1
|
Zadow ME, MacRaild CA, Creek DJ, Wilson DW. Alba protein-mediated gene and protein regulation in protozoan parasites. Int J Parasitol 2025:S0020-7519(25)00076-1. [PMID: 40246164 DOI: 10.1016/j.ijpara.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/21/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
The success of protozoan parasites relies heavily on regulation of gene and protein expression to facilitate their persistence in harsh and often changing environments. These parasites display biology that is highly divergent from model eukaryotes, unfortunately leaving our understanding of these parasites' critical regulatory mechanisms incomplete. Alba proteins, a highly diverse group of DNA/RNA-binding proteins, are found across all domains of life and it has become increasingly apparent that these proteins play key regulatory roles in many protozoan parasite species including Plasmodium, Leishmania, Toxoplasma, and Trypanosoma. This review focusses on a subset of clinically relevant protozoan parasites and highlights the key biological processes known to have Alba protein involvement in these organisms including parasite development, survival, and virulence. In order to gain greater insight into these proteins, we also undertook a bioinformatic exploration of their protein sequences, leading us to identify previously unreported C-terminal Alba domain motifs and propose annotations for several currently unannotated protozoan Alba-like proteins. This collation of information allows us to observe common themes in Alba protein function across this group of parasites while also identifying areas of opportunity for further study.
Collapse
Affiliation(s)
- Meghan E Zadow
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia.
| | - Christopher A MacRaild
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Danny W Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide 5005 SA, Australia; Burnet Institute, Melbourne 3004 Victoria, Australia.
| |
Collapse
|
2
|
Acharya D, Bavikatte AN, Ashok VV, Hegde SR, Macpherson CR, Scherf A, Vembar SS. Ectopic overexpression of Plasmodium falciparum DNA-/RNA-binding Alba proteins misregulates virulence gene homeostasis during asexual blood development. Microbiol Spectr 2025; 13:e0088524. [PMID: 39868986 PMCID: PMC11878077 DOI: 10.1128/spectrum.00885-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 11/27/2024] [Indexed: 01/28/2025] Open
Abstract
Alba domain-containing proteins are ubiquitously found in archaea and eukaryotes. By binding to either DNA, RNA, or DNA:RNA hybrids, these proteins function in genome stabilization, chromatin organization, gene regulation, and/or translational modulation. In the malaria parasite Plasmodium falciparum, six Alba domain proteins PfAlba1-6 have been described, of which PfAlba1 has emerged as a "master regulator" of translation during parasite intra-erythrocytic development (IED). Given that a tight control of gene expression is especially important during IED, when malaria pathogenesis manifests, in this study, we focus on three other P. falciparum Albas, PfAlba2-4. Because genetic manipulation of the genomic loci of PfAlba2-4 was unsuccessful, we overexpressed each of these proteins from an episome under a strong constitutive promoter. We observed that PfAlba2 or PfAlba3 overexpression strongly reduced parasite growth and impacted IED stage transitions. In contrast, elevated levels of PfAlba4 were well-tolerated by the parasite. In keeping with this, differential gene expression analysis using RNA-seq of PfAlba2 or PfAlba3 overexpressing strains revealed a significant misregulation of mRNAs encoding virulence factors, such as those related to erythrocyte invasion; a general repression of var gene expression was also apparent. PfAlba4 overexpression, on the other hand, did not significantly perturb the steady-state transcriptome of IED stages and appeared to enhance var mRNA levels. Moreover, distinct sets of genes were targeted by each PfAlba for regulation. Taken together, this study highlights the nonredundant roles of PfAlba proteins in the P. falciparum IED, emphasizing their importance in subtelomeric chromatin biology and RNA regulation.IMPORTANCEThe malaria parasite Plasmodium falciparum tightly controls the expression of its genes at the epigenetic, transcriptional, post-transcriptional, and translational levels to synthesize essential proteins, including virulence factors, in a timely and spatially coordinated manner. A family of six proteins implicated in this process is called PfAlba, characterized by the presence of the DNA-, RNA- or DNA:RNA hybrid-binding Alba domain. To better understand the cellular pathways regulated by this protein family, we overexpressed three PfAlbas during P. falciparum intra-erythrocytic growth and found that high levels of PfAlba2 and PfAlba3 were detrimental to parasite development. This was accompanied by significant changes in the parasite's transcriptome, either with regards to mRNA steady-state levels or expression timing. PfAlba4 overexpression, on the other hand, was well-tolerated by the parasite. Overall, our results delineate specific pathways targeted by individual PfAlbas for regulation and link PfAlba2/PfAlba3 to mutually exclusive expression of the virulence-promoting surface antigen PfEMP1.
Collapse
Affiliation(s)
- Dimple Acharya
- Manipal Academy of Higher Education, Manipal, Karnataka, India
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | | | - Vishnu Vinayak Ashok
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Shubhada R. Hegde
- Institute of Bioinformatics and Applied Biotechnology, Bengaluru, Karnataka, India
| | - Cameron Ross Macpherson
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
- CNRS ERM9195, Paris, France
- INSERM U1201, Paris, France
| | - Artur Scherf
- Unité de Biologie des Interactions Hôte-Parasite, Institut Pasteur, Paris, France
- CNRS ERM9195, Paris, France
- INSERM U1201, Paris, France
| | | |
Collapse
|
3
|
Ferreira GR, Emond-Rheault JG, Alves L, Leprohon P, Smith MA, Papadopoulou B. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania. BMC Biol 2024; 22:249. [PMID: 39468514 PMCID: PMC11520807 DOI: 10.1186/s12915-024-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression. RESULTS We show that SIDER2 retroposons form various evolutionary divergent clusters, each harboring homologous SIDER2 sequences usually located nearby in the linear sequence of chromosomes. This intriguing genomic organization underscores the importance of SIDER2 proximity in shaping chromosome dynamics and co-regulation. Accordingly, we show that transcripts belonging to the same SIDER2 cluster can display similar levels of expression. SIDER2 retroposons are mostly transcribed as part of 3'UTRs and account for 13% of the Leishmania transcriptome. Genome-wide expression profiling studies underscore SIDER2 association generally with low mRNA expression. The remarkable link of SIDER2 retroposons with downregulation of gene expression supports their co-option as major regulators of mRNA abundance. SIDER2 sequences also add to the diversification of the Leishmania gene expression repertoire since ~ 35% of SIDER2-containing transcripts can be differentially regulated throughout the parasite development, with a few encoding key virulence factors. In addition, we provide evidence for a functional bias of SIDER2-containing transcripts with protein kinase and transmembrane transporter activities being most represented. CONCLUSIONS Altogether, these findings provide important conceptual advances into evolutionary innovations of transcribed extinct retroposons acting as major RNA cis-regulators.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Jean-Guillaume Emond-Rheault
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Lysangela Alves
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- , Rua Prof. Algacyr Munhoz Mader 3775, Curitiba/PR, CIC, 81310-020, Brazil
| | - Philippe Leprohon
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, QC, Montreal, H3T 1J4, Canada
- School of Biotechnology and Molecular Bioscience, Faculty of Science, UNSW Sydney, NSW, Sydney, 2052, Australia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
4
|
Matiz-González JM, Pardo-Rodriguez D, Puerta CJ, Requena JM, Nocua PA, Cuervo C. Exploring the functionality and conservation of Alba proteins in Trypanosoma cruzi: A focus on biological diversity and RNA binding ability. Int J Biol Macromol 2024; 272:132705. [PMID: 38810850 DOI: 10.1016/j.ijbiomac.2024.132705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, as well as a trypanosomatid parasite with a complex biological cycle that requires precise mechanisms for regulating gene expression. In Trypanosomatidae, gene regulation occurs mainly at the mRNA level through the recognition of cis elements by RNA-binding proteins (RBPs). Alba family members are ubiquitous DNA/RNA-binding proteins with representatives in trypanosomatid parasites functionally related to gene expression regulation. Although T. cruzi possesses two groups of Alba proteins (Alba1/2 and Alba30/40), their functional role remains poorly understood. Thus, herein, a characterization of T. cruzi Alba (TcAlba) proteins was undertaken. Physicochemical, structural, and phylogenetic analysis of TcAlba showed features compatible with RBPs, such as hydrophilicity, RBP domains/motifs, and evolutionary conservation of the Alba-domain, mainly regarding other trypanosomatid Alba. However, in silico RNA interaction analysis of T. cruzi Alba proteins showed that TcAlba30/40 proteins, but not TcAlba1/2, would directly interact with the assayed RNA molecules, suggesting that these two groups of TcAlba proteins have different targets. Given the marked differences existing between both T. cruzi Alba groups (TcAlba1/2 and TcAlba30/40), regarding sequence divergence, RNA binding potential, and life-cycle expression patterns, we suggest that they would be involved in different biological processes.
