NDGA. In particular, WD6 was the most broadly active analogue improving the activity of all four classes of antibacterials tested.
Collapse
Affiliation(s)
- Yinhu Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, China; School of Pharmacy, Liaocheng University, Liaocheng, China
| | - Rawaf Alenzy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia; Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, 11961, Saudi Arabia
| | - Di Song
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, China
| | - Xingbang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, China
| | - Yuetai Teng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, China
| | - Rumana Mowla
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Yingang Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, China
| | - Steven W Polyak
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Henrietta Venter
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, 5000, Australia.
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 West Culture Road, Jinan, 250012, China.
| |
Collapse
|
18
|
Hazel AJ, Abdali N, Leus IV, Parks JM, Smith JC, Zgurskaya HI, Gumbart JC. Conformational Dynamics of AcrA Govern Multidrug Efflux Pump Assembly. ACS Infect Dis 2019; 5:1926-1935. [PMID: 31517484 DOI: 10.1021/acsinfecdis.9b00273] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Multidrug efflux pumps of pathogenic, Gram-negative bacteria comprise an innate resistance mechanism and are key contributors to the emerging global pandemic of antibiotic resistance. Several increasingly detailed cryo-electron microscopy maps have been resolved of an entire efflux pump complex, AcrAB-TolC, resulting in atomistic structural models. Using a recent model, we have carried out nearly 40 μs of molecular dynamics simulations to study one of the key components of the protein complex AcrA, the membrane fusion protein that connects the inner-membrane-bound AcrB to the outer-membrane-bound TolC. We determined a three-dimensional potential of mean force (PMF) for AcrA, which displays two main conformational basins representing assembly competent and incompetent states. Corresponding experiments show that stabilizing mutations at an interdomain interface shift the dynamic equilibrium between these states to the incompetent one, disrupting pump assembly and function and resensitizing bacteria to existing antibiotics. The modulation of AcrA dynamics through pharmacological intervention therefore presents a promising route for the development of new antibiotics.
Collapse
Affiliation(s)
- Anthony J. Hazel
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, United States
| | - Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Inga V. Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Jerry M. Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
| | - Jeremy C. Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, Tennessee 37831, United States
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996, United States
| | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
19
|
Li Z, Wang Y, Li X, Lin Z, Lin Y, Srinivasan R, Lin X. The characteristics of antibiotic resistance and phenotypes in 29 outer‐membrane protein mutant strains inAeromonas hydrophila. Environ Microbiol 2019; 21:4614-4628. [DOI: 10.1111/1462-2920.14761] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/22/2019] [Accepted: 07/25/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Zeqi Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Xiaoyan Li
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Zhenping Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Ramanathan Srinivasan
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring (School of Life Sciences)Fujian Agriculture and Forestry University) Fuzhou China
- Key Laboratory of Crop Ecology and Molecular Physiology (Fujian Agriculture and Forestry University)Fujian Province University Fuzhou China
- Key Laboratory of Marine Biotechnology of Fujian ProvinceInstitute of Oceanology, Fujian Agriculture and Forestry University Fuzhou 350002 China
| |
Collapse
|
20
|
Lamut A, Peterlin Mašič L, Kikelj D, Tomašič T. Efflux pump inhibitors of clinically relevant multidrug resistant bacteria. Med Res Rev 2019; 39:2460-2504. [PMID: 31004360 DOI: 10.1002/med.21591] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/29/2022]
Abstract
Bacterial infections are an increasingly serious issue worldwide. The inability of existing therapies to treat multidrug-resistant pathogens has been recognized as an important challenge of the 21st century. Efflux pumps are important in both intrinsic and acquired bacterial resistance and identification of small molecule efflux pump inhibitors (EPIs), capable of restoring the effectiveness of available antibiotics, is an active research field. In the last two decades, much effort has been made to identify novel EPIs. However, none of them has so far been approved for therapeutic use. In this article, we explore different structural families of currently known EPIs for multidrug resistance efflux systems in the most extensively studied pathogens (NorA in Staphylococcus aureus, AcrAB-TolC in Escherichia coli, and MexAB-OprM in Pseudomonas aeruginosa). Both synthetic and natural compounds are described, with structure-activity relationship studies and optimization processes presented systematically for each family individually. In vitro activities against selected test strains are presented in a unifying manner for all the EPIs described, together with the most important toxicity, pharmacokinetic and in vivo efficacy data. A critical evaluation of lead-likeness characteristics and the potential for clinical development of the most promising inhibitors of the three efflux systems is described. This overview of EPIs is a good starting point for the identification of novel effective antibacterial drugs.
