1
|
A Velvet Transcription Factor Specifically Activates Mating through a Novel Mating-Responsive Protein in the Human Fungal Pathogen Cryptococcus deneoformans. Microbiol Spectr 2022; 10:e0265321. [PMID: 35471092 PMCID: PMC9241590 DOI: 10.1128/spectrum.02653-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Sexual reproduction facilitates infection by the production of both a lineage advantage and infectious sexual spores in the ubiquitous human fungal pathogen Cryptococcus deneoformans. However, the regulatory determinants specific for initiating mating remain poorly understood. Here, we identified a velvet family regulator, Cva1, that strongly promotes sexual reproduction in C. deneoformans. This regulation was determined to be specific, based on a comprehensive phenotypic analysis of cva1Δ under 26 distinct in vitro and in vivo growth conditions. We further revealed that Cva1 plays a critical role in the initiation of early mating events, including sexual cell-cell fusion, but is not important for the late sexual development stages or meiosis. Thus, Cva1 specifically contributes to mating activation. Importantly, a novel mating-responsive protein, Cfs1, serves as the key target of Cva1 during mating, since its absence nearly blocks cell-cell fusion in C. deneoformans and its sister species C. neoformans. Together, our findings provide insight into how C. deneoformans ensures the regulatory specificity of mating. IMPORTANCE The human fungal pathogen C. deneoformans is a model organism for studying fungal sexual reproduction, which is considered to be important to infection. However, the specific regulatory determinants for activation of sexual reproduction remain poorly understood. In this study, by combining transcriptomic and comprehensive phenotypic analysis, we identified a velvet family regulator Cva1 that specifically and critically elicits early mating events, including sexual cell-cell fusion. Significantly, Cva1 induces mating through the novel mating-responsive protein Cfs1, which is essential for cell-cell fusion in C. deneoformans and its sister species C. neoformans. Considering that Cva1 and Cfs1 are highly conserved in species belonging to Cryptococcaeceae, they may play conserved and specific roles in the initiation of sexual reproduction in this important fungal clade, which includes multiple human fungal pathogens.
Collapse
|
2
|
The Predicted Mannosyltransferase GT69-2 Antagonizes RFW-1 To Regulate Cell Fusion in Neurospora crassa. mBio 2021; 12:mBio.00307-21. [PMID: 33727349 PMCID: PMC8092235 DOI: 10.1128/mbio.00307-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Filamentous fungi undergo somatic cell fusion to create a syncytial, interconnected hyphal network which confers a fitness benefit during colony establishment. However, barriers to somatic cell fusion between genetically different cells have evolved that reduce invasion by parasites or exploitation by maladapted genetic entities (cheaters). Here, we identified a predicted mannosyltransferase, glycosyltransferase family 69 protein (GT69-2) that was required for somatic cell fusion in Neurospora crassa Cells lacking GT69-2 prematurely ceased chemotropic signaling and failed to complete cell wall dissolution and membrane merger in pairings with wild-type cells or between Δgt69-2 cells (self fusion). However, loss-of-function mutations in the linked regulator of cell fusion and cell wall remodeling-1 (rfw-1) locus suppressed the self-cell-fusion defects of Δgt69-2 cells, although Δgt69-2 Δrfw-1 double mutants still failed to undergo fusion with wild-type cells. Both GT69-2 and RFW-1 localized to the Golgi apparatus. Genetic analyses indicated that RFW-1 negatively regulates cell wall remodeling-dependent processes, including cell wall dissolution during cell fusion, separation of conidia during asexual sporulation, and conidial germination. GT69-2 acts as an antagonizer to relieve or prevent negative functions on cell fusion by RFW-1. In Neurospora species and N. crassa populations, alleles of gt69-2 were highly polymorphic and fell into two discrete haplogroups. In all isolates within haplogroup I, rfw-1 was conserved and linked to gt69-2 All isolates within haplogroup II lacked rfw-1. These data indicated that gt69-2/rfw-1 are under balancing selection and provide new mechanisms regulating cell wall remodeling during cell fusion and conidial separation.IMPORTANCE Cell wall remodeling is a dynamic process that balances cell wall integrity versus cell wall dissolution. In filamentous fungi, cell wall dissolution is required for somatic cell fusion and conidial separation during asexual sporulation. In the filamentous fungus Neurospora crassa, allorecognition checkpoints regulate the cell fusion process between genetically different cells. Our study revealed two linked loci with transspecies polymorphisms and under coevolution, rfw-1 and gt69-2, which form a coordinated system to regulate cell wall remodeling during somatic cell fusion, conidial separation, and asexual spore germination. RFW-1 acts as a negative regulator of these three processes, while GT69-2 functions antagonistically to RFW-1. Our findings provide new insight into the mechanisms involved in regulation of fungal cell wall remodeling during growth and development.