Collapse
Affiliation(s)
- J Manuel Matiz-González
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia
| | - Daniel Pardo-Rodriguez
- Grupo de Fitoquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia; Metabolomics Core Facility, Vice-Presidency for Research, Universidad de los Andes, 111711 Bogotá, Colombia
| | - Concepción J Puerta
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia
| | - José M Requena
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Paola A Nocua
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia.
| | - Claudia Cuervo
- Grupo de Enfermedades Infecciosas, Facultad de Ciencias, Pontificia Universidad Javeriana, 110231 Bogotá, Colombia.
| |
Collapse
|
5
|
Kamran M, Bhattacharjee R, Das S, Mukherjee S, Ali N. The paradigm of intracellular parasite survival and drug resistance in leishmanial parasite through genome plasticity and epigenetics: Perception and future perspective. Front Cell Infect Microbiol 2023; 13:1001973. [PMID: 36814446 PMCID: PMC9939536 DOI: 10.3389/fcimb.2023.1001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Leishmania is an intracellular, zoonotic, kinetoplastid eukaryote with more than 1.2 million cases all over the world. The leishmanial chromosomes are divided into polymorphic chromosomal ends, conserved central domains, and antigen-encoding genes found in telomere-proximal regions. The genome flexibility of chromosomal ends of the leishmanial parasite is known to cause drug resistance and intracellular survival through the evasion of host defense mechanisms. Therefore, in this review, we discuss the plasticity of Leishmania genome organization which is the primary cause of drug resistance and parasite survival. Moreover, we have not only elucidated the causes of such genome plasticity which includes aneuploidy, epigenetic factors, copy number variation (CNV), and post-translation modification (PTM) but also highlighted their impact on drug resistance and parasite survival.
Collapse
Affiliation(s)
| | | | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | | |
Collapse
|
6
|
Four layer multi-omics reveals molecular responses to aneuploidy in Leishmania. PLoS Pathog 2022; 18:e1010848. [PMID: 36149920 PMCID: PMC9534393 DOI: 10.1371/journal.ppat.1010848] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/05/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Abstract
Aneuploidy causes system-wide disruptions in the stochiometric balances of transcripts, proteins, and metabolites, often resulting in detrimental effects for the organism. The protozoan parasite Leishmania has an unusually high tolerance for aneuploidy, but the molecular and functional consequences for the pathogen remain poorly understood. Here, we addressed this question in vitro and present the first integrated analysis of the genome, transcriptome, proteome, and metabolome of highly aneuploid Leishmania donovani strains. Our analyses unambiguously establish that aneuploidy in Leishmania proportionally impacts the average transcript- and protein abundance levels of affected chromosomes, ultimately correlating with the degree of metabolic differences between closely related aneuploid strains. This proportionality was present in both proliferative and non-proliferative in vitro promastigotes. However, as in other Eukaryotes, we observed attenuation of dosage effects for protein complex subunits and in addition, non-cytoplasmic proteins. Differentially expressed transcripts and proteins between aneuploid Leishmania strains also originated from non-aneuploid chromosomes. At protein level, these were enriched for proteins involved in protein metabolism, such as chaperones and chaperonins, peptidases, and heat-shock proteins. In conclusion, our results further support the view that aneuploidy in Leishmania can be adaptive. Additionally, we believe that the high karyotype diversity in vitro and absence of classical transcriptional regulation make Leishmania an attractive model to study processes of protein homeostasis in the context of aneuploidy and beyond.
Collapse
|
7
|
Wai AH, Cho LH, Peng X, Waseem M, Lee DJ, Lee JM, Kim CK, Chung MY. Genome-wide identification and expression profiling of Alba gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2021; 21:530. [PMID: 34772358 PMCID: PMC8588595 DOI: 10.1186/s12870-021-03310-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township, Yangon Region 11041 Myanmar
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463 Republic of Korea
| | - Xin Peng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of horticulture, South China Agricultural University, Guangzhou, China
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| | - Je-Min Lee
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| |
Collapse
|
8
|
Assis LA, Santos Filho MVC, da Cruz Silva JR, Bezerra MJR, de Aquino IRPUC, Merlo KC, Holetz FB, Probst CM, Rezende AM, Papadopoulou B, da Costa Lima TDC, de Melo Neto OP. Identification of novel proteins and mRNAs differentially bound to the Leishmania Poly(A) Binding Proteins reveals a direct association between PABP1, the RNA-binding protein RBP23 and mRNAs encoding ribosomal proteins. PLoS Negl Trop Dis 2021; 15:e0009899. [PMID: 34705820 PMCID: PMC8575317 DOI: 10.1371/journal.pntd.0009899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.
Collapse
Affiliation(s)
- Ludmila A. Assis
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Moezio V. C. Santos Filho
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Joao R. da Cruz Silva
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Maria J. R. Bezerra
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | - Kleison C. Merlo
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Christian M. Probst
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Barbara Papadopoulou
- CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, Laval University, Quebec, Quebec, Canada
| | | | - Osvaldo P. de Melo Neto
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
9
|
Camacho E, González-de la Fuente S, Solana JC, Rastrojo A, Carrasco-Ramiro F, Requena JM, Aguado B. Gene Annotation and Transcriptome Delineation on a De Novo Genome Assembly for the Reference Leishmania major Friedlin Strain. Genes (Basel) 2021; 12:genes12091359. [PMID: 34573340 PMCID: PMC8468144 DOI: 10.3390/genes12091359] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/20/2021] [Accepted: 08/27/2021] [Indexed: 01/05/2023] Open
Abstract
Leishmania major is the main causative agent of cutaneous leishmaniasis in humans. The Friedlin strain of this species (LmjF) was chosen when a multi-laboratory consortium undertook the objective of deciphering the first genome sequence for a parasite of the genus Leishmania. The objective was successfully attained in 2005, and this represented a milestone for Leishmania molecular biology studies around the world. Although the LmjF genome sequence was done following a shotgun strategy and using classical Sanger sequencing, the results were excellent, and this genome assembly served as the reference for subsequent genome assemblies in other Leishmania species. Here, we present a new assembly for the genome of this strain (named LMJFC for clarity), generated by the combination of two high throughput sequencing platforms, Illumina short-read sequencing and PacBio Single Molecular Real-Time (SMRT) sequencing, which provides long-read sequences. Apart from resolving uncertain nucleotide positions, several genomic regions were reorganized and a more precise composition of tandemly repeated gene loci was attained. Additionally, the genome annotation was improved by adding 542 genes and more accurate coding-sequences defined for around two hundred genes, based on the transcriptome delimitation also carried out in this work. As a result, we are providing gene models (including untranslated regions and introns) for 11,238 genes. Genomic information ultimately determines the biology of every organism; therefore, our understanding of molecular mechanisms will depend on the availability of precise genome sequences and accurate gene annotations. In this regard, this work is providing an improved genome sequence and updated transcriptome annotations for the reference L. major Friedlin strain.