Collapse
Affiliation(s)
- Andraž Lamut
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Lucija Peterlin Mašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Danijel Kikelj
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
21
|
Iyer R, Moussa SH, Tommasi R, Miller AA. Role of the Klebsiella pneumoniae TolC porin in antibiotic efflux. Res Microbiol 2019; 170:112-116. [DOI: 10.1016/j.resmic.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/11/2022]
|
22
|
Iyer R, Moussa SH, Tommasi R, Miller AA. Titrating Levels of TolC in E. coli: A Sensitive Approach to Quantifying Efflux. ACS Infect Dis 2019; 5:49-54. [PMID: 30489063 DOI: 10.1021/acsinfecdis.8b00273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The susceptibility of small molecules to Gram-negative bacterial efflux is typically evaluated using an antibacterial activity-based efflux ratio, which is computed as the ratio of the antibacterial activity for a wild-type strain and its isogenic efflux mutant (typically lacking genes encoding major efflux pumps). The magnitude of the ratio is often used as an efflux index. However, early in drug discovery, hits with suboptimal physicochemical properties often lack whole cell inhibition against wild-type strains, which makes efflux ratios indeterminable. To address this gap, we developed an assay to titrate levels of total efflux by varying the TolC expression using an arabinose-inducible promoter (pBAD) in an Escherichia coli Δ tolC strain. We provide a proof of concept for the assay using sets of related compounds from two antibiotic classes and show that the TolC titration provides a sensitive method for rank ordering compounds with respect to their efflux susceptibility.
Collapse
Affiliation(s)
- Ramkumar Iyer
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Samir H. Moussa
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Ruben Tommasi
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Alita A. Miller
- Entasis Therapeutics Inc., 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
23
|
Vestö K, Huseby DL, Snygg I, Wang H, Hughes D, Rhen M. Muramyl Endopeptidase Spr Contributes to Intrinsic Vancomycin Resistance in Salmonella enterica Serovar Typhimurium. Front Microbiol 2018; 9:2941. [PMID: 30619108 PMCID: PMC6301998 DOI: 10.3389/fmicb.2018.02941] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/15/2018] [Indexed: 12/13/2022] Open
Abstract
The impermeability barrier provided by the outer membrane of enteric bacteria, a feature lacking in Gram-positive bacteria, plays a major role in maintaining resistance to numerous antimicrobial compounds and antibiotics. Here we demonstrate that mutational inactivation of spr, coding for a muramyl endopeptidase, significantly sensitizes Salmonella enterica serovar Typhimurium to vancomycin without any accompanying apparent growth defect or outer membrane destabilization. A similar phenotype was not achieved by deleting the genes coding for muramyl endopeptidases MepA, PbpG, NlpC, YedA, or YhdO. The spr mutant showed increased autolytic behavior in response to not only vancomycin, but also to penicillin G, an antibiotic for which the mutant displayed a wild-type MIC. A screen for suppressor mutations of the spr mutant phenotype revealed that deletion of tsp (prc), encoding a periplasmic carboxypeptidase involved in processing Spr and PBP3, restored intrinsic resistance to vancomycin and reversed the autolytic phenotype of the spr mutant. Our data suggest that Spr contributes to intrinsic antibiotic resistance in S. Typhimurium without directly affecting the outer membrane permeability barrier. Furthermore, our data suggests that compounds targeting specific cell wall endopeptidases might have the potential to expand the activity spectrum of traditional Gram-positive antibiotics.
Collapse
Affiliation(s)
- Kim Vestö
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Douglas L. Huseby
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Iina Snygg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Helen Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
On mechanisms of colicin import: the outer membrane quandary. Biochem J 2018; 475:3903-3915. [PMID: 30541793 DOI: 10.1042/bcj20180477] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 11/02/2018] [Accepted: 11/12/2018] [Indexed: 01/09/2023]
Abstract
Current problems in the understanding of colicin import across the Escherichia coli outer membrane (OM), involving a range of cytotoxic mechanisms, are discussed: (I) Crystal structure analysis of colicin E3 (RNAase) with bound OM vitamin B12 receptor, BtuB, and of the N-terminal translocation (T) domain of E3 and E9 (DNAase) inserted into the OM OmpF porin, provide details of the initial interaction of the colicin central receptor (R)- and N-terminal T-domain with OM receptors/translocators. (II) Features of the translocon include: (a) high-affinity (K d ≈ 10-9 M) binding of the E3 receptor-binding R-domain E3 to BtuB; (b) insertion of disordered colicin N-terminal domain into the OmpF trimer; (c) binding of the N-terminus, documented for colicin E9, to the TolB protein on the periplasmic side of OmpF. Reinsertion of the colicin N-terminus into the second of the three pores in OmpF implies a colicin anchor site on the periplasmic side of OmpF. (III) Studies on the insertion of nuclease colicins into the cytoplasmic compartment imply that translocation proceeds via the C-terminal catalytic domain, proposed here to insert through the unoccupied third pore of the OmpF trimer, consistent with in vitro occlusion of OmpF channels by the isolated E3 C-terminal domain. (IV) Discussion of channel-forming colicins focuses mainly on colicin E1 for which BtuB is receptor and the OM TolC protein the proposed translocator. The ability of TolC, part of a multidrug efflux pump, for which there is no precedent for an import function, to provide a trans-periplasmic import pathway for colicin E1, is questioned on the basis of an unfavorable hairpin conformation of colicin N-terminal peptides inserted into TolC.