Collapse
|
3
|
Weichert M, Herzog S, Robson SA, Brandt R, Priegnitz BE, Brandt U, Schulz S, Fleißner A. Plasma Membrane Fusion Is Specifically Impacted by the Molecular Structure of Membrane Sterols During Vegetative Development of Neurospora crassa. Genetics 2020; 216:1103-1116. [PMID: 33046504 PMCID: PMC7768248 DOI: 10.1534/genetics.120.303623] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/11/2020] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell fusion is crucial for the development and propagation of most eukaryotic organisms. Despite this importance, the molecular mechanisms mediating this process are only poorly understood in biological systems. In particular, the step of plasma membrane merger and the contributing proteins and physicochemical factors remain mostly unknown. Earlier studies provided the first evidence of a role of membrane sterols in cell-to-cell fusion. By characterizing different ergosterol biosynthesis mutants of the fungus Neurospora crassa, which accumulate different ergosterol precursors, we show that the structure of the sterol ring system specifically affects plasma membrane merger during the fusion of vegetative spore germlings. Genetic analyses pinpoint this defect to an event prior to engagement of the fusion machinery. Strikingly, this effect is not observed during sexual fusion, suggesting that the specific sterol precursors do not generally block membrane merger, but rather impair subcellular processes exclusively mediating fusion of vegetative cells. At a colony-wide level, the altered structure of the sterol ring system affects a subset of differentiation processes, including vegetative sporulation and steps before and after fertilization during sexual propagation. Together, these observations corroborate the notion that the accumulation of particular sterol precursors has very specific effects on defined cellular processes rather than nonspecifically disturbing membrane functioning. Given the phenotypic similarities of the ergosterol biosynthesis mutants of N. crassa during vegetative fusion and of Saccharomyces cerevisiae cells undergoing mating, our data support the idea that yeast mating is evolutionarily and mechanistically more closely related to vegetative than sexual fusion of filamentous fungi.
Collapse
Affiliation(s)
- Martin Weichert
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stephanie Herzog
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Sarah-Anne Robson
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Raphael Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Bert-Ewald Priegnitz
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - Stefan Schulz
- Institut für Organische Chemie, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
4
|
Gonçalves AP, Heller J, Rico-Ramírez AM, Daskalov A, Rosenfield G, Glass NL. Conflict, Competition, and Cooperation Regulate Social Interactions in Filamentous Fungi. Annu Rev Microbiol 2020; 74:693-712. [PMID: 32689913 DOI: 10.1146/annurev-micro-012420-080905] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Social cooperation impacts the development and survival of species. In higher taxa, kin recognition occurs via visual, chemical, or tactile cues that dictate cooperative versus competitive interactions. In microbes, the outcome of cooperative versus competitive interactions is conferred by identity at allorecognition loci, so-called kind recognition. In syncytial filamentous fungi, the acquisition of multicellularity is associated with somatic cell fusion within and between colonies. However, such intraspecific cooperation entails risks, as fusion can transmit deleterious genotypes or infectious components that reduce fitness, or give rise to cheaters that can exploit communal goods without contributing to their production. Allorecognition mechanisms in syncytial fungi regulate somatic cell fusion by operating precontact during chemotropic interactions, during cell adherence, and postfusion by triggering programmed cell death reactions. Alleles at fungal allorecognition loci are highly polymorphic, fall into distinct haplogroups, and show evolutionary signatures of balancing selection, similar to allorecognition loci across the tree of life.