Collapse
|
10
|
Bevkal S, Naguleswaran A, Rehmann R, Kaiser M, Heller M, Roditi I. An Alba-domain protein required for proteome remodelling during trypanosome differentiation and host transition. PLoS Pathog 2021; 17:e1009239. [PMID: 33493187 PMCID: PMC7861527 DOI: 10.1371/journal.ppat.1009239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
The transition between hosts is a challenge for digenetic parasites as it is unpredictable. For Trypanosoma brucei subspecies, which are disseminated by tsetse flies, adaptation to the new host requires differentiation of stumpy forms picked up from mammals to procyclic forms in the fly midgut. Here we show that the Alba-domain protein Alba3 is not essential for mammalian slender forms, nor is it required for differentiation of slender to stumpy forms in culture or in mice. It is crucial, however, for the development of T. brucei procyclic forms during the host transition. While steady state levels of mRNAs in differentiating cells are barely affected by the loss of Alba3, there are major repercussions for the proteome. Mechanistically, Alba3 aids differentiation by rapidly releasing stumpy forms from translational repression and stimulating polysome formation. In its absence, parasites fail to remodel their proteome appropriately, lack components of the mitochondrial respiratory chain and show reduced infection of tsetse. Interestingly, Alba3 and the closely related Alba4 are functionally redundant in slender forms, but Alba4 cannot compensate for the lack of Alba3 during differentiation from the stumpy to the procyclic form. We postulate that Alba-domain proteins play similar roles in regulating translation in other protozoan parasites, in particular during life-cycle and host transitions. Trypanosoma brucei is a unicellular eukaryotic parasite that is responsible for African trypanosomiasis. The parasite needs two hosts, mammals and tsetse flies, in order to complete its life cycle. Throughout its developmental cycle, T. brucei encounters diverse environments to which it has to adapt in order to maintain its transmission and infectivity. Successful adaptation to the new environment and transition to different life-cycle stages are the general challenges faced by many digenetic parasites. In this study we show that the Alba-domain protein Alba3 is essential for differentiation of the mammalian stumpy form (transition form) to the procyclic form in the tsetse host. An Alba3 deletion mutant infects mice and shows characteristic waves of parasitaemia, but is severely compromised in its ability to infect tsetse flies. Stumpy forms are translationally repressed, but are poised to resume protein synthesis during differentiation. We show that Alba3 is key to efficient escape from translation repression; in its absence, there is a delay in the formation of polysomes and resumption of protein synthesis. This impacts the formation of procyclic-specific mitochondrial respiratory complex proteins as well as the repression of some bloodstream-specific proteins. This is the first time that a single protein has been shown to have a major influence on translation as an adaptive response to changing hosts. It is also the first time that a mechanism has been established for Alba-domain proteins in parasites.
Collapse
Affiliation(s)
- Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Marcel Kaiser
- Department of Medical and Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
11
|
Rodríguez-Vega A, Losada-Barragán M, Berbert LR, Mesquita-Rodrigues C, Bombaça ACS, Menna-Barreto R, Aquino P, Carvalho PC, Padrón G, de Jesus JB, Cuervo P. Quantitative analysis of proteins secreted by Leishmania (Viannia) braziliensis strains associated to distinct clinical manifestations of American Tegumentary Leishmaniasis. J Proteomics 2020; 232:104077. [PMID: 33309930 DOI: 10.1016/j.jprot.2020.104077] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/15/2022]
Abstract
The role of Leishmania braziliensis in the development of different clinical forms of American Tegumentary Leishmaniasis (ATL) is unclear, but it has been suggested that molecules secreted/released by parasites could modulate the clinical outcome. Here, we analyzed the infection rate and cytokine profile of macrophages pretreated with the secretome of two L. braziliensis strains associated with polar clinical forms of ATL: one associated with localized self-healing cutaneous leishmaniasis (LCL) and other associated with the disseminated form (DL). Besides, we use an iTRAQ-based quantitative proteomics approach to compare the abundance of proteins secreted by those strains. In vitro infection demonstrated that pretreatment with secretome resulted in higher number of infected macrophages, as well as higher number of amastigotes per cell. Additionally, macrophages pretreated with LCL secretome exhibited a proinflammatory profile, whereas those pretreated with the DL one did not. These findings suggest that secretomes made macrophages more susceptible to infection and that molecules secreted by each strain modulate, differentially, the macrophages' cytokine profile. Indeed, proteomics analysis showed that the DL secretome is rich in molecules involved in macrophage deactivation, while is poor in proteins that activate proinflammatory pathways. Together, our results reveal new molecules that may contribute to the infection, persistence and dissemination of the parasite. SIGNIFICANCE: Leishmania braziliensis is associated to localized self-healing cutaneous lesions (LCL), disseminated leishmaniasis (DL), and mucocutaneous lesions (MCL). To understand the role of the parasite in those distinct clinical manifestations we evaluated infection rates and cytokine profiles of macrophages pre-treated with secretomes of two L. braziliensis strains associated with DL and LCL, and quantitatively compared these secretomes. The infection index of macrophages pretreated with the DL secretome was significantly higher than that exhibited by non-treated cells. Interestingly, whereas the LCL secretome stimulated a proinflammatory setting, favoring an effector cell response that would explain the proper resolution of the disease caused by this strain, the DL strain was not able to elicit such response or has mechanisms to prevent this activation. Indeed, DL secretome is rich in peptidases that may deactivate cell pathways crucial for parasite elimination, while is poor in proteins that could activate proinflammatory pathways, favoring parasite infection and persistence.
Collapse
Affiliation(s)
- Andrés Rodríguez-Vega
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Monica Losada-Barragán
- Grupo de Investigación en Biología Celular y Funcional e Ingeniería de Biomoléculas, Universidad Antonio Nariño, Bogotá, Colombia
| | - Luiz Ricardo Berbert
- Laboratório de Pesquisas sobre o Timo, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Camila Mesquita-Rodrigues
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | | | - Rubem Menna-Barreto
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Priscila Aquino
- Instituto Leônidas e Maria Deane, Fiocruz, Manaus, AM, Brazil
| | - Paulo C Carvalho
- Laboratory for Structural and Computational Proteomics, Fiocruz-Paraná, PR, Brazil
| | - Gabriel Padrón
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Jose Batista de Jesus
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil; Universidade Federal de São João Del Rei, São João del Rei, MG, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
12
|
Zhang N, Guo L, Huang L. The Sac10b homolog from Sulfolobus islandicus is an RNA chaperone. Nucleic Acids Res 2020; 48:9273-9284. [PMID: 32761152 PMCID: PMC7498313 DOI: 10.1093/nar/gkaa656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Nucleic acid-binding proteins of the Sac10b family, also known as Alba, are widely distributed in Archaea. However, the physiological roles of these proteins have yet to be clarified. Here, we show that Sis10b, a member of the Sac10b family from the hyperthermophilic archaeon Sulfolobus islandicus, was active in RNA strand exchange, duplex RNA unwinding in vitro and RNA unfolding in a heterologous host cell. This protein exhibited temperature-dependent binding preference for ssRNA over dsRNA and was more efficient in RNA unwinding and RNA unfolding at elevated temperatures. Notably, alanine substitution of a highly conserved basic residue (K) at position 17 in Sis10b drastically reduced the ability of this protein to catalyse RNA strand exchange and RNA unwinding. Additionally, the preferential binding of Sis10b to ssRNA also depended on the presence of K17 or R17. Furthermore, normal growth was restored to a slow-growing Sis10b knockdown mutant by overproducing wild-type Sis10b but not by overproducing K17A in this mutant strain. Our results indicate that Sis10b is an RNA chaperone that likely functions most efficiently at temperatures optimal for the growth of S. islandicus, and K17 is essential for the chaperone activity of the protein.
Collapse
Affiliation(s)
- Ningning Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Li Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 Beichen West Road, Chaoyang District, Beijing 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Shijingshan District, Beijing 100049, China
| |
Collapse
|
13
|
Ferreira TR, Dowle AA, Parry E, Alves-Ferreira EVC, Hogg K, Kolokousi F, Larson TR, Plevin MJ, Cruz AK, Walrad PB. PRMT7 regulates RNA-binding capacity and protein stability in Leishmania parasites. Nucleic Acids Res 2020; 48:5511-5526. [PMID: 32365184 PMCID: PMC7261171 DOI: 10.1093/nar/gkaa211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 03/17/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
RNA binding proteins (RBPs) are the primary gene regulators in kinetoplastids as transcriptional control is nearly absent, making Leishmania an exceptional model for investigating methylation of non-histone substrates. Arginine methylation is an evolutionarily conserved protein modification catalyzed by Protein aRginine Methyl Transferases (PRMTs). The chromatin modifier PRMT7 is the only Type III PRMT found in higher eukaryotes and a restricted number of unicellular eukaryotes. In Leishmania major, PRMT7 is a cytoplasmic protein implicit in pathogenesis with unknown substrates. Using comparative methyl-SILAC proteomics for the first time in protozoa, we identified 40 putative targets, including 17 RBPs hypomethylated upon PRMT7 knockout. PRMT7 can modify Alba3 and RBP16 trans-regulators (mammalian RPP25 and YBX2 homologs, respectively) as direct substrates in vitro. The absence of PRMT7 levels in vivo selectively reduces Alba3 mRNA-binding capacity to specific target transcripts and can impact the relative stability of RBP16 in the cytoplasm. RNA immunoprecipitation analyses demonstrate PRMT7-dependent methylation promotes Alba3 association with select target transcripts and thus indirectly stabilizes mRNA of a known virulence factor, δ-amastin surface antigen. These results highlight a novel role for PRMT7-mediated arginine methylation of RBP substrates, suggesting a regulatory pathway controlling gene expression and virulence in Leishmania. This work introduces Leishmania PRMTs as epigenetic regulators of mRNA metabolism with mechanistic insight into the functional manipulation of RBPs by methylation.