Collapse
|
25
|
Yao Z, Sun L, Wang Y, Lin L, Guo Z, Li D, Lin W, Lin X. Quantitative Proteomics Reveals Antibiotics Resistance Function of Outer Membrane Proteins in Aeromonas hydrophila. Front Cell Infect Microbiol 2018; 8:390. [PMID: 30460208 PMCID: PMC6232253 DOI: 10.3389/fcimb.2018.00390] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/17/2018] [Indexed: 12/16/2022] Open
Abstract
Outer membrane proteins (OMPs) play essential roles in antibiotic resistance, particularly in Gram-negative bacteria; however, they still have many unidentified functions regarding their behavior in response to antibiotic stress. In the current work, quantitative tandem mass tag labeling-based mass spectrometry was used to compare the outer membrane related proteins between an oxytetracycline-resistant (OXY-R) and its original control stain (OXY-O) in Aeromonas hydrophila. Consequently, a total of 261 commonly altered proteins in two biological repeats were identified including 29 proteins that increased and 28 that decreased. Gene ontology analysis showed that the expression of transport proteins was significantly reduced, and translation-related proteins were downregulated in the OXY-R strain. After using western blotting to validate selected altered proteins, eight OMP-related genes were knocked out and their roles in antibiotic resistance were further evaluated. The survival assays showed that some mutants such as ΔAHA_4281, ΔAHA_2766, ΔAHA_2282, ΔAHA_1181, and ΔAHA_1280 affected the susceptibility of A. hydrophila to antimicrobials. Moreover, the minimum inhibitory concentration assay showed that these candidate mutants also respond differently to other types of antibiotics. Our results reveal several novel outer membrane related proteins of A. hydrophila that play important roles in antibiotic resistance, and as such, may be helpful for screening studies to identify novel drug targets.
Collapse
Affiliation(s)
- Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Ling Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Dong Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Crop Ecology and Molecular Physiology Fujian Agriculture and Forestry University, Fujian Province University, Fuzhou, China
| |
Collapse
|
26
|
Aboulnaga EA, Zou H, Selmer T, Xian M. Development of a plasmid-based, tunable, tolC-derived expression system for application in Cupriavidus necator H16. J Biotechnol 2018; 274:15-27. [PMID: 29549002 DOI: 10.1016/j.jbiotec.2018.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/24/2018] [Accepted: 03/11/2018] [Indexed: 12/13/2022]
Abstract
Cupriavidus necator H16 gains increasing attention in microbial research and biotechnological application due to its diverse metabolic features. Here we present a tightly controlled gene expression system for C. necator including the pBBR1-vector that contains hybrid promoters originating from C. necator native tolC-promoter in combination with a synthetic tetO-operator. The expression of the reporter gene from these plasmids relies on the addition of the exogenous inducer doxycycline (dc). The novel expression system offers a combination of advantageous features as; (i) high and dose-dependent recombinant protein production, (ii) tight control with a high dynamic range (On/Off ratio), which makes it applicable for harmful pathways or for toxic protein production, (iii) comparable cheap inducer (doxycycline, dc), (iv) effective at low inducer concentration, that makes it useful for large scale application, (v) rapid, diffusion controlled induction, and (vi) the inducer does not interfere within the cell metabolism. As applications of the expression system in C. necator H16, the growth ability on glycerol was enhanced by constitutively expressing the E. coli glpk gene-encoding for glycerol kinase. Likewise, we used the system to overcome the expression toxicity of mevalonate pathway in C. necator H16. With this system, the mevalonate-genes were successfully introduced in the host and the recombinant strains could produce about 200 mg/l mevalonate.
Collapse
Affiliation(s)
- Elhussiny A Aboulnaga
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; Mansoura University, Faculty of Agriculture, 35516 Mansoura, Egypt.
| | - Huibin Zou
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Thorsten Selmer
- Aachen University of Applied Sciences, Campus Juelich, Department of Chemistry and Biotechnology, Heinrich-Mussmann-Str.1, D-52428 Juelich, Germany
| | - Mo Xian
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101 Qingdao, China.
| |
Collapse
|
27
|
Biophysical characterization of E. coli TolC interaction with the known blocker hexaamminecobalt. Biochim Biophys Acta Gen Subj 2017; 1861:2702-2709. [DOI: 10.1016/j.bbagen.2017.07.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 06/26/2017] [Accepted: 07/22/2017] [Indexed: 11/18/2022]
|
28
|
Outer Membrane Permeability of Cyanobacterium Synechocystis sp. Strain PCC 6803: Studies of Passive Diffusion of Small Organic Nutrients Reveal the Absence of Classical Porins and Intrinsically Low Permeability. J Bacteriol 2017; 199:JB.00371-17. [PMID: 28696278 DOI: 10.1128/jb.00371-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/30/2017] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of heterotrophic Gram-negative bacteria plays the role of a selective permeability barrier that prevents the influx of toxic compounds while allowing the nonspecific passage of small hydrophilic nutrients through porin channels. Compared with heterotrophic Gram-negative bacteria, the outer membrane properties of cyanobacteria, which are Gram-negative photoautotrophs, are not clearly understood. In this study, using small carbohydrates, amino acids, and inorganic ions as permeation probes, we determined the outer membrane permeability of Synechocystis sp. strain PCC 6803 in intact cells and in proteoliposomes reconstituted with outer membrane proteins. The permeability of this cyanobacterium was >20-fold lower than that of Escherichia coli The predominant outer membrane proteins Slr1841, Slr1908, and Slr0042 were not permeable to organic nutrients and allowed only the passage of inorganic ions. Only the less abundant outer membrane protein Slr1270, a homolog of the E. coli export channel TolC, was permeable to organic solutes. The activity of Slr1270 as a channel was verified in a recombinant Slr1270-producing E. coli outer membrane. The lack of putative porins and the low outer membrane permeability appear to suit the cyanobacterial autotrophic lifestyle; the highly impermeable outer membrane would be advantageous to cellular survival by protecting the cell from toxic compounds, especially when the cellular physiology is not dependent on the uptake of organic nutrients.IMPORTANCE Because the outer membrane of Gram-negative bacteria affects the flux rates for various substances into and out of the cell, its permeability is closely associated with cellular physiology. The outer membrane properties of cyanobacteria, which are photoautotrophic Gram-negative bacteria, are not clearly understood. Here, we examined the outer membrane of Synechocystis sp. strain PCC 6803. We revealed that it is relatively permeable to inorganic ions but is markedly less permeable to organic nutrients, with >20-fold lower permeability than the outer membrane of Escherichia coli Such permeability appears to fit the cyanobacterial lifestyle, in which the diffusion pathway for inorganic solutes may suffice to sustain the autotrophic physiology, illustrating a link between outer membrane permeability and the cellular lifestyle.
