1
|
Alberge F, Lakey BD, Schaub RE, Dohnalkova AC, Lemmer KC, Dillard JP, Noguera DR, Donohue TJ. A previously uncharacterized divisome-associated lipoprotein, DalA, is needed for normal cell division in Rhodobacterales. mBio 2023; 14:e0120323. [PMID: 37389444 PMCID: PMC10470522 DOI: 10.1128/mbio.01203-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 07/01/2023] Open
Abstract
The bacterial cell envelope is a key subcellular compartment with important roles in antibiotic resistance, nutrient acquisition, and cell morphology. We seek to gain a better understanding of proteins that contribute to the function of the cell envelope in Alphaproteobacteria. Using Rhodobacter sphaeroides, we show that a previously uncharacterized protein, RSP_1200, is an outer membrane (OM) lipoprotein that non-covalently binds peptidoglycan (PG). Using a fluorescently tagged version of this protein, we find that RSP_1200 undergoes a dynamic repositioning during the cell cycle and is enriched at the septum during cell division. We show that the position of RSP_1200 mirrors the location of FtsZ rings, leading us to propose that RSP_1200 is a newly identified component of the R. sphaeroides' divisome. Additional support for this hypothesis includes the co-precipitation of RSP_1200 with FtsZ, the Pal protein, and several predicted PG L,D-transpeptidases. We also find that a ∆RSP_1200 mutation leads to defects in cell division, sensitivity to PG-active antibiotics, and results in the formation of OM protrusions at the septum during cell division. Based on these results, we propose to name RSP_1200 DalA (for division-associated lipoprotein A) and postulate that DalA serves as a scaffold to position or modulate the activity of PG transpeptidases that are needed to form envelope invaginations during cell division. We find that DalA homologs are present in members of the Rhodobacterales order within Alphaproteobacteria. Therefore, we propose that further analysis of this and related proteins will increase our understanding of the macromolecular machinery and proteins that participate in cell division in Gram-negative bacteria. IMPORTANCE Multi-protein complexes of the bacterial cell envelope orchestrate key processes like growth, division, biofilm formation, antimicrobial resistance, and production of valuable compounds. The subunits of these protein complexes are well studied in some bacteria, and differences in their composition and function are linked to variations in cell envelope composition, shape, and proliferation. However, some envelope protein complex subunits have no known homologs across the bacterial phylogeny. We find that Rhodobacter sphaeroides RSP_1200 is a newly identified lipoprotein (DalA) and that loss of this protein causes defects in cell division and changes the sensitivity to compounds, affecting cell envelope synthesis and function. We find that DalA forms a complex with proteins needed for cell division, binds the cell envelope polymer peptidoglycan, and colocalizes with enzymes involved in the assembly of this macromolecule. The analysis of DalA provides new information on the cell division machinery in this and possibly other Alphaproteobacteria.
Collapse
Affiliation(s)
- François Alberge
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bryan D. Lakey
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan E. Schaub
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alice C. Dohnalkova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA
| | | | - Joseph P. Dillard
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- />Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
2
|
Lakey BD, Alberge F, Parrell D, Wright ER, Noguera DR, Donohue TJ. The role of CenKR in the coordination of Rhodobacter sphaeroides cell elongation and division. mBio 2023; 14:e0063123. [PMID: 37283520 PMCID: PMC10470753 DOI: 10.1128/mbio.00631-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 06/08/2023] Open
Abstract
Cell elongation and division are essential aspects of the bacterial life cycle that must be coordinated for viability and replication. The impact of misregulation of these processes is not well understood as these systems are often not amenable to traditional genetic manipulation. Recently, we reported on the CenKR two-component system (TCS) in the Gram-negative bacterium Rhodobacter sphaeroides that is genetically tractable, widely conserved in α-proteobacteria, and directly regulates the expression of components crucial for cell elongation and division, including genes encoding subunit of the Tol-Pal complex. In this work, we show that overexpression of cenK results in cell filamentation and chaining. Using cryo-electron microscopy (cryo-EM) and cryo-electron tomography (cryo-ET), we generated high-resolution two-dimensional (2D) images and three-dimensional (3D) volumes of the cell envelope and division septum of wild-type cells and a cenK overexpression strain finding that these morphological changes stem from defects in outer membrane (OM) and peptidoglycan (PG) constriction. By monitoring the localization of Pal, PG biosynthesis, and the bacterial cytoskeletal proteins MreB and FtsZ, we developed a model for how increased CenKR activity leads to changes in cell elongation and division. This model predicts that increased CenKR activity decreases the mobility of Pal, delaying OM constriction, and ultimately disrupting the midcell positioning of MreB and FtsZ and interfering with the spatial regulation of PG synthesis and remodeling. IMPORTANCE By coordinating cell elongation and division, bacteria maintain their shape, support critical envelope functions, and orchestrate division. Regulatory and assembly systems have been implicated in these processes in some well-studied Gram-negative bacteria. However, we lack information on these processes and their conservation across the bacterial phylogeny. In R. sphaeroides and other α-proteobacteria, CenKR is an essential two-component system (TCS) that regulates the expression of genes known or predicted to function in cell envelope biosynthesis, elongation, and/or division. Here, we leverage unique features of CenKR to understand how increasing its activity impacts cell elongation/division and use antibiotics to identify how modulating the activity of this TCS leads to changes in cell morphology. Our results provide new insight into how CenKR activity controls the structure and function of the bacterial envelope, the localization of cell elongation and division machinery, and cellular processes in organisms with importance in health, host-microbe interactions, and biotechnology.