Collapse
Affiliation(s)
- Tiago R Ferreira
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Adam A Dowle
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Ewan Parry
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Karen Hogg
- Imaging and Cytometry Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Foteini Kolokousi
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Tony R Larson
- Metabolomics and Proteomics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | - Michael J Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | - Angela K Cruz
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| |
Collapse
|
14
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|
15
|
Ribeiro PAF, Vale DL, Dias DS, Lage DP, Mendonça DVC, Ramos FF, Carvalho LM, Carvalho AMRS, Steiner BT, Roque MC, Oliveira-da-Silva JA, Oliveira JS, Tavares GSV, Galvani NC, Martins VT, Chávez-Fumagalli MA, Roatt BM, Moreira RLF, Menezes-Souza D, Oliveira MC, Machado-de-Ávila RA, Teixeira AL, Coelho EAF. Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine 2020; 129:155031. [PMID: 32062145 DOI: 10.1016/j.cyto.2020.155031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
The control measures against visceral leishmaniasis (VL) include a precise diagnosis of disease, the treatment of human cases, and reservoir and vector controls. However, these are insufficient to avoid the spread of the disease in specific countries worldwide. As a consequence, prophylactic vaccination could be interesting, although no effective candidate against human disease is available. In the present study, the Leishmania infantum amastin protein was evaluated regarding its immunogenicity and protective efficacy against experimental VL. BALB/c mice immunized with subcutaneous injections of the recombinant protein with or without liposome/saponin (Lip/Sap) as an adjuvant. After immunization, half of the animals per group were euthanized and immunological evaluations were performed, while the others were challenged with L. infantum promastigotes. Forty-five days after infection, the animals were euthanized and parasitological and immunological evaluations were performed. Results showed the development of a Th1-type immune response in rAmastin-Lip and rAmastin-Sap/vaccinated mice, before and after infection, which was based on the production of protein and parasite-specific IFN-γ, IL-12, GM-CSF, and nitrite, as well as the IgG2a isotype antibody. CD4+ T cells were mainly responsible for IFN-γ production in vaccinated mice, which also presented significant reductions in parasitism in their liver, spleen, draining lymph nodes, and bone marrow. In addition, PBMC cultures of treated VL patients and healthy subjects stimulated with rAmastin showed lymphoproliferation and higher IFN-γ production. In conclusion, the present study shows the first case of an L. infantum amastin protein associated with distinct delivery systems inducing protection against L. infantum infection and demonstrates an immunogenic effect of this protein in human cells.
Collapse
Affiliation(s)
- Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia M Carvalho
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Maria R S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bethina T Steiner
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Marjorie C Roque
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathália C Galvani
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ricardo L F Moreira
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte 30622-020, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mônica C Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
16
|
Zabala-Peñafiel A, Todd D, Daneshvar H, Burchmore R. The potential of live attenuated vaccines against Cutaneous Leishmaniasis. Exp Parasitol 2020; 210:107849. [PMID: 32027892 DOI: 10.1016/j.exppara.2020.107849] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/03/2019] [Accepted: 02/01/2020] [Indexed: 12/11/2022]
Abstract
Cutaneous Leishmaniasis is a serious public health problem, typically affecting poor populations with limited access to health care. Control is largely dependent on chemotherapies that are inefficient, costly and challenging to deliver. Vaccination is an attractive and feasible alternative because long-term protection is typical in patients who recover from the disease. No human vaccine is yet approved for use, but several candidates are at various stages of testing. Live attenuated parasites, which stimulate long-term immune protection, have potential as effective vaccines, and their challenges relating to safety, formulation and delivery can be overcome. Here we review current data on the potential of live attenuated Leishmania vaccines and discuss possible routes to regulatory approval.
Collapse
Affiliation(s)
- A Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - D Todd
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - H Daneshvar
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - R Burchmore
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
17
|
Bennink S, Pradel G. The molecular machinery of translational control in malaria parasites. Mol Microbiol 2019; 112:1658-1673. [PMID: 31531994 DOI: 10.1111/mmi.14388] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/30/2022]
Abstract
Translational control regulates the levels of protein synthesized from its transcript and is key for the rapid adjustment of gene expression in response to environmental stimuli. The regulation of translation is of special importance for malaria parasites, which pass through a complex life cycle that includes various replication phases in the different organs of the human and mosquito hosts and a sexual reproduction phase in the mosquito midgut. In particular, the quiescent transmission stages rely on translational control to rapidly adapt to the new environment, once they switch over from the human to the mosquito and vice versa. Three control mechanisms are currently proposed in Plasmodium, (1) global regulation that acts on the translation initiation complex; (2) mRNA-specific regulation, involving cis control elements, mRNA-binding proteins and translational repressors; and (3) induced mRNA decay by the Ccr4-Not and the RNA exosome complex. The main molecules controlling translation are highly conserved in malaria parasites and an increasing number of studies shed light on the interwoven pathways leading to the up or downregulation of protein synthesis in the diverse plasmodial stages. We here highlight recent findings on translational control during life cycle progression of Plasmodium and discuss the molecules involved in regulating protein synthesis.
Collapse
Affiliation(s)
- Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| |
Collapse
|
18
|
de Pablos LM, Ferreira TR, Dowle AA, Forrester S, Parry E, Newling K, Walrad PB. The mRNA-bound Proteome of Leishmania mexicana: Novel Genetic Insight into an Ancient Parasite. Mol Cell Proteomics 2019; 18:1271-1284. [PMID: 30948621 PMCID: PMC6601212 DOI: 10.1074/mcp.ra118.001307] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/23/2019] [Indexed: 01/08/2023] Open
Abstract
Leishmania parasite infections, termed the leishmaniases, cause significant global infectious disease burden. The lifecycle of the parasite embodies three main stages that require precise coordination of gene regulation to survive environmental shifts between sandfly and mammalian hosts. Constitutive transcription in kinetoplastid parasites means that gene regulation is overwhelmingly reliant on post-transcriptional mechanisms, yet strikingly few Leishmania trans-regulators are known. Using optimized crosslinking and deep, quantified mass spectrometry, we present a comprehensive analysis of 1400 mRNA binding proteins (mRBPs) and whole cell proteomes from the three main Leishmania lifecycle stages. Supporting the validity, although the crosslinked RBPome is magnitudes more enriched, the protein identities of the crosslinked and non-crosslinked RBPomes were nearly identical. Moreover, multiple candidate RBPs were endogenously tagged and found to associate with discrete mRNA target pools in a stage-specific manner. Results indicate that in L. mexicana parasites, mRNA levels are not a strong predictor of the whole cell expression or RNA binding potential of encoded proteins. Evidence includes a low correlation between transcript and corresponding protein expression and stage-specific variation in protein expression versus RNA binding potential. Unsurprisingly, RNA binding protein enrichment correlates strongly with relative replication efficiency of the specific lifecycle stage. Our study is the first to quantitatively define and compare the mRBPome of multiple stages in kinetoplastid parasites. It provides novel, in-depth insight into the trans-regulatory mRNA:Protein (mRNP) complexes that drive Leishmania parasite lifecycle progression.
Collapse
Affiliation(s)
| | | | - Adam A Dowle
- §Metabolomics and Proteomics Lab, Bioscience Technology Facility, and
| | | | - Ewan Parry
- From the ‡Centre for Immunology and Infection
| | - Katherine Newling
- ¶Genomics and Bioinformatics Lab, Bioscience Technology Facility, Department of Biology, University of York, UK
| | | |
Collapse
|
19
|
Yuan W, Zhou J, Tong J, Zhuo W, Wang L, Li Y, Sun Q, Qian W. ALBA protein complex reads genic R-loops to maintain genome stability in Arabidopsis. SCIENCE ADVANCES 2019; 5:eaav9040. [PMID: 31106272 PMCID: PMC6520018 DOI: 10.1126/sciadv.aav9040] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/02/2019] [Indexed: 05/19/2023]
Abstract
The R-loop, composed of a DNA-RNA hybrid and the displaced single-stranded DNA, regulates diverse cellular processes. However, how cellular R-loops are recognized remains poorly understood. Here, we report the discovery of the evolutionally conserved ALBA proteins (AtALBA1 and AtALBA2) functioning as the genic R-loop readers in Arabidopsis. While AtALBA1 binds to the DNA-RNA hybrid, AtALBA2 associates with single-stranded DNA in the R-loops in vitro. In vivo, these two proteins interact and colocalize in the nucleus, where they preferentially bind to genic regions with active epigenetic marks in an R-loop-dependent manner. Depletion of AtALBA1 or AtALBA2 results in hypersensitivity of plants to DNA damaging agents. The formation of DNA breaks in alba mutants originates from unprotected R-loops. Our results reveal that the AtALBA1 and AtALBA2 protein complex is the genic R-loop reader crucial for genome stability in Arabidopsis.