Collapse
|
29
|
Haynes KM, Abdali N, Jhawar V, Zgurskaya HI, Parks JM, Green AT, Baudry J, Rybenkov VV, Smith JC, Walker JK. Identification and Structure-Activity Relationships of Novel Compounds that Potentiate the Activities of Antibiotics in Escherichia coli. J Med Chem 2017. [PMID: 28650638 DOI: 10.1021/acs.jmedchem.7b00453] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In Gram-negative bacteria, efflux pumps are able to prevent effective cellular concentrations from being achieved for a number of antibiotics. Small molecule adjuvants that act as efflux pump inhibitors (EPIs) have the potential to reinvigorate existing antibiotics that are currently ineffective due to efflux mechanisms. Through a combination of rigorous experimental screening and in silico virtual screening, we recently identified novel classes of EPIs that interact with the membrane fusion protein AcrA, a critical component of the AcrAB-TolC efflux pump in Escherichia coli. Herein, we present initial optimization efforts and structure-activity relationships around one of those previously described hits, NSC 60339 (1). From these efforts we identified two compounds, SLUPP-225 (17h) and SLUPP-417 (17o), which demonstrate favorable properties as potential EPIs in E. coli cells including the ability to penetrate the outer membrane, improved inhibition of efflux relative to 1, and potentiation of the activity of novobiocin and erythromycin.
Collapse
Affiliation(s)
- Keith M Haynes
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine , St Louis, Missouri 63104, United States
| | - Narges Abdali
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Varsha Jhawar
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jerry M Parks
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Adam T Green
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Jerome Baudry
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Jeremy C Smith
- UT/ORNL Center for Molecular Biophysics, Biosciences Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States.,Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - John K Walker
- Department of Pharmacological & Physiological Science, Saint Louis University School of Medicine , St Louis, Missouri 63104, United States.,Department of Chemistry, Saint Louis University , St. Louis, Missouri 63104, United States
| |
Collapse
|
30
|
Adaptor protein mediates dynamic pump assembly for bacterial metal efflux. Proc Natl Acad Sci U S A 2017; 114:6694-6699. [PMID: 28607072 DOI: 10.1073/pnas.1704729114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Multicomponent efflux complexes constitute a primary mechanism for Gram-negative bacteria to expel toxic molecules for survival. As these complexes traverse the periplasm and link inner and outer membranes, it remains unclear how they operate efficiently without compromising periplasmic plasticity. Combining single-molecule superresolution imaging and genetic engineering, we study in living Escherichia coli cells the tripartite efflux complex CusCBA of the resistance-nodulation-division family that is essential for bacterial resistance to drugs and toxic metals. We find that CusCBA complexes are dynamic structures and shift toward the assembled form in response to metal stress. Unexpectedly, the periplasmic adaptor protein CusB is a key metal-sensing element that drives the assembly of the efflux complex ahead of the transcription activation of the cus operon for defending against metals. This adaptor protein-mediated dynamic pump assembly allows the bacterial cell for efficient efflux upon cellular demand while still maintaining periplasmic plasticity; this could be broadly relevant to other multicomponent efflux systems.
Collapse
|
31
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
32
|
Breaking the Permeability Barrier of Escherichia coli by Controlled Hyperporination of the Outer Membrane. Antimicrob Agents Chemother 2016; 60:7372-7381. [PMID: 27697764 DOI: 10.1128/aac.01882-16] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 12/15/2022] Open
Abstract
In Gram-negative bacteria, a synergistic relationship between slow passive uptake of antibiotics across the outer membrane and active efflux transporters creates a permeability barrier, which efficiently reduces the effective concentrations of antibiotics in cells and, hence, their activities. To analyze the relative contributions of active efflux and the passive barrier to the activities of antibiotics, we constructed Escherichia coli strains with controllable permeability of the outer membrane. The strains expressed a large pore that does not discriminate between compounds on the basis of their hydrophilicity and sensitizes cells to a variety of antibacterial agents. We found that the efficacies of antibiotics in these strains were specifically affected by either active efflux or slow uptake, or both, and reflect differences in the properties of the outer membrane barrier, the repertoire of efflux pumps, and the inhibitory activities of antibiotics. Our results identify antibiotics which are the best candidates for the potentiation of activities through efflux inhibition and permeabilization of the outer membrane.