Collapse
Affiliation(s)
- Bryan D. Lakey
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - François Alberge
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel Parrell
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Elizabeth R. Wright
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Cryo-Electron Microscopy Research Center,Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Midwest Center for Cryo-Electron Tomography, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
The Ethanologenic Bacterium Zymomonas mobilis Divides Asymmetrically and Exhibits Heterogeneity in DNA Content. Appl Environ Microbiol 2021; 87:AEM.02441-20. [PMID: 33452021 DOI: 10.1128/aem.02441-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/23/2020] [Indexed: 02/04/2023] Open
Abstract
The alphaproteobacterium Zymomonas mobilis exhibits extreme ethanologenic physiology, making this species a promising biofuel producer. Numerous studies have investigated its biology relevant to industrial applications and mostly at the population level. However, the organization of single cells in this industrially important polyploid species has been largely uncharacterized. In the present study, we characterized basic cellular behavior of Z. mobilis strain Zm6 under anaerobic conditions at the single-cell level. We observed that growing Z. mobilis cells often divided at a nonmidcell position, which contributed to variant cell size at birth. However, the cell size variance was regulated by a modulation of cell cycle span, mediated by a correlation of bacterial tubulin homologue FtsZ ring accumulation with cell growth. The Z. mobilis culture also exhibited heterogeneous cellular DNA content among individual cells, which might have been caused by asynchronous replication of chromosome that was not coordinated with cell growth. Furthermore, slightly angled divisions might have resulted in temporary curvatures of attached Z. mobilis cells. Overall, the present study uncovers a novel bacterial cell organization in Z. mobilis IMPORTANCE With increasing environmental concerns about the use of fossil fuels, development of a sustainable biofuel production platform has been attracting significant public attention. Ethanologenic Z. mobilis species are endowed with an efficient ethanol fermentation capacity that surpasses, in several respects, that of baker's yeast (Saccharomyces cerevisiae), the most-used microorganism for ethanol production. For development of a Z. mobilis culture-based biorefinery, an investigation of its uncharacterized cell biology is important, because bacterial cellular organization and metabolism are closely associated with each other in a single cell compartment. In addition, the current work demonstrates that the polyploid bacterium Z. mobilis exhibits a distinctive mode of bacterial cell organization, likely reflecting its unique metabolism that does not prioritize incorporation of nutrients for cell growth. Thus, another significant result of this work is to advance our general understanding in the diversity of bacterial cell architecture.