Collapse
Affiliation(s)
- A Pedro Gonçalves
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institute of Molecular Biology, Academia Sinica, Nangang District, Taipei 115, Taiwan
| | - Jens Heller
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Perfect Day, Inc., Emeryville, California 94608, USA
| | - Adriana M Rico-Ramírez
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
| | - Asen Daskalov
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Institut Européen de Chimie et Biologie, 33600 Pessac, France
| | - Gabriel Rosenfield
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Current Affiliation: Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Schumann MR, Brandt U, Adis C, Hartung L, Fleißner A. Plasma Membrane Integrity During Cell-Cell Fusion and in Response to Pore-Forming Drugs Is Promoted by the Penta-EF-Hand Protein PEF1 in Neurospora crassa. Genetics 2019; 213:195-211. [PMID: 31270133 PMCID: PMC6727798 DOI: 10.1534/genetics.119.302363] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/14/2019] [Indexed: 12/20/2022] Open
Abstract
Plasma membrane damage commonly occurs during cellular growth and development. To counteract these potentially lethal injuries, membrane repair mechanisms have evolved, which promote the integrity of the lipid bilayer. Although the membrane of fungi is the target of important clinical drugs and agricultural fungicides, the molecular mechanisms which mediate membrane repair in these organisms remain elusive. Here we identify the penta-EF-hand protein PEF1 of the genetic model fungus Neurospora crassa as part of a cellular response mechanism against different types of membrane injury. Deletion of the pef1 gene in the wild type and different lysis-prone gene knockout mutants revealed a function of the protein in maintaining cell integrity during cell-cell fusion and in the presence of pore-forming drugs, such as the plant defense compound tomatine. By fluorescence and live-cell imaging we show that green fluorescent protein (GFP)-tagged PEF1 accumulates at the sites of membrane injury in a Ca2+-dependent manner. Site-directed mutagenesis identified Ca2+-binding domains essential for the spatial dynamics and function of the protein. In addition, the subcellular localization of PEF1 revealed that the syncytial fungal colony undergoes compartmentation in response to antifungal treatment. We propose that plasma membrane repair in fungi constitutes an additional line of defense against membrane-disturbing drugs, thereby expanding the current model of fungal drug resistance mechanisms.
Collapse
Affiliation(s)
| | - Ulrike Brandt
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - Christian Adis
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - Lisa Hartung
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| | - André Fleißner
- Institut für Genetik, Technische Universität Braunschweig, 38106, Germany
| |
Collapse
|
6
|
Martin SG. Molecular mechanisms of chemotropism and cell fusion in unicellular fungi. J Cell Sci 2019; 132:132/11/jcs230706. [PMID: 31152053 DOI: 10.1242/jcs.230706] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In all eukaryotic phyla, cell fusion is important for many aspects of life, from sexual reproduction to tissue formation. Fungal cells fuse during mating to form the zygote, and during vegetative growth to connect mycelia. Prior to fusion, cells first detect gradients of pheromonal chemoattractants that are released by their partner and polarize growth in their direction. Upon pairing, cells digest their cell wall at the site of contact and merge their plasma membrane. In this Review, I discuss recent work on the chemotropic response of the yeast models Saccharomyces cerevisiae and Schizosaccharomyces pombe, which has led to a novel model of gradient sensing: the cell builds a motile cortical polarized patch, which acts as site of communication where pheromones are released and sensed. Initial patch dynamics serve to correct its position and align it with the gradient from the partner cell. Furthermore, I highlight the transition from cell wall expansion during growth to cell wall digestion, which is imposed by physical and signaling changes owing to hyperpolarization that is induced by cell proximity. To conclude, I discuss mechanisms of membrane fusion, whose characterization remains a major challenge for the future.