Collapse
|
33
|
Opening the Channel: the Two Functional Interfaces of Pseudomonas aeruginosa OpmH with the Triclosan Efflux Pump TriABC. J Bacteriol 2016; 198:3176-3185. [PMID: 27645384 DOI: 10.1128/jb.00535-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 09/08/2016] [Indexed: 12/11/2022] Open
Abstract
TriABC-OpmH is an efflux pump from Pseudomonas aeruginosa with an unusual substrate specificity and protein composition. When overexpressed, this pump confers a high level of resistance to the biocide triclosan and the detergent SDS, which are commonly used in combinations for antimicrobial treatments. This activity requires an RND transporter (TriC), an outer membrane channel (OpmH), and two periplasmic membrane fusion proteins (TriA and TriB) with nonequivalent functions. In the active complex, TriA is responsible for the recruitment of OpmH, while TriB is responsible for stimulation of the transporter TriC. Here, we used the functional and structural differences between the two membrane fusion proteins to link their functional roles to specific interactions with OpmH. Our results provide evidence that the TriB-dependent stimulation of the TriC transporter is coupled to opening of the OpmH aperture through binding to the interprotomer groove of OpmH. IMPORTANCE Multidrug efflux transporters are important contributors to intrinsic and acquired antibiotic resistance in clinics. In Gram-negative bacteria, these transporters have a characteristic tripartite architecture spanning the entire two-membrane cell envelope. How such complexes are assembled and how the reactions separated in two different membranes are coupled to provide efficient efflux of various compounds across the cell envelope remain unclear. This study addressed these questions, and the results suggest a mechanism for functional integration of drug efflux by the inner membrane transporter and opening of the channel for transport across the outer membrane.
Collapse
|
34
|
Maleki D, Honarmand Jahromy S, Zare Karizi S, Eslami P. The Prevalence of acrA and acrB Genes Among Multiple-Drug Resistant Uropathogenic Escherichia coli Isolated From Patients With UTI in Milad Hospital, Tehran. ACTA ACUST UNITED AC 2016. [DOI: 10.17795/ajcmi-39785] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Omarova EO, Nazarov PA, Firsov AM, Strakhovskaya MG, Arkhipova AY, Moisenovich MM, Agapov II, Ol’shevskaya VA, Zaitsev AV, Kalinin VN, Kotova EA, Antonenko YN. Carboranyl-Chlorin e6 as a Potent Antimicrobial Photosensitizer. PLoS One 2015; 10:e0141990. [PMID: 26535905 PMCID: PMC4633095 DOI: 10.1371/journal.pone.0141990] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial photodynamic inactivation is currently being widely considered as alternative to antibiotic chemotherapy of infective diseases, attracting much attention to design of novel effective photosensitizers. Carboranyl-chlorin-e6 (the conjugate of chlorin e6 with carborane), applied here for the first time for antimicrobial photodynamic inactivation, appeared to be much stronger than chlorin e6 against Gram-positive bacteria, such as Bacillus subtilis, Staphyllococcus aureus and Mycobacterium sp. Confocal fluorescence spectroscopy and membrane leakage experiments indicated that bacteria cell death upon photodynamic treatment with carboranyl-chlorin-e6 is caused by loss of cell membrane integrity. The enhanced photobactericidal activity was attributed to the increased accumulation of the conjugate by bacterial cells, as evaluated both by centrifugation and fluorescence correlation spectroscopy. Gram-negative bacteria were rather resistant to antimicrobial photodynamic inactivation mediated by carboranyl-chlorin-e6. Unlike chlorin e6, the conjugate showed higher (compared to the wild-type strain) dark toxicity with Escherichia coli ΔtolC mutant, deficient in TolC-requiring multidrug efflux transporters.
Collapse
Affiliation(s)
- Elena O. Omarova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel A. Nazarov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander M. Firsov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Marina G. Strakhovskaya
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
- Federal Scientific and Clinical Center for Specialized Medical Service and Medical Technologies, FMBA, Moscow, Russia
| | | | | | - Igor I. Agapov
- Biological Department, Lomonosov Moscow State University, Moscow, Russia
- Shumakov Research Center of Transplantology and Artificial Organs, Moscow, Russia
| | | | - Andrey V. Zaitsev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Valery N. Kalinin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - Elena A. Kotova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
- * E-mail:
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
36
|
Zgurskaya HI, López CA, Gnanakaran S. Permeability Barrier of Gram-Negative Cell Envelopes and Approaches To Bypass It. ACS Infect Dis 2015; 1:512-522. [PMID: 26925460 DOI: 10.1021/acsinfecdis.5b00097] [Citation(s) in RCA: 397] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gram-negative bacteria are intrinsically resistant to many antibiotics. Species that have acquired multidrug resistance and cause infections that are effectively untreatable present a serious threat to public health. The problem is broadly recognized and tackled at both the fundamental and applied levels. This paper summarizes current advances in understanding the molecular bases of the low permeability barrier of Gram-negative pathogens, which is the major obstacle in discovery and development of antibiotics effective against such pathogens. Gaps in knowledge and specific strategies to break this barrier and to achieve potent activities against difficult Gram-negative bacteria are also discussed.