Collapse
|
4
|
Spatiotemporal Organization of Chemotaxis Pathways in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2020; 87:AEM.02229-20. [PMID: 33067189 DOI: 10.1128/aem.02229-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 11/20/2022] Open
Abstract
Magnetospirillum gryphiswaldense employs iron-rich nanoparticles for magnetic navigation within environmental redox gradients. This behavior termed magneto-aerotaxis was previously shown to rely on the sensory pathway CheOp1, but the precise localization of CheOp1-related chemoreceptor arrays during the cell cycle and its possible interconnection with three other chemotaxis pathways have remained unstudied. Here, we analyzed the localization of chemoreceptor-associated adaptor protein CheW1 and histidine kinase CheA1 by superresolution microscopy in a spatiotemporal manner. CheW1 localized in dynamic clusters that undergo occasional segregation and fusion events at lateral sites of both cell poles. Newly formed smaller clusters originating at midcell before completion of cytokinesis were found to grow in size during the cell cycle. Bipolar CheA1 localization and formation of aerotactic swim halos were affected depending on the fluorescent protein tag, indicating that CheA1 localization is important for aerotaxis. Furthermore, polar CheW1 localization was independent of cheOp2 to cheOp4 but lost in the absence of cheOp1 or cheA1 Results were corroborated by the detection of a direct protein interaction between CheA1 and CheW1 and by the observation that cheOp2- and cheOp3-encoded CheW paralogs localized in spatially distinct smaller clusters at the cell boundary. Although the findings of a minor aerotaxis-related CheOp4 phenotype and weak protein interactions between CheOp1 and CheOp4 by two-hybrid analysis implied that CheW1 and CheW4 might be part of the same chemoreceptor array, CheW4 was localized in spatially distinct polar-lateral arrays independent of CheOp1, suggesting that CheOp1 and CheOp4 are also not connected at the molecular level.IMPORTANCE Magnetotactic bacteria (MTB) use the geomagnetic field for navigation in aquatic redox gradients. However, the highly complex signal transduction networks in these environmental microbes are poorly understood. Here, we analyzed the localization of selected chemotaxis proteins to spatially and temporally resolve chemotaxis array localization in Magnetospirillum gryphiswaldense Our findings suggest that bipolar localization of chemotaxis arrays related to the key signaling pathway CheOp1 is important for aerotaxis and that CheOp1 signaling units assemble independent of the three other chemotaxis pathways present in M. gryphiswaldense Overall, our results provide deeper insights into the complex organization of signaling pathways in MTB and add to the general understanding of environmental bacteria possessing multiple chemotaxis pathways.
Collapse
|
5
|
In Vivo Imaging of the Segregation of the 2 Chromosomes and the Cell Division Proteins of Rhodobacter sphaeroides Reveals an Unexpected Role for MipZ. mBio 2019; 10:mBio.02515-18. [PMID: 30602584 PMCID: PMC6315104 DOI: 10.1128/mbio.02515-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Cell division has to be coordinated with chromosome segregation to ensure the stable inheritance of genetic information. We investigated this coordination in the multichromosome bacterium Rhodobacter sphaeroides. By examining the origin and terminus regions of the two chromosomes, the ParA-like ATPase MipZ and FtsZ, we showed that chromosome 1 appears to be the “master” chromosome connecting DNA segregation and cell division, with MipZ being critical for coordination. MipZ shows an unexpected localization pattern, with MipZ monomers interacting with ParB of the chromosome 1 at the cell poles whereas MipZ dimers colocalize with FtsZ at midcell during constriction, both forming dynamic rings. These data suggest that MipZ has roles in R. sphaeroides in both controlling septation and coordinating chromosome segregation with cell division. Coordinating chromosome duplication and segregation with cell division is clearly critical for bacterial species with one chromosome. The precise choreography required is even more complex in species with more than one chromosome. The alpha subgroup of bacteria contains not only one of the best-studied bacterial species, Caulobacter crescentus, but also several species with more than one chromosome. Rhodobacter sphaeroides is an alphaproteobacterium with two chromosomes, but, unlike C. crescentus, it divides symmetrically rather than buds and lacks the complex CtrA-dependent control mechanism. By examining the Ori and Ter regions of both chromosomes and associated ParA and ParB proteins relative to cell division proteins FtsZ and MipZ, we have identified a different pattern of chromosome segregation and cell division. The pattern of chromosome duplication and segregation resembles that of Vibrio cholerae, not that of Agrobacterium tumefaciens, with duplication of the origin and terminus regions of chromosome 2 controlled by chromosome 1. Key proteins are localized to different sites compared to C. crescentus. OriC1 and ParB1 are localized to the old pole, while MipZ and FtsZ localize to the new pole. Movement of ParB1 to the new pole following chromosome duplication releases FtsZ, which forms a ring at midcell, but, unlike reports for other species, MipZ monomers do not form a gradient but oscillate between poles, with the nucleotide-bound monomer and the dimer localizing to midcell. MipZ dimers form a single ring (with a smaller diameter) close to the FtsZ ring at midcell and constrict with the FtsZ ring. Overproduction of the dimer form results in filamentation, suggesting that MipZ dimers are regulating FtsZ activity and thus septation. This is an unexpected role for MipZ and provides a new model for the integration of chromosome segregation and cell division.