Collapse
Affiliation(s)
- Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Fischer MS, Glass NL. Communicate and Fuse: How Filamentous Fungi Establish and Maintain an Interconnected Mycelial Network. Front Microbiol 2019; 10:619. [PMID: 31001214 PMCID: PMC6455062 DOI: 10.3389/fmicb.2019.00619] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/12/2019] [Indexed: 12/22/2022] Open
Abstract
Cell-to-cell communication and cell fusion are fundamental biological processes across the tree of life. Survival is often dependent upon being able to identify nearby individuals and respond appropriately. Communication between genetically different individuals allows for the identification of potential mating partners, symbionts, prey, or predators. In contrast, communication between genetically similar (or identical) individuals is important for mediating the development of multicellular organisms or for coordinating density-dependent behaviors (i.e., quorum sensing). This review describes the molecular and genetic mechanisms that mediate cell-to-cell communication and cell fusion between cells of Ascomycete filamentous fungi, with a focus on Neurospora crassa. Filamentous fungi exist as a multicellular, multinuclear network of hyphae, and communication-mediated cell fusion is an important aspect of colony development at each stage of the life cycle. Asexual spore germination occurs in a density-dependent manner. Germinated spores (germlings) avoid cells that are genetically different at specific loci, while chemotropically engaging with cells that share identity at these recognition loci. Germlings with genetic identity at recognition loci undergo cell fusion when in close proximity, a fitness attribute that contributes to more rapid colony establishment. Communication and cell fusion also occur between hyphae in a colony, which are important for reinforcing colony architecture and supporting the development of complex structures such as aerial hyphae and sexual reproductive structures. Over 70 genes have been identified in filamentous fungi (primarily N. crassa) that are involved in kind recognition, chemotropic interactions, and cell fusion. While the hypothetical signal(s) and receptor(s) remain to be described, a dynamic molecular signaling network that regulates cell-cell interactions has been revealed, including two conserved MAP-Kinase cascades, a conserved STRIPAK complex, transcription factors, a NOX complex involved in the generation of reactive oxygen species, cell-integrity sensors, actin, components of the secretory pathway, and several other proteins. Together these pathways facilitate the integration of extracellular signals, direct polarized growth, and initiate a transcriptional program that reinforces signaling and prepares cells for downstream processes, such as membrane merger, cell fusion and adaptation to heterokaryon formation.
Collapse
Affiliation(s)
- Monika S. Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley CA, United States
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
8
|
Integration of Self and Non-self Recognition Modulates Asexual Cell-to-Cell Communication in Neurospora crassa. Genetics 2019; 211:1255-1267. [PMID: 30718271 DOI: 10.1534/genetics.118.301780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/27/2019] [Indexed: 02/06/2023] Open
Abstract
Cells rarely exist alone, which drives the evolution of diverse mechanisms for identifying and responding appropriately to the presence of other nearby cells. Filamentous fungi depend on somatic cell-to-cell communication and fusion for the development and maintenance of a multicellular, interconnected colony that is characteristic of this group of organisms. The filamentous fungus Neurospora crassa is a model for investigating the mechanisms of somatic cell-to-cell communication and fusion. N. crassa cells chemotropically grow toward genetically similar cells, which ultimately make physical contact and undergo cell fusion. Here, we describe the development of a Pprm1-luciferase reporter system that differentiates whether genes function upstream or downstream of a conserved MAP kinase (MAPK) signaling complex, by using a set of mutants required for communication and cell fusion. The vast majority of these mutants are deficient for self-fusion and for fusion when paired with wild-type cells. However, the Δham-11 mutant is unique in that it fails to undergo self-fusion, but chemotropic interactions and cell fusion are restored in Δham-11 + wild-type interactions. In genetically dissimilar cells, chemotropic interactions are regulated by genetic differences at doc-1 and doc-2, which regulate prefusion non-self recognition; cells with dissimilar doc-1 and doc-2 alleles show greatly reduced cell-fusion frequencies. Here, we show that HAM-11 functions in parallel with the DOC-1 and DOC-2 proteins to regulate the activity of the MAPK signaling complex. Together, our data support a model of integrated self and non-self recognition processes that modulate somatic cell-to-cell communication in N. crassa.