Collapse
Affiliation(s)
- Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Cesar A. López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - S. Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
37
|
Dreier J, Ruggerone P. Interaction of antibacterial compounds with RND efflux pumps in Pseudomonas aeruginosa. Front Microbiol 2015; 6:660. [PMID: 26217310 PMCID: PMC4495556 DOI: 10.3389/fmicb.2015.00660] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 06/16/2015] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas aeruginosa infections are becoming increasingly difficult to treat due to intrinsic antibiotic resistance and the propensity of this pathogen to accumulate diverse resistance mechanisms. Hyperexpression of efflux pumps of the Resistance-Nodulation-Cell Division (RND)-type multidrug efflux pumps (e.g., MexAB-OprM), chromosomally encoded by mexAB-oprM, mexCD-oprJ, mexEF-oprN, and mexXY (-oprA) is often detected in clinical isolates and contributes to worrying multi-drug resistance phenotypes. Not all antibiotics are affected to the same extent by the aforementioned RND efflux pumps. The impact of efflux on antibiotic activity varies not only between different classes of antibiotics but also between members of the same family of antibiotics. Subtle differences in physicochemical features of compound-pump and compound-solvent interactions largely determine how compounds are affected by efflux activity. The combination of different high-resolution techniques helps to gain insight into the functioning of these molecular machineries. This review discusses substrate recognition patterns based on experimental evidence and computer simulations with a focus on MexB, the pump subunit of the main RND transporter in P. aeruginosa.
Collapse
Affiliation(s)
- Jürg Dreier
- Basilea Pharmaceutica International Ltd.,Basel, Switzerland
| | - Paolo Ruggerone
- Dipartimento di Fisica, Università di Cagliari – Cittadella UniversitariaMonserrato, Italy
| |
Collapse
|
38
|
Anes J, McCusker MP, Fanning S, Martins M. The ins and outs of RND efflux pumps in Escherichia coli. Front Microbiol 2015; 6:587. [PMID: 26113845 PMCID: PMC4462101 DOI: 10.3389/fmicb.2015.00587] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 05/28/2015] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases remain one of the principal causes of morbidity and mortality in the world. Relevant authorities including the WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. They have also reaffirmed the urgent need for investment in the discovery and development of new antibiotics and therapeutic approaches to treat multidrug resistant (MDR) bacteria. The extensive use of antimicrobial compounds in diverse environments, including farming and healthcare, has been identified as one of the main causes for the emergence of MDR bacteria. Induced selective pressure has led bacteria to develop new strategies of defense against these chemicals. Bacteria can accomplish this by several mechanisms, including enzymatic inactivation of the target compound; decreased cell permeability; target protection and/or overproduction; altered target site/enzyme and increased efflux due to over-expression of efflux pumps. Efflux pumps can be specific for a single substrate or can confer resistance to multiple antimicrobials by facilitating the extrusion of a broad range of compounds including antibiotics, heavy metals, biocides and others, from the bacterial cell. To overcome antimicrobial resistance caused by active efflux, efforts are required to better understand the fundamentals of drug efflux mechanisms. There is also a need to elucidate how these mechanisms are regulated and how they respond upon exposure to antimicrobials. Understanding these will allow the development of combined therapies using efflux inhibitors together with antibiotics to act on Gram-negative bacteria, such as the emerging globally disseminated MDR pathogen Escherichia coli ST131 (O25:H4). This review will summarize the current knowledge on resistance-nodulation-cell division efflux mechanisms in E. coli, a bacteria responsible for community and hospital-acquired infections, as well as foodborne outbreaks worldwide.
Collapse
Affiliation(s)
- João Anes
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Matthew P McCusker
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Séamus Fanning
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| | - Marta Martins
- UCD Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, UCD Centre for Molecular Innovation and Drug Discovery, University College Dublin Dublin, Ireland
| |
Collapse
|
39
|
Li H, Zhang DF, Lin XM, Peng XX. Outer membrane proteomics of kanamycin-resistant Escherichia coli identified MipA as a novel antibiotic resistance-related protein. FEMS Microbiol Lett 2015; 362:fnv074. [PMID: 25940639 DOI: 10.1093/femsle/fnv074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2015] [Indexed: 12/11/2022] Open
Abstract
Antibiotic-resistant bacteria are a great threat to human health and food safety and there is an urgent need to understand the mechanisms of resistance for combating these bacteria. In the current study, comparative proteomic methodologies were applied to identify Escherichia coli K-12 outer membrane (OM) proteins related to kanamycin resistance. Mass spectrometry and western blotting results revealed that OM proteins TolC, Tsx and OstA were up-regulated, whereas MipA, OmpA, FadL and OmpW were down-regulated in kanamycin-resistant E. coli K-12 strain. Genetic deletion of tolC (ΔtolC-Km) led to a 2-fold decrease in the minimum inhibitory concentration (MIC) of kanamycin and deletion of mipA (ΔmipA-Km) resulted in a 4-fold increase in the MIC of kanamycin. Changes in the MICs for genetically modified strains could be completely recovered by gene complementation. Compared with the wild-type strain, the survival capability of ΔompA-Km was significantly increased and that of Δtsx-Km was significantly decreased. We further evaluated the role and expression of MipA in response to four other antibiotics including nalidixic acid, streptomycin, chloramphenicol and aureomycin, which suggested that MipA was a novel OM protein related to antibiotic resistance.