Collapse
|
6
|
Leake MC. Transcription factors in eukaryotic cells can functionally regulate gene expression by acting in oligomeric assemblies formed from an intrinsically disordered protein phase transition enabled by molecular crowding. Transcription 2018; 9:298-306. [PMID: 29895219 PMCID: PMC6150617 DOI: 10.1080/21541264.2018.1475806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
High-speed single-molecule fluorescence microscopy in vivo shows that transcription factors in eukaryotes can act in oligomeric clusters mediated by molecular crowding and intrinsically disordered protein. This finding impacts on the longstanding puzzle of how transcription factors find their gene targets so efficiently in the complex, heterogeneous environment of the cell. Abbreviations CDF - cumulative distribution function; FRAP - fluorescence recovery after photobleaching; GFP - Green fluorescent protein; STORM - stochastic optical reconstruction microscopy; TF - Transcription factor; YFP - Yellow fluorescent protein
Collapse
Affiliation(s)
- Mark C Leake
- a Departments of Physics and Biology , Biological Physical Sciences Institute, University of York , York , UK
| |
Collapse
|
7
|
Essential Role of the Cytoplasmic Chemoreceptor TlpT in the De Novo Formation of Chemosensory Complexes in Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00366-17. [PMID: 28739674 DOI: 10.1128/jb.00366-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/14/2017] [Indexed: 11/20/2022] Open
Abstract
Bacterial chemosensory proteins form large hexagonal arrays. Several key features of chemotactic signaling depend on these large arrays, namely, cooperativity between receptors, sensitivity, integration of different signals, and adaptation. The best-studied arrays are the membrane-associated arrays found in most bacteria. Rhodobacter sphaeroides has two spatially distinct chemosensory arrays, one is transmembrane and the other is cytoplasmic. These two arrays work together to control a single flagellum. Deletion of one of the soluble chemoreceptors, TlpT, results in the loss of the formation of the cytoplasmic array. Here, we show the expression of TlpT in a tlpT deletion background results in the reformation of the cytoplasmic array. The number of arrays formed is dependent on the cell length, indicating spatial limitations on the number of arrays in a cell and stochastic assembly. Deletion of PpfA, a protein required for the positioning and segregation of the cytoplasmic array, results in slower array formation upon TlpT expression and fewer arrays, suggesting it accelerates cluster assembly.IMPORTANCE Bacterial chemosensory arrays are usually membrane associated and consist of thousands of copies of receptors, adaptor proteins, kinases, and adaptation enzymes packed into large hexagonal structures. Rhodobacter sphaeroides also has cytoplasmic arrays, which divide and segregate using a chromosome-associated ATPase, PpfA. The expression of the soluble chemoreceptor TlpT is shown to drive the formation of the arrays, accelerated by PpfA. The positioning of these de novo arrays suggests their position is the result of stochastic assembly rather than active positioning.
Collapse
|
8
|
Wollman AJM, Miller H, Foster S, Leake MC. An automated image analysis framework for segmentation and division plane detection of single liveStaphylococcus aureuscells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy. Phys Biol 2016; 13:055002. [DOI: 10.1088/1478-3975/13/5/055002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Rowlett VW, Margolin W. The bacterial divisome: ready for its close-up. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0028. [PMID: 26370940 DOI: 10.1098/rstb.2015.0028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacterial cells divide by targeting a transmembrane protein machine to the division site and regulating its assembly and disassembly so that cytokinesis occurs at the correct time in the cell cycle. The structure and dynamics of this machine (divisome) in bacterial model systems are coming more clearly into focus, thanks to incisive cell biology methods in combination with biochemical and genetic approaches. The main conserved structural element of the machine is the tubulin homologue FtsZ, which assembles into a circumferential ring at the division site that is stabilized and anchored to the inner surface of the cytoplasmic membrane by FtsZ-binding proteins. Once this ring is in place, it recruits a series of transmembrane proteins that ultimately trigger cytokinesis. This review will survey the methods used to characterize the structure of the bacterial divisome, focusing mainly on the Escherichia coli model system, as well as the challenges that remain. These methods include recent super-resolution microscopy, cryo-electron tomography and synthetic reconstitution.