Collapse
|
9
|
Lopez-Moya F, Suarez-Fernandez M, Lopez-Llorca LV. Molecular Mechanisms of Chitosan Interactions with Fungi and Plants. Int J Mol Sci 2019; 20:E332. [PMID: 30650540 PMCID: PMC6359256 DOI: 10.3390/ijms20020332] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/07/2019] [Accepted: 01/11/2019] [Indexed: 12/19/2022] Open
Abstract
Chitosan is a versatile compound with multiple biotechnological applications. This polymer inhibits clinically important human fungal pathogens under the same carbon and nitrogen status as in blood. Chitosan permeabilises their high-fluidity plasma membrane and increases production of intracellular oxygen species (ROS). Conversely, chitosan is compatible with mammalian cell lines as well as with biocontrol fungi (BCF). BCF resistant to chitosan have low-fluidity membranes and high glucan/chitin ratios in their cell walls. Recent studies illustrate molecular and physiological basis of chitosan-root interactions. Chitosan induces auxin accumulation in Arabidopsis roots. This polymer causes overexpression of tryptophan-dependent auxin biosynthesis pathway. It also blocks auxin translocation in roots. Chitosan is a plant defense modulator. Endophytes and fungal pathogens evade plant immunity converting chitin into chitosan. LysM effectors shield chitin and protect fungal cell walls from plant chitinases. These enzymes together with fungal chitin deacetylases, chitosanases and effectors play determinant roles during fungal colonization of plants. This review describes chitosan mode of action (cell and gene targets) in fungi and plants. This knowledge will help to develop chitosan for agrobiotechnological and medical applications.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Marta Suarez-Fernandez
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| | - Luis Vicente Lopez-Llorca
- Department of Marine Sciences and Applied Biology, Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, University of Alicante, 03080 Alicante, Spain.
| |
Collapse
|
10
|
Regulation of Cell-to-Cell Communication and Cell Wall Integrity by a Network of MAP Kinase Pathways and Transcription Factors in Neurospora crassa. Genetics 2018; 209:489-506. [PMID: 29678830 DOI: 10.1534/genetics.118.300904] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 04/18/2018] [Indexed: 11/18/2022] Open
Abstract
Maintenance of cell integrity and cell-to-cell communication are fundamental biological processes. Filamentous fungi, such as Neurospora crassa, depend on communication to locate compatible cells, coordinate cell fusion, and establish a robust hyphal network. Two MAP kinase (MAPK) pathways are essential for communication and cell fusion in N. crassa: the cell wall integrity/MAK-1 pathway and the MAK-2 (signal response) pathway. Previous studies have demonstrated several points of cross-talk between the MAK-1 and MAK-2 pathways, which is likely necessary for coordinating chemotropic growth toward an extracellular signal, and then mediating cell fusion. Canonical MAPK pathways begin with signal reception and end with a transcriptional response. Two transcription factors, ADV-1 and PP-1, are essential for communication and cell fusion. PP-1 is the conserved target of MAK-2, but it is unclear what targets ADV-1. We did RNA sequencing on Δadv-1, Δpp-1, and wild-type cells and found that ADV-1 and PP-1 have a shared regulon including many genes required for communication, cell fusion, growth, development, and stress response. We identified ADV-1 and PP-1 binding sites across the genome by adapting the in vitro method of DNA-affinity purification sequencing for N. crassa To elucidate the regulatory network, we misexpressed each transcription factor in each upstream MAPK deletion mutant. Misexpression of adv-1 was sufficient to fully suppress the phenotype of the Δpp-1 mutant and partially suppress the phenotype of the Δmak-1 mutant. Collectively, our data demonstrate that the MAK-1/ADV-1 and MAK-2/PP-1 pathways form a tight regulatory network that maintains cell integrity and mediates communication and cell fusion.