Collapse
Affiliation(s)
- Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| | - Dan-feng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, People's Republic of China
| | - Xiang-min Lin
- Agroecological Institute, Fujian Agricultural and Forestry University, Fuzhou 350002, People's Republic of China
| | - Xuan-xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Biocontrol, MOE Key Lab Aquatic Food Safety, School of Life Sciences, Sun Yat-sen University, University City, Guangzhou 510006, People's Republic of China
| |
Collapse
|
40
|
Zgurskaya HI, Weeks JW, Ntreh AT, Nickels LM, Wolloscheck D. Mechanism of coupling drug transport reactions located in two different membranes. Front Microbiol 2015; 6:100. [PMID: 25759685 PMCID: PMC4338810 DOI: 10.3389/fmicb.2015.00100] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Gram- negative bacteria utilize a diverse array of multidrug transporters to pump toxic compounds out of the cell. Some transporters, together with periplasmic membrane fusion proteins (MFPs) and outer membrane channels, assemble trans-envelope complexes that expel multiple antibiotics across outer membranes of Gram-negative bacteria and into the external medium. Others further potentiate this efflux by pumping drugs across the inner membrane into the periplasm. Together these transporters create a powerful network of efflux that protects bacteria against a broad range of antimicrobial agents. This review is focused on the mechanism of coupling transport reactions located in two different membranes of Gram-negative bacteria. Using a combination of biochemical, genetic and biophysical approaches we have reconstructed the sequence of events leading to the assembly of trans-envelope drug efflux complexes and characterized the roles of periplasmic and outer membrane proteins in this process. Our recent data suggest a critical step in the activation of intermembrane efflux pumps, which is controlled by MFPs. We propose that the reaction cycles of transporters are tightly coupled to the assembly of the trans-envelope complexes. Transporters and MFPs exist in the inner membrane as dormant complexes. The activation of complexes is triggered by MFP binding to the outer membrane channel, which leads to a conformational change in the membrane proximal domain of MFP needed for stimulation of transporters. The activated MFP-transporter complex engages the outer membrane channel to expel substrates across the outer membrane. The recruitment of the channel is likely triggered by binding of effectors (substrates) to MFP or MFP-transporter complexes. This model together with recent structural and functional advances in the field of drug efflux provides a fairly detailed understanding of the mechanism of drug efflux across the two membranes.
Collapse
Affiliation(s)
- Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Jon W Weeks
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Abigail T Ntreh
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - Logan M Nickels
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| | - David Wolloscheck
- Department of Chemistry and Biochemistry, University of Oklahoma Norman, OK, USA
| |
Collapse
|
41
|
AbuO, a TolC-like outer membrane protein of Acinetobacter baumannii, is involved in antimicrobial and oxidative stress resistance. Antimicrob Agents Chemother 2014; 59:1236-45. [PMID: 25512405 DOI: 10.1128/aac.03626-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Acinetobacter baumannii is well accepted as a nosocomial pathogen, only a few of the outer membrane proteins (OMPs) have been functionally characterized. In this study, we demonstrate the biological functions of AbuO, a homolog of TolC from Escherichia coli. Inactivation of abuO led to increased sensitivity to high osmolarity and oxidative stress challenge. The ΔabuO mutant displayed increased susceptibility to antibiotics, such as amikacin, carbenicillin, ceftriaxone, meropenem, streptomycin, and tigecycline, and hospital-based disinfectants, such as benzalkonium chloride and chlorhexidine. The reverse transcription (RT)-PCR analysis indicated increased expression of efflux pumps (resistance nodulation cell division [RND] efflux pump acrD, 8-fold; SMR-type emrE homolog, 12-fold; and major facilitator superfamily [MFS]-type ampG homolog, 2.7-fold) and two-component response regulators (baeR, 4.67-fold; ompR, 10.43-fold) in the ΔabuO mutant together with downregulation of rstA (4.22-fold) and the pilin chaperone (9-fold). The isogenic mutant displayed lower virulence in a nematode model (P<0.01). Experimental evidence for the binding of MerR-type transcriptional regulator SoxR to radiolabeled abuO promoter suggests regulation of abuO by SoxR in A. baumannii.