Collapse
Affiliation(s)
- Wei Yuan
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jincong Zhou
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jinjin Tong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Tsinghua-Peking Joint Center for Life Sciences and Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanqing Zhuo
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lishuan Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Li
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qianwen Sun
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Corresponding author. (Q.S.); (W.Q.)
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Corresponding author. (Q.S.); (W.Q.)
| |
Collapse
|
20
|
Alonso A, Larraga V, Alcolea PJ. The contribution of DNA microarray technology to gene expression profiling in Leishmania spp.: A retrospective view. Acta Trop 2018; 187:129-139. [PMID: 29746872 DOI: 10.1016/j.actatropica.2018.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 01/15/2023]
Abstract
The first completed genome project of any living organism, excluding viruses, was of the gammaproteobacteria Haemophilus influenzae in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid, and artificial chromosome genome libraries had to be sequenced and assembled in silico. No genome is completely assembled because gaps and unassembled contigs are always remaining. However, most represent an organism's whole genome from a practical point of view. The first genome sequencing projects of trypanosomatid parasites Leishmania major, Trypanosoma cruzi, and T. brucei were completed in 2005 following those strategies. The functional genomics era developed on the basis of microarray technology and has been continuously evolving. In the case of the genus Leishmania, substantial information about differentiation in the digenetic life cycle of the parasite has been obtained. More recently, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive and accurate results by using much fewer resources. Though this new technology is more advantageous, it does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found by means of microarray-based screening and preliminary proof-of-concept tests.
Collapse
|
21
|
Genome-Wide Identification of the Alba Gene Family in Plants and Stress-Responsive Expression of the Rice Alba Genes. Genes (Basel) 2018; 9:genes9040183. [PMID: 29597290 PMCID: PMC5924525 DOI: 10.3390/genes9040183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/17/2022] Open
Abstract
Architectural proteins play key roles in genome construction and regulate the expression of many genes, albeit the modulation of genome plasticity by these proteins is largely unknown. A critical screening of the architectural proteins in five crop species, viz., Oryza sativa, Zea mays, Sorghum bicolor, Cicer arietinum, and Vitis vinifera, and in the model plant Arabidopsis thaliana along with evolutionary relevant species such as Chlamydomonas reinhardtii, Physcomitrella patens, and Amborella trichopoda, revealed 9, 20, 10, 7, 7, 6, 1, 4, and 4 Alba (acetylation lowers binding affinity) genes, respectively. A phylogenetic analysis of the genes and of their counterparts in other plant species indicated evolutionary conservation and diversification. In each group, the structural components of the genes and motifs showed significant conservation. The chromosomal location of the Alba genes of rice (OsAlba), showed an unequal distribution on 8 of its 12 chromosomes. The expression profiles of the OsAlba genes indicated a distinct tissue-specific expression in the seedling, vegetative, and reproductive stages. The quantitative real-time PCR (qRT-PCR) analysis of the OsAlba genes confirmed their stress-inducible expression under multivariate environmental conditions and phytohormone treatments. The evaluation of the regulatory elements in 68 Alba genes from the 9 species studied led to the identification of conserved motifs and overlapping microRNA (miRNA) target sites, suggesting the conservation of their function in related proteins and a divergence in their biological roles across species. The 3D structure and the prediction of putative ligands and their binding sites for OsAlba proteins offered a key insight into the structure-function relationship. These results provide a comprehensive overview of the subtle genetic diversification of the OsAlba genes, which will help in elucidating their functional role in plants.
Collapse
|
22
|
Azizi H, Dumas C, Papadopoulou B. The Pumilio-domain protein PUF6 contributes to SIDER2 retroposon-mediated mRNA decay in Leishmania. RNA (NEW YORK, N.Y.) 2017; 23:1874-1885. [PMID: 28877997 PMCID: PMC5689007 DOI: 10.1261/rna.062950.117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Leishmania and other trypanosomatid protozoa lack control at the level of transcription initiation and regulate gene expression exclusively post-transcriptionally. We have reported previously that Leishmania harbors a unique class of short interspersed degenerate retroposons (SIDERs) that are predominantly located within 3'UTRs and play a major role in post-transcriptional control. We have shown that members of the SIDER2 subfamily initiate mRNA decay through endonucleolytic cleavage within the second conserved 79-nt signature sequence of SIDER2 retroposons. Here, we have developed an optimized MS2 coat protein tethering system to capture trans-acting factor(s) regulating SIDER2-mediated mRNA decay. Tethering of the MS2 coat protein to a reporter RNA harboring two MS2 stem-loop aptamers and the cognate SIDER2-containing 3'UTR in combination with immunoprecipitation and mass spectrometry analysis led to the identification of RNA-binding proteins with known functions in mRNA decay. Among the candidate SIDER2-interacting proteins that were individually tethered to a SIDER2 reporter RNA, the Pumilio-domain protein PUF6 was shown to enhance degradation and reduce transcript half-life. Furthermore, we showed that PUF6 binds to SIDER2 sequences that include the regulatory 79-nt signature motif, hence contributing to the mRNA decay process. Consistent with a role of PUF6 in SIDER2-mediated decay, genetic inactivation of PUF6 resulted in increased accumulation and higher stability of endogenous SIDER2-bearing transcripts. Overall, these studies provide new insights into regulated mRNA decay pathways in Leishmania controlled by SIDER2 retroposons and propose a broader role for PUF proteins in mRNA decay within the eukaryotic kingdom.