Collapse
|
11
|
Fu C, Heitman J. PRM1 and KAR5 function in cell-cell fusion and karyogamy to drive distinct bisexual and unisexual cycles in the Cryptococcus pathogenic species complex. PLoS Genet 2017; 13:e1007113. [PMID: 29176784 PMCID: PMC5720818 DOI: 10.1371/journal.pgen.1007113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 12/07/2017] [Accepted: 11/13/2017] [Indexed: 11/18/2022] Open
Abstract
Sexual reproduction is critical for successful evolution of eukaryotic organisms in adaptation to changing environments. In the opportunistic human fungal pathogens, the Cryptococcus pathogenic species complex, C. neoformans primarily undergoes bisexual reproduction, while C. deneoformans undergoes both unisexual and bisexual reproduction. During both unisexual and bisexual cycles, a common set of genetic circuits regulates a yeast-to-hyphal morphological transition, that produces either monokaryotic or dikaryotic hyphae. As such, both the unisexual and bisexual cycles can generate genotypic and phenotypic diversity de novo. Despite the similarities between these two cycles, genetic and morphological differences exist, such as the absence of an opposite mating-type partner and monokaryotic instead of dikaryotic hyphae during C. deneoformans unisexual cycle. To better understand the similarities and differences between these modes of sexual reproduction, we focused on two cellular processes involved in sexual reproduction: cell-cell fusion and karyogamy. We identified orthologs of the plasma membrane fusion protein Prm1 and the nuclear membrane fusion protein Kar5 in both Cryptococcus species, and demonstrated their conserved roles in cell fusion and karyogamy during C. deneoformans α-α unisexual reproduction and C. deneoformans and C. neoformans a-α bisexual reproduction. Notably, karyogamy occurs inside the basidum during bisexual reproduction in C. neoformans, but often occurs earlier following cell fusion during bisexual reproduction in C. deneoformans. Characterization of these two genes also showed that cell fusion is dispensable for solo unisexual reproduction in C. deneoformans. The blastospores produced along hyphae during C. deneoformans unisexual reproduction are diploid, suggesting that diploidization occurs early during hyphal development, possibly through either an endoreplication pathway or cell fusion-independent karyogamy events. Taken together, our findings suggest distinct mating mechanisms for unisexual and bisexual reproduction in Cryptococcus, exemplifying distinct evolutionary trajectories within this pathogenic species complex.
Collapse
Affiliation(s)
- Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States of America
- * E-mail:
| |
Collapse
|
12
|
Dekhang R, Wu C, Smith KM, Lamb TM, Peterson M, Bredeweg EL, Ibarra O, Emerson JM, Karunarathna N, Lyubetskaya A, Azizi E, Hurley JM, Dunlap JC, Galagan JE, Freitag M, Sachs MS, Bell-Pedersen D. The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3 (BETHESDA, MD.) 2017; 7:129-142. [PMID: 27856696 PMCID: PMC5217103 DOI: 10.1534/g3.116.034298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
Light and the circadian clock have a profound effect on the biology of organisms through the regulation of large sets of genes. Toward understanding how light and the circadian clock regulate gene expression, we used genome-wide approaches to identify the direct and indirect targets of the light-responsive and clock-controlled transcription factor ADV-1 in Neurospora crassa A large proportion of ADV-1 targets were found to be light- and/or clock-controlled, and enriched for genes involved in development, metabolism, cell growth, and cell fusion. We show that ADV-1 is necessary for transducing light and/or temporal information to its immediate downstream targets, including controlling rhythms in genes critical to somatic cell fusion. However, while ADV-1 targets are altered in predictable ways in Δadv-1 cells in response to light, this is not always the case for rhythmic target gene expression. These data suggest that a complex regulatory network downstream of ADV-1 functions to generate distinct temporal dynamics of target gene expression relative to the central clock mechanism.