Collapse
|
42
|
Wang B, Weng J, Wang W. Multiple conformational states and gate opening of outer membrane protein TolC revealed by molecular dynamics simulations. Proteins 2014; 82:2169-79. [DOI: 10.1002/prot.24573] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 03/12/2014] [Accepted: 03/29/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Beibei Wang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University; Shanghai People's Republic of China
| | - Jingwei Weng
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University; Shanghai People's Republic of China
| | - Wenning Wang
- Department of Chemistry; Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University; Shanghai People's Republic of China
- Institutes of Biomedical Sciences, Fudan University; Shanghai People's Republic of China
| |
Collapse
|
43
|
Lin XM, Yang MJ, Li H, Wang C, Peng XX. Decreased expression of LamB and Odp1 complex is crucial for antibiotic resistance in Escherichia coli. J Proteomics 2014; 98:244-53. [DOI: 10.1016/j.jprot.2013.12.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/18/2013] [Accepted: 12/29/2013] [Indexed: 01/06/2023]
|
44
|
Lee S, Song S, Lee M, Hwang S, Kim JS, Ha NC, Lee K. Interaction between the α-barrel tip of Vibrio vulnificus TolC homologs and AcrA implies the adapter bridging model. J Microbiol 2014; 52:148-53. [PMID: 24500479 DOI: 10.1007/s12275-014-3578-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 10/25/2022]
Abstract
The AcrAB-TolC multidrug efflux pump confers resistance to Escherichia coli against many antibiotics and toxic compounds. The TolC protein is an outer membrane factor that participates in the formation of type I secretion systems. The genome of Vibrio vulnificus encodes two proteins homologous to the E. coli TolC, designated TolCV1 and TolCV2. Here, we show that both TolCV1 and TolCV2 partially complement the E. coli TolC function and physically interact with the membrane fusion protein AcrA, a component of the E. coli AcrAB-TolC efflux pump. Using site-directed mutational analyses and an in vivo cross-linking assay, we demonstrated that the α-barrel tip region of TolC homologs plays a critical role in the formation of functional AcrAB-TolC efflux pumps. Our findings suggest the adapter bridging model as a general assembly mechanism for tripartite drug efflux pumps in Gram-negative bacteria.
Collapse
Affiliation(s)
- Seunghwa Lee
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
45
|
Vega DE, Young KD. Accumulation of periplasmic enterobactin impairs the growth and morphology of Escherichia coli tolC mutants. Mol Microbiol 2013; 91:508-21. [PMID: 24330203 DOI: 10.1111/mmi.12473] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2013] [Indexed: 01/01/2023]
Abstract
TolC is the outer membrane component of tripartite efflux pumps, which expel proteins, toxins and antimicrobial agents from Gram-negative bacteria. Escherichia coli tolC mutants grow well and are slightly elongated in rich media but grow less well than wild-type cells in minimal media. These phenotypes have no physiological explanation as yet. Here, we find that tolC mutants have highly aberrant shapes when grown in M9-glucose medium but that adding iron restores wild-type morphology. When starved for iron, E. coli tolC mutants synthesize but cannot secrete the siderophore enterobactin, which collects in the periplasm. tolC mutants unable to synthesize enterobactin display no growth or morphological defects, and adding exogenous enterobactin recreates these aberrations, implicating this compound as the causative agent. Cells unable to import enterobactin across the outer membrane grow normally, whereas cells that import enterobactin only to the periplasm become morphologically aberrant. Thus, tolC mutants grown in low iron conditions accumulate periplasmic enterobactin, which impairs bacterial morphology, possibly by sequestering iron and inhibiting an iron-dependent reaction involved in cell division or peptidoglycan synthesis. The results also highlight the need to supply sufficient iron when studying TolC-directed export or efflux, to eliminate extraneous physiological effects.
Collapse
Affiliation(s)
- Daniel E Vega
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205-7199, USA
| | | |
Collapse
|
46
|
Duval V, Lister IM. MarA, SoxS and Rob of Escherichia coli - Global regulators of multidrug resistance, virulence and stress response. ACTA ACUST UNITED AC 2013; 2:101-124. [PMID: 24860636 DOI: 10.6000/1927-3037.2013.02.03.2] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Bacteria have a great capacity for adjusting their metabolism in response to environmental changes by linking extracellular stimuli to the regulation of genes by transcription factors. By working in a co-operative manner, transcription factors provide a rapid response to external threats, allowing the bacteria to survive. This review will focus on transcription factors MarA, SoxS and Rob in Escherichia coli, three members of the AraC family of proteins. These homologous proteins exemplify the ability to respond to multiple threats such as oxidative stress, drugs and toxic compounds, acidic pH, and host antimicrobial peptides. MarA, SoxS and Rob recognize similar DNA sequences in the promoter region of more than 40 regulatory target genes. As their regulons overlap, a finely tuned adaptive response allows E. coli to survive in the presence of different assaults in a co-ordinated manner. These regulators are well conserved amongst Enterobacteriaceae and due to their broad involvement in bacterial adaptation in the host, have recently been explored as targets to develop new anti-virulence agents. The regulators are also being examined for their roles in novel technologies such as biofuel production.
Collapse
Affiliation(s)
- Valérie Duval
- Center for Adaptation Genetics and Drug Resistance, Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111
| | - Ida M Lister
- Arietis Corporation, 650 Albany Street, Room 130, Boston, MA 02118
| |
Collapse
|