Collapse
Affiliation(s)
- Hiva Azizi
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| | - Carole Dumas
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center-Laval University, Quebec, QC, G1V 4G2 Canada
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Laval University, Quebec, QC, G1V 0A6 Canada
| |
Collapse
|
23
|
Aoki JI, Muxel SM, Zampieri RA, Laranjeira-Silva MF, Müller KE, Nerland AH, Floeter-Winter LM. RNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation. PLoS Negl Trop Dis 2017; 11:e0006026. [PMID: 29077741 PMCID: PMC5678721 DOI: 10.1371/journal.pntd.0006026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/08/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background Leishmania is a protozoan parasite that alternates its life cycle between the sand-fly vector and the mammalian host. This alternation involves environmental changes and leads the parasite to dynamic modifications in morphology, metabolism, cellular signaling and regulation of gene expression to allow for a rapid adaptation to new conditions. The L-arginine pathway in L. amazonensis is important during the parasite life cycle and interferes in the establishment and maintenance of the infection in mammalian macrophages. Host arginase is an immune-regulatory enzyme that can reduce the production of nitric oxide by activated macrophages, directing the availability of L-arginine to the polyamine pathway, resulting in parasite replication. In this work, we performed transcriptional profiling to identify differentially expressed genes in L. amazonensis wild-type (La-WT) versus L. amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. Methodology/Principal findings A total of 8253 transcripts were identified in La-WT and La-arg- promastigotes and axenic amastigotes, about 60% of them codifying hypothetical proteins and 443 novel transcripts, which did not match any previously annotated genes. Our RNA-seq data revealed that 85% of genes were constitutively expressed. The comparison of transcriptome and metabolome data showed lower levels of arginase and higher levels of glutamate-5-kinase in La-WT axenic amastigotes compared to promastigotes. The absence of arginase activity in promastigotes increased the levels of pyrroline 5-carboxylate reductase, but decreased the levels of arginosuccinate synthase, pyrroline 5-carboxylate dehydrogenase, acetylornithine deacetylase and spermidine synthase transcripts levels. These observations can explain previous metabolomic data pointing to the increase of L-arginine, citrulline and L-glutamate and reduction of aspartate, proline, ornithine and putrescine. Altogether, these results indicate that arginase activity is important in Leishmania gene expression modulation during differentiation and adaptation to environmental changes. Here, we confirmed this hypothesis with the identification of differential gene expression of the enzymes involved in biosynthesis of amino acids, arginine and proline metabolism and arginine biosynthesis. Conclusions/Significance All data provided information about the transcriptomic profiling and the expression levels of La-WT and La-arg- promastigotes and axenic amastigotes. These findings revealed the importance of arginase in parasite survival and differentiation, and indicated the existence of a coordinated response in the absence of arginase activity related to arginine and polyamine pathways. Leishmania are auxotrophic for many essential nutrients, including amino acids. In this way, the parasite needs to uptake the amino acids from the environment. The uptake of amino acids is mediated by amino acid transporters that are unique for Leishmania. As part of polyamine pathway, the arginase converts L-arginine to ornithine and furthermore to putrescine, products which are essential for parasite growth. On the other hand, the absence of arginase activity could alter the metabolism of the parasite to surpass the external signals during the life cycle and the fate of infection. The transcriptional profiling of La-WT and La-arg- promastigotes and axenic amastigotes revealed 8253 transcripts, 60% encoding hypothetical proteins and 443 novel transcripts. In addition, our data revealed that 85% of the genes were constitutively expressed. Among the 15% (1268 genes) of the differentially expressed genes, we identified genes up- and down-regulated comparing the transcript abundance from different life cycle stages of the parasite and in the presence or absence of arginase. We also combined the transcriptional with metabolic profile that revealed a proportional correlation between enzyme and metabolites in the polyamine pathway. The differentiation of promastigotes to amastigotes alters the expression of enzymes from polyamines biosynthesis, which modulates ornithine, L-glutamate, proline and putrescine levels. In addition, the absence of arginase activity increased the levels of L-arginine, citrulline and L-glutamate and decreased the levels of aspartate, proline, ornithine and putrescine in promastigotes by differential modulation of genes involved in its metabolism. Altogether these data provided additional insights into how Leishmania is able to modulate its biological functions in the presence or absence of arginase activity to survive during environmental changes.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Karl Erik Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Lucile Maria Floeter-Winter
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| |
Collapse
|
24
|
Terrão MC, Rosas de Vasconcelos EJ, Defina TA, Myler PJ, Cruz AK. Disclosing 3' UTR cis-elements and putative partners involved in gene expression regulation in Leishmania spp. PLoS One 2017; 12:e0183401. [PMID: 28859096 PMCID: PMC5578504 DOI: 10.1371/journal.pone.0183401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 08/03/2017] [Indexed: 11/19/2022] Open
Abstract
To identify putative cis-elements involved in gene expression regulation in Leishmania, we previously conducted an in silico investigation to find conserved intercoding sequences (CICS) in the genomes of L. major, L. infantum, and L. braziliensis. Here, the CICS databank was explored to search for sequences that were present in the untranslated regions (UTRs) of groups of genes showing similar expression profiles during in vitro differentiation. Using a selectable marker as a reporter gene, flanked by either an intact 3' UTR or a UTR lacking the conserved element, the regulatory role of a CICS was confirmed. We observed that the pattern of modulation of the mRNA levels was altered in the absence of the CICS. We also identified putative CICS RNA-binding proteins. This study suggests that the publicly available CICS database is a useful tool for identifying regulatory cis-elements for Leishmania genes and suggests the existence of post-transcriptional regulons in Leishmania.
Collapse
Affiliation(s)
- Monica Cristina Terrão
- Department of Cell and Molecular Biology, Ribeirao Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Elton José Rosas de Vasconcelos
- Department of Cell and Molecular Biology, Ribeirao Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Tânia Aquino Defina
- Department of Cell and Molecular Biology, Ribeirao Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
| | - Peter J. Myler
- Center for Infectious Disease Research, 307 Westlake Avenue, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Biomedical Informatics and Medical Education, University of Washington, Seattle, Washington, United States of America
| | - Angela Kaysel Cruz
- Department of Cell and Molecular Biology, Ribeirao Preto School of Medicine, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
25
|
Muñoz EE, Hart KJ, Walker MP, Kennedy MF, Shipley MM, Lindner SE. ALBA4 modulates its stage-specific interactions and specific mRNA fates during Plasmodium yoelii growth and transmission. Mol Microbiol 2017; 106:266-284. [PMID: 28787542 DOI: 10.1111/mmi.13762] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2017] [Indexed: 12/20/2022]
Abstract
Transmission of the malaria parasite occurs in an unpredictable moment, when a mosquito takes a blood meal. Plasmodium has therefore evolved strategies to prepare for transmission, including translationally repressing and protecting mRNAs needed to establish the infection. However, mechanisms underlying these critical controls are not well understood, including whether Plasmodium changes its translationally repressive complexes and mRNA targets in different stages. Efforts to understand this have been stymied by severe technical limitations due to substantial mosquito contamination of samples. Here using P. yoelii, for the first time we provide a proteomic comparison of a protein complex across asexual blood, sexual and sporozoite stages, along with a transcriptomic comparison of the mRNAs that are affected in these stages. We find that the Apicomplexan-specific ALBA4 RNA-binding protein acts to regulate development of the parasite's transmission stages, and that ALBA4 associates with both stage-specific and stage-independent partners to produce opposing mRNA fates. These efforts expand our understanding and ability to interrogate both sexual and sporozoite transmission stages and the molecular preparations they evolved to perpetuate their infectious cycle.
Collapse
Affiliation(s)
- Elyse E Muñoz
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Michael P Walker
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mark F Kennedy
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
26
|
da Costa KS, Galúcio JMP, Leonardo ES, Cardoso G, Leal É, Conde G, Lameira J. Structural and evolutionary analysis of Leishmania Alba proteins. Mol Biochem Parasitol 2017; 217:23-31. [PMID: 28847609 DOI: 10.1016/j.molbiopara.2017.08.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/23/2017] [Accepted: 08/18/2017] [Indexed: 01/10/2023]
Abstract
The Alba superfamily proteins share a common RNA-binding domain. These proteins participate in a variety of regulatory pathways by controlling developmental gene expression. They also interact with ribosomal subunits, translation factors, and other RNA-binding proteins. The Leishmania infantum genome encodes two Alba-domain proteins, LiAlba1 and LiAlba3. In this work, we used homology modeling, protein-protein docking, and molecular dynamics (MD) simulations to explore the details of the Alba1-Alba3-RNA complex from Leishmania infantum at the molecular level. In addition, we compared the structure of LiAlba3 with the human ribonuclease P component, Rpp20. We also mapped the ligand-binding residues on the Alba3 surface to analyze its druggability and performed mutational analyses in Alba3 using alanine scanning to identify residues involved in its function and structural stability. These results suggest that the RGG-box motif of LiAlba1 is important for protein function and stability. Finally, we discuss the function of Alba proteins in the context of pathogen adaptation to host cells. The data provided herein will facilitate further translational research regarding Alba structure and function.
Collapse
Affiliation(s)
- Kauê Santana da Costa
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | | | - Elvis Santos Leonardo
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Guelber Cardoso
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Élcio Leal
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil
| | - Guilherme Conde
- Institute of Biodiversity, Federal University of West of Pará, Santarém, Pará, Brazil
| | - Jerônimo Lameira
- Institute of Biological Sciences, Federal University of Pará, 66075-110 Belém, Pará, Brazil.
| |
Collapse
|
27
|
Azizi H, Romão TP, Santos Charret K, Padmanabhan PK, de Melo Neto OP, Müller-McNicoll M, Papadopoulou B. RNA secondary structure and nucleotide composition of the conserved hallmark sequence of Leishmania SIDER2 retroposons are essential for endonucleolytic cleavage and mRNA degradation. PLoS One 2017; 12:e0180678. [PMID: 28704426 PMCID: PMC5509151 DOI: 10.1371/journal.pone.0180678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 11/19/2022] Open
Abstract
We have reported previously that Short Interspersed Degenerate Retroposons of the SIDER2 subfamily, largely located within 3'UTRs of Leishmania transcripts, promote rapid turnover of mRNAs through endonucleolytic cleavage within the highly conserved second tandem 79-nt hallmark sequence (79-nt SII). Here, we used site-directed mutagenesis and in silico RNA structural studies to delineate the cis-acting requirements within 79-nt SII for cleavage and mRNA degradation. The putative cleavage site(s) and other nucleotides predicted to alter the RNA secondary structure of 79-nt SII were either deleted or mutated and their effect on mRNA turnover was monitored using a gene reporter system. We found that short deletions of 8-nt spanning the two predicted cleavage sites block degradation of SIDER2-containing transcripts, leading to mRNA accumulation. Furthermore, single or double substitutions of the dinucleotides targeted for cleavage as well as mutations altering the predicted RNA secondary structure encompassing both cleavage sites also prevent mRNA degradation, confirming that these dinucleotides are the bona fide cleavage sites. In line with these results, we show that stage-regulated SIDER2 inactivation correlates with the absence of endonucleolytic cleavage. Overall, these data demonstrate that both cleavage sites within the conserved 79-nt SII as well as RNA folding in this region are essential for SIDER2-mediated mRNA decay, and further support that SIDER2-harboring transcripts are targeted for degradation by endonucleolytic cleavage.