Collapse
Affiliation(s)
- Rigzin Dekhang
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Cheng Wu
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Kristina M Smith
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Teresa M Lamb
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | | - Erin L Bredeweg
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Oneida Ibarra
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | - Jillian M Emerson
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | | | | | - Elham Azizi
- Bioinformatics Program, Boston University, Massachusetts 02215
| | - Jennifer M Hurley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jay C Dunlap
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - James E Galagan
- Bioinformatics Program, Boston University, Massachusetts 02215
- National Emerging Infectious Diseases Laboratories, Boston University, Massachusetts 02118
- Department of Microbiology, Boston University, Massachusetts 02215
- Department of Biomedical Engineering, Boston University, Massachusetts 02215
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331
| | - Matthew S Sachs
- Department of Biology, Texas A&M University, College Station, Texas 77843
| | | |
Collapse
|
13
|
Green KA, Becker Y, Tanaka A, Takemoto D, Fitzsimons HL, Seiler S, Lalucque H, Silar P, Scott B. SymB and SymC, two membrane associated proteins, are required forEpichloë festucaehyphal cell-cell fusion and maintenance of a mutualistic interaction withLolium perenne. Mol Microbiol 2016; 103:657-677. [DOI: 10.1111/mmi.13580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kimberly A. Green
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Bioprotection Research Centre, Massey University; Palmerston North 4442 New Zealand
| | - Yvonne Becker
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Leibniz Institute of Vegetable and Ornamental Crops; Großbeeren 14979 Germany
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences; Nagoya University; Nagoya 464-8601 Japan
| | - Helen L. Fitzsimons
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
| | - Stephan Seiler
- Freiburg Institute for Advanced Studies, Albert-Ludwigs Universität Freiburg; Freiburg Germany
| | - Hervé Lalucque
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire des Energies de Demain; Paris 75205 France
| | - Philippe Silar
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire des Energies de Demain; Paris 75205 France
| | - Barry Scott
- Institute of Fundamental Sciences, Massey University; Palmerston North 4442 New Zealand
- Bioprotection Research Centre, Massey University; Palmerston North 4442 New Zealand
| |
Collapse
|
14
|
Tsukasaki W, Saeki K, Katayama T, Maruyama JI, Kitamoto K. Molecular dissection of SO (SOFT) protein in stress-induced aggregation and cell-to-cell interactive functions in filamentous fungal multicellularity. Fungal Biol 2016; 120:775-82. [DOI: 10.1016/j.funbio.2016.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/25/2016] [Accepted: 02/02/2016] [Indexed: 11/26/2022]
|
15
|
Lopez-Moya F, Kowbel D, Nueda MJ, Palma-Guerrero J, Glass NL, Lopez-Llorca LV. Neurospora crassa transcriptomics reveals oxidative stress and plasma membrane homeostasis biology genes as key targets in response to chitosan. MOLECULAR BIOSYSTEMS 2016; 12:391-403. [PMID: 26694141 PMCID: PMC4729629 DOI: 10.1039/c5mb00649j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chitosan is a natural polymer with antimicrobial activity. Chitosan causes plasma membrane permeabilization and induction of intracellular reactive oxygen species (ROS) in Neurospora crassa. We have determined the transcriptional profile of N. crassa to chitosan and identified the main gene targets involved in the cellular response to this compound. Global network analyses showed membrane, transport and oxidoreductase activity as key nodes affected by chitosan. Activation of oxidative metabolism indicates the importance of ROS and cell energy together with plasma membrane homeostasis in N. crassa response to chitosan. Deletion strain analysis of chitosan susceptibility pointed NCU03639 encoding a class 3 lipase, involved in plasma membrane repair by lipid replacement, and NCU04537 a MFS monosaccharide transporter related to assimilation of simple sugars, as main gene targets of chitosan. NCU10521, a glutathione S-transferase-4 involved in the generation of reducing power for scavenging intracellular ROS is also a determinant chitosan gene target. Ca(2+) increased tolerance to chitosan in N. crassa. Growth of NCU10610 (fig 1 domain) and SYT1 (a synaptotagmin) deletion strains was significantly increased by Ca(2+) in the presence of chitosan. Both genes play a determinant role in N. crassa membrane homeostasis. Our results are of paramount importance for developing chitosan as an antifungal.