Collapse
Affiliation(s)
- Veronica W Rowlett
- Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| | - William Margolin
- Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin, Houston, TX 77030, USA
| |
Collapse
|
10
|
Busiek KK, Margolin W. Bacterial actin and tubulin homologs in cell growth and division. Curr Biol 2016; 25:R243-R254. [PMID: 25784047 DOI: 10.1016/j.cub.2015.01.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In contrast to the elaborate cytoskeletal machines harbored by eukaryotic cells, such as mitotic spindles, cytoskeletal structures detectable by typical negative stain electron microscopy are generally absent from bacterial cells. As a result, for decades it was thought that bacteria lacked cytoskeletal machines. Revolutions in genomics and fluorescence microscopy have confirmed the existence not only of smaller-scale cytoskeletal structures in bacteria, but also of widespread functional homologs of eukaryotic cytoskeletal proteins. The presence of actin, tubulin, and intermediate filament homologs in these relatively simple cells suggests that primitive cytoskeletons first arose in bacteria. In bacteria such as Escherichia coli, homologs of tubulin and actin directly interact with each other and are crucial for coordinating cell growth and division. The function and direct interactions between these proteins will be the focus of this review.
Collapse
Affiliation(s)
- Kimberly K Busiek
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St., Houston, TX 77030, USA.
| |
Collapse
|
11
|
Transmembrane protein sorting driven by membrane curvature. Nat Commun 2015; 6:8728. [PMID: 26522943 PMCID: PMC4632190 DOI: 10.1038/ncomms9728] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization. The accumulation of chemoreceptor proteins at bacterial poles is thought to depend on their clustering into arrays. Strahl et al. show that in Bacillus subtilis, the chemoreceptor TlpA uses high membrane curvature as a spatial cue for polar localization, through the intrinsic curvature sensitivity of the receptor complex.
Collapse
|
12
|
Santos TMA, Lin TY, Rajendran M, Anderson SM, Weibel DB. Polar localization of Escherichia coli chemoreceptors requires an intact Tol-Pal complex. Mol Microbiol 2014; 92:985-1004. [PMID: 24720726 DOI: 10.1111/mmi.12609] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2014] [Indexed: 11/29/2022]
Abstract
Subcellular biomolecular localization is critical for the metabolic and structural properties of the cell. The functional implications of the spatiotemporal distribution of protein complexes during the bacterial cell cycle have long been acknowledged; however, the molecular mechanisms for generating and maintaining their dynamic localization in bacteria are not completely understood. Here we demonstrate that the trans-envelope Tol-Pal complex, a widely conserved component of the cell envelope of Gram-negative bacteria, is required to maintain the polar positioning of chemoreceptor clusters in Escherichia coli. Localization of the chemoreceptors was independent of phospholipid composition of the membrane and the curvature of the cell wall. Instead, our data indicate that chemoreceptors interact with components of the Tol-Pal complex and that this interaction is required to polarly localize chemoreceptor clusters. We found that disruption of the Tol-Pal complex perturbs the polar localization of chemoreceptors, alters cell motility, and affects chemotaxis. We propose that the E. coli Tol-Pal complex restricts mobility of the chemoreceptor clusters at the cell poles and may be involved in regulatory mechanisms that co-ordinate cell division and segregation of the chemosensory machinery.
Collapse
Affiliation(s)
- Thiago M A Santos
- Department of Biochemistry, University of Wisconsin-Madison, 440 Henry Mall, Madison, WI, 53706, USA
| | | | | | | | | |
Collapse
|
13
|
Abstract
It is now well appreciated that bacterial cells are highly organized, which is far from the initial concept that they are merely bags of randomly distributed macromolecules and chemicals. Central to their spatial organization is the precise positioning of certain proteins in subcellular domains of the cell. In particular, the cell poles - the ends of rod-shaped cells - constitute important platforms for cellular regulation that underlie processes as essential as cell cycle progression, cellular differentiation, virulence, chemotaxis and growth of appendages. Thus, understanding how the polar localization of specific proteins is achieved and regulated is a crucial question in bacterial cell biology. Often, polarly localized proteins are recruited to the poles through their interaction with other proteins or protein complexes that were already located there, in a so-called diffusion-and-capture mechanism. Bacteria are also starting to reveal their secrets on how the initial pole 'recognition' can occur and how this event can be regulated to generate dynamic, reproducible patterns in time (for example, during the cell cycle) and space (for example, at a specific cell pole). Here, we review the major mechanisms that have been described in the literature, with an emphasis on the self-organizing principles. We also present regulation strategies adopted by bacterial cells to obtain complex spatiotemporal patterns of protein localization.
Collapse
Affiliation(s)
- Géraldine Laloux
- de Duve Institute, Université Catholique de Louvain, B-1200 Brussels, Belgium
| | | |
Collapse
|