Collapse
Affiliation(s)
- Hiva Azizi
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, QC. Canada
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC. Canada
| | - Tatiany P. Romão
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ, Recife, PE, Brazil
| | | | - Prasad K. Padmanabhan
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, QC. Canada
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC. Canada
| | - Osvaldo P. de Melo Neto
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães-FIOCRUZ, Recife, PE, Brazil
| | - Michaela Müller-McNicoll
- RNA Regulation Group, Cluster of Excellence ‘Macromolecular Complexes’, Goethe-University Frankfurt, Institute of Cell Biology and Neuroscience, Frankfurt /Main, Germany
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center-University Laval, Quebec, QC. Canada
- Department of Microbiology-Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC. Canada
- * E-mail:
| |
Collapse
|
28
|
Pérez-Díaz L, Silva TC, Teixeira SMR. Involvement of an RNA binding protein containing Alba domain in the stage-specific regulation of beta-amastin expression in Trypanosoma cruzi. Mol Biochem Parasitol 2016; 211:1-8. [PMID: 27986451 DOI: 10.1016/j.molbiopara.2016.12.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 12/09/2016] [Accepted: 12/12/2016] [Indexed: 12/26/2022]
Abstract
Amastins are surface glycoproteins, first identified in amastigotes of T. cruzi but later found to be expressed in several Leishmania species, as well as in T. cruzi epimastigotes. Amastins are encoded by a diverse gene family that can be grouped into four subfamilies named α, β, γ, and δ amastins. Differential expression of amastin genes results from regulatory mechanisms involving changes in mRNA stability and/or translational control. Although distinct regulatory elements were identified in the 3' UTR of T. cruzi and Leishmania amastin mRNAs, RNA binding proteins involved with amastin gene regulation have only being characterized in L. infantum where an Alba-domain protein (LiAlba20) able to bind to the 3' UTR of a δ-amastin mRNA was identified. Here we investigated the role of TcAlba30, the LiAlba20 homologue in T. cruzi, in the post transcriptional regulation of amastin genes. TcAlba30 transcripts are present in all stages of the T. cruzi life cycle. RNA immunoprecipitation assays using a transfected cell line expressing a cMyc tagged TcAlba30 revealed that TcAlba30 can interact with β-amastin mRNA. In addition, over-expression of TcAlba30 in epimastigotes resulted in 50% decreased levels of β-amastin mRNAs compared to wild type parasites. Since luciferase assays indicated the presence of regulatory elements in the 3' UTR of β-amastin mRNA and reduced levels of luciferase mRNA were found in parasites over expressing TcAlba30, we conclude that TcAlba30 acts as a T. cruzi RNA binding protein involved in the negative control of β-amastin expression through interactions with its 3'UTR.
Collapse
Affiliation(s)
- Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay; Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Tais Caroline Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Santuza M R Teixeira
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
29
|
Developmental differentiation in Leishmania lifecycle progression: post-transcriptional control conducts the orchestra. Curr Opin Microbiol 2016; 34:82-89. [PMID: 27565628 DOI: 10.1016/j.mib.2016.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/09/2016] [Accepted: 08/10/2016] [Indexed: 12/30/2022]
Abstract
The successful progression of Leishmania spp. through their lifecycle entails a series of differentiation processes; the proliferative procyclic promastigote forms become quiescent, human-infective metacyclic promastigotes during metacyclogenesis in the sandfly vector, which then differentiate into amastigotes during amastigogenesis in the mammalian host. The progression to these infective forms requires two components: environmental cues and a coordinated cellular response. Recent studies have shown that the Leishmania cellular transformation into mammalian-infective stages is triggered by broad changes in the absolute and relative RNA and protein levels. In this review, we will discuss the implications of Leishmania transcriptomic and proteomic fluctuations, which adapt the parasitic cell for survival.
Collapse
|
30
|
Laffitte MCN, Leprohon P, Papadopoulou B, Ouellette M. Plasticity of the Leishmania genome leading to gene copy number variations and drug resistance. F1000Res 2016; 5:2350. [PMID: 27703673 PMCID: PMC5031125 DOI: 10.12688/f1000research.9218.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2016] [Indexed: 01/04/2023] Open
Abstract
Leishmania has a plastic genome, and drug pressure can select for gene copy number variation (CNV). CNVs can apply either to whole chromosomes, leading to aneuploidy, or to specific genomic regions. For the latter, the amplification of chromosomal regions occurs at the level of homologous direct or inverted repeated sequences leading to extrachromosomal circular or linear amplified DNAs. This ability of
Leishmania to respond to drug pressure by CNVs has led to the development of genomic screens such as Cos-Seq, which has the potential of expediting the discovery of drug targets for novel promising drug candidates.
Collapse
Affiliation(s)
- Marie-Claude N Laffitte
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Barbara Papadopoulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU Québec, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
31
|
Vembar SS, Droll D, Scherf A. Translational regulation in blood stages of the malaria parasite Plasmodium spp.: systems-wide studies pave the way. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:772-792. [PMID: 27230797 PMCID: PMC5111744 DOI: 10.1002/wrna.1365] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 11/10/2022]
Abstract
The malaria parasite Plasmodium spp. varies the expression profile of its genes depending on the host it resides in and its developmental stage. Virtually all messenger RNA (mRNA) is expressed in a monocistronic manner, with transcriptional activation regulated at the epigenetic level and by specialized transcription factors. Furthermore, recent systems-wide studies have identified distinct mechanisms of post-transcriptional and translational control at various points of the parasite lifecycle. Taken together, it is evident that 'just-in-time' transcription and translation strategies coexist and coordinate protein expression during Plasmodium development, some of which we review here. In particular, we discuss global and specific mechanisms that control protein translation in blood stages of the human malaria parasite Plasmodium falciparum, once a cytoplasmic mRNA has been generated, and its crosstalk with mRNA decay and storage. We also focus on the widespread translational delay observed during the 48-hour blood stage lifecycle of P. falciparum-for over 30% of transcribed genes, including virulence factors required to invade erythrocytes-and its regulation by cis-elements in the mRNA, RNA-processing enzymes and RNA-binding proteins; the first-characterized amongst these are the DNA- and RNA-binding Alba proteins. More generally, we conclude that translational regulation is an emerging research field in malaria parasites and propose that its elucidation will not only shed light on the complex developmental program of this parasite, but may also reveal mechanisms contributing to drug resistance and define new targets for malaria intervention strategies. WIREs RNA 2016, 7:772-792. doi: 10.1002/wrna.1365 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France.
| | - Dorothea Droll
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
32
|
Goyal M, Banerjee C, Nag S, Bandyopadhyay U. The Alba protein family: Structure and function. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:570-83. [PMID: 26900088 DOI: 10.1016/j.bbapap.2016.02.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 02/06/2016] [Accepted: 02/16/2016] [Indexed: 01/05/2023]
Abstract
Alba family proteins are small, basic, dimeric nucleic acid-binding proteins, which are widely distributed in archaea and a number of eukaryotes. This family of proteins bears the distinct features of regulation through acetylation/deacetylation, hence named as acetylation lowers binding affinity (Alba). Alba family proteins bind DNA cooperatively with no apparent sequence specificity. Besides DNA, Alba proteins also interact with diverse RNA species and associate with ribonucleo-protein complexes. Initially, Alba proteins were recognized as chromosomal proteins and supposed to be involved in the maintenance of chromatin architecture and transcription repression. However, recent studies have shown increasing evidence of functional plasticity among Alba family of proteins that widely range from genome packaging and organization, transcriptional and translational regulation, RNA metabolism, and development and differentiation processes. In recent years, Alba family proteins have attracted growing interest due to their widespread occurrence in large number of organisms. Presence in multiple copies, functional crosstalk, differential binding affinity, and posttranslational modifications are some of the key factors that might regulate the biological functions of Alba family proteins. In this review article, we present an overview of the Alba family proteins, their salient features and emphasize their functional role in different organisms reported so far.
Collapse
Affiliation(s)
- Manish Goyal
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Chinmoy Banerjee
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Shiladitya Nag
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Uday Bandyopadhyay
- Division of Infectious Diseases and Immunology, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India.
| |
Collapse
|
33
|
Reddy BPN, Shrestha S, Hart KJ, Liang X, Kemirembe K, Cui L, Lindner SE. A bioinformatic survey of RNA-binding proteins in Plasmodium. BMC Genomics 2015; 16:890. [PMID: 26525978 PMCID: PMC4630921 DOI: 10.1186/s12864-015-2092-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/15/2015] [Indexed: 11/10/2022] Open
Abstract
Background The malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum. Methods Using different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes. Results We report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5 % of all annotated genes. Almost 90 % (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27 % of RBPs have elevated expression in gametocytes, while 47 and 24 % have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes. Conclusions The Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2092-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- B P Niranjan Reddy
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Sony Shrestha
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Kevin J Hart
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA
| | - Xiaoying Liang
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Karen Kemirembe
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA
| | - Liwang Cui
- Department of Entomology, Center for Malaria Research, Pennsylvania State University, 501 ASI Bldg, University Park, PA, 16802, USA.
| | - Scott E Lindner
- Department of Biochemistry and Molecular Biology, Center for Malaria Research, Pennsylvania State University, W223 Millennium Science Complex, University Park, PA, 16802, USA.
| |
Collapse
|
34
|
Vembar SS, Macpherson CR, Sismeiro O, Coppée JY, Scherf A. The PfAlba1 RNA-binding protein is an important regulator of translational timing in Plasmodium falciparum blood stages. Genome Biol 2015; 16:212. [PMID: 26415947 PMCID: PMC4587749 DOI: 10.1186/s13059-015-0771-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/08/2015] [Indexed: 12/03/2022] Open
Abstract
Background Transcriptome-wide ribosome occupancy studies have suggested that during the intra-erythrocytic lifecycle of Plasmodium falciparum, select mRNAs are post-transcriptionally regulated. A subset of these encodes parasite virulence factors required for invading host erythrocytes, and are currently being developed as vaccine candidates. However, the molecular mechanisms that govern post-transcriptional regulation are currently unknown. Results We explore the previously identified DNA/RNA-binding protein PfAlba1, which localizes to multiple foci in the cytoplasm of P. falciparum trophozoites. We establish that PfAlba1 is essential for asexual proliferation, and subsequently investigate parasites overexpressing epitope-tagged PfAlba1 to identify its RNA targets and effects on mRNA homeostasis and translational regulation. Using deep sequencing of affinity-purified PfAlba1-associated RNAs, we identify 1193 transcripts that directly bind to PfAlba1 in trophozoites. For 105 such transcripts, 43 % of which are uncharacterized and 13 % of which encode erythrocyte invasion components, the steady state levels significantly change at this stage, evidencing a role for PfAlba1 in maintaining mRNA homeostasis. Additionally, we discover that binding of PfAlba1 to four erythrocyte invasion mRNAs, Rap1, RhopH3, CDPK1, and AMA1, is linked to translation repression in trophozoites whereas release of these mRNAs from a PfAlba1 complex in mature stages correlates with protein synthesis. Conclusions We show that PfAlba1 binds to a sub-population of asexual stage mRNAs and fine-tunes the timing of translation. This mode of post-transcriptional regulation may be especially important for P. falciparum erythrocyte invasion components that have to be assembled into apical secretory organelles in a highly time-dependent manner towards the end of the parasite’s asexual lifecycle. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0771-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shruthi Sridhar Vembar
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, 75015, France. .,CNRS, ERL 9195, Paris, 75015, France. .,INSERM, UMR 1201, Paris, 75015, France.
| | - Cameron Ross Macpherson
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, 75015, France.,CNRS, ERL 9195, Paris, 75015, France.,INSERM, UMR 1201, Paris, 75015, France
| | - Odile Sismeiro
- Plate-forme 2, Transcriptome et Epigenome, Institut Pasteur, Paris, 75015, France
| | - Jean-Yves Coppée
- Plate-forme 2, Transcriptome et Epigenome, Institut Pasteur, Paris, 75015, France
| | - Artur Scherf
- Unité Biologie des Interactions Hôte-Parasite, Département de Parasites et Insectes Vecteurs, Institut Pasteur, Paris, 75015, France. .,CNRS, ERL 9195, Paris, 75015, France. .,INSERM, UMR 1201, Paris, 75015, France.
| |
Collapse
|
35
|
Differential Subcellular Localization of Leishmania Alba-Domain Proteins throughout the Parasite Development. PLoS One 2015; 10:e0137243. [PMID: 26334886 PMCID: PMC4559404 DOI: 10.1371/journal.pone.0137243] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/14/2015] [Indexed: 12/15/2022] Open
Abstract
Alba-domain proteins are RNA-binding proteins found in archaea and eukaryotes and recently studied in protozoan parasites where they play a role in the regulation of virulence factors and stage-specific proteins. This work describes in silico structural characterization, cellular localization and biochemical analyses of Alba-domain proteins in Leishmania infantum. We show that in contrast to other protozoa, Leishmania have two Alba-domain proteins, LiAlba1 and LiAlba3, representative of the Rpp20- and the Rpp25-like eukaryotic subfamilies, respectively, which share several sequence and structural similarities but also important differences with orthologs in other protozoa, especially in sequences targeted for post-translational modifications. LiAlba1 and LiAlba3 proteins form a complex interacting with other RNA-binding proteins, ribosomal subunits, and translation factors as supported by co-immunoprecipitation and sucrose gradient sedimentation analysis. A higher co-sedimentation of Alba proteins with ribosomal subunits was seen upon conditions of decreased translation, suggesting a role of these proteins in translational repression. The Leishmania Alba-domain proteins display differential cellular localization throughout the parasite development. In the insect promastigote stage, Alba proteins co-localize predominantly to the cytoplasm but they translocate to the nucleolus and the flagellum upon amastigote differentiation in the mammalian host and are found back to the cytoplasm once amastigote differentiation is completed. Heat-shock, a major signal of amastigote differentiation, triggers Alba translocation to the nucleolus and the flagellum. Purification of the Leishmania flagellum confirmed LiAlba3 enrichment in this organelle during amastigote differentiation. Moreover, partial characterization of the Leishmania flagellum proteome of promastigotes and differentiating amastigotes revealed the presence of other RNA-binding proteins, as well as differences in the flagellum composition between these two parasite lifestages. Shuttling of Alba-domain proteins between the cytoplasm and the nucleolus or the flagellum throughout the parasite life cycle suggests that these RNA-binding proteins participate in several distinct regulatory pathways controlling developmental gene expression in Leishmania.
Collapse
|
36
|
Ferreira TR, Alves-Ferreira EVC, Defina TPA, Walrad P, Papadopoulou B, Cruz AK. Altered expression of an RBP-associated arginine methyltransferase 7 in Leishmania major affects parasite infection. Mol Microbiol 2014; 94:1085-1102. [PMID: 25294169 DOI: 10.1111/mmi.12819] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2014] [Indexed: 12/20/2022]
Abstract
Protein arginine methylation is a widely conserved post-translational modification performed by arginine methyltransferases (PRMTs). However, its functional role in parasitic protozoa is still under-explored. The Leishmania major genome encodes five PRMT homologs, including PRMT7. Here we show that LmjPRMT7 expression and arginine monomethylation are tightly regulated in a lifecycle stage-dependent manner. LmjPRMT7 levels are higher during the early promastigote logarithmic phase, negligible at stationary and late-stationary phases and rise once more post-differentiation to intracellular amastigotes. Immunofluorescence and co-immunoprecipitation studies demonstrate that LmjPRMT7 is a cytosolic protein associated with several RNA-binding proteins (RBPs) from which Alba20 is monomethylated only in LmjPRMT7-expressing promastigote stages. In addition, Alba20 protein levels are significantly altered in stationary promastigotes of the LmjPRMT7 knockout mutant. Considering RBPs are well-known mammalian PRMT substrates, our data suggest that arginine methylation via LmjPRMT7 may modulate RBP function during Leishmania spp. lifecycle progression. Importantly, genomic deletion of the LmjPRMT7 gene leads to an increase in parasite infectivity both in vitro and in vivo, while lesion progression is significantly reduced in LmjPRMT7-overexpressing parasites. This study is the first to describe a role of Leishmania protein arginine methylation in host-parasite interactions.
Collapse
Affiliation(s)
- Tiago R Ferreira
- Cell and Molecular Biology Department, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|