Collapse
Affiliation(s)
- Federico Lopez-Moya
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| | - David Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - Maria José Nueda
- Statistics and Operation Research Department, University of Alicante, E-03080 Alicante, Spain.
| | - Javier Palma-Guerrero
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - N Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley CA, 94720-3120 USA.
| | - Luis Vicente Lopez-Llorca
- Laboratory of Plant Pathology, Multidisciplinary Institute for Environmental Studies (MIES) Ramon Margalef, Department of Marine Sciences and Applied Biology, University of Alicante, E-03080 Alicante, Spain.
| |
Collapse
|
16
|
Shinn-Thomas JH, del Campo JJ, Wang J, Mohler WA. The EFF-1A Cytoplasmic Domain Influences Hypodermal Cell Fusions in C. elegans But Is Not Dependent on 14-3-3 Proteins. PLoS One 2016; 11:e0146874. [PMID: 26800457 PMCID: PMC4723337 DOI: 10.1371/journal.pone.0146874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/25/2015] [Indexed: 12/19/2022] Open
Abstract
Background Regulatory and biophysical mechanisms of cell-cell fusion are largely unknown despite the fundamental requirement for fused cells in eukaryotic development. Only two cellular fusogens that are not of clear recent viral origin have been identified to date, both in nematodes. One of these, EFF-1, is necessary for most cell fusions in Caenorhabditis elegans. Unregulated EFF-1 expression causes lethality due to ectopic fusion between cells not developmentally programmed to fuse, highlighting the necessity of tight fusogen regulation for proper development. Identifying factors that regulate EFF-1 and its paralog AFF-1 could lead to discovery of molecular mechanisms that control cell fusion upstream of the action of a membrane fusogen. Bioinformatic analysis of the EFF-1A isoform’s predicted cytoplasmic domain (endodomain) previously revealed two motifs that have high probabilities of interacting with 14-3-3 proteins when phosphorylated. Mutation of predicted phosphorylation sites within these motifs caused measurable loss of eff-1 gene function in cell fusion in vivo. Moreover, a human 14-3-3 isoform bound to EFF-1::GFP in vitro. We hypothesized that the two 14-3-3 proteins in C. elegans, PAR-5 and FTT-2, may regulate either localization or fusion-inducing activity of EFF-1. Methodology/Principal Findings Timing of fusion events was slightly but significantly delayed in animals unable to produce full-length EFF-1A. Yet, mutagenesis and live imaging showed that phosphoserines in putative 14-3-3 binding sites are not essential for EFF-1::GFP accumulation at the membrane contact between fusion partner cells. Moreover, although the EFF-1A endodomain was required for normal rates of eff-1-dependent epidermal cell fusions, reduced levels of FTT-2 and PAR-5 did not visibly affect the function of wild-type EFF-1 in the hypodermis. Conclusions/Significance Deletion of the EFF-1A endodomain noticeably affects the timing of hypodermal cell fusions in vivo. However, prohibiting phosphorylation of candidate 14-3-3-binding sites does not impact localization of the fusogen. Hypodermal membrane fusion activity persists when 14-3-3 expression levels are reduced.
Collapse
Affiliation(s)
- Jessica H. Shinn-Thomas
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, MC-6403, 263 Farmington Avenue, Farmington, CT 06030–6403, United States of America
- * E-mail: (WAM); (JHST)
| | - Jacob J. del Campo
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, MC-6403, 263 Farmington Avenue, Farmington, CT 06030–6403, United States of America
| | - Jianjun Wang
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, MC-6403, 263 Farmington Avenue, Farmington, CT 06030–6403, United States of America
| | - William A. Mohler
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, MC-6403, 263 Farmington Avenue, Farmington, CT 06030–6403, United States of America
- * E-mail: (WAM); (JHST)
| |
Collapse
|
17
|
Cell fusion in Neurospora crassa. Curr Opin Microbiol 2015; 28:53-9. [DOI: 10.1016/j.mib.2015.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/10/2015] [Accepted: 08/11/2015] [Indexed: 12/22/2022]
|
18
|
Zhao J, Gladieux P, Hutchison E, Bueche J, Hall C, Perraudeau F, Glass NL. Identification of Allorecognition Loci in Neurospora crassa by Genomics and Evolutionary Approaches. Mol Biol Evol 2015; 32:2417-32. [PMID: 26025978 PMCID: PMC4540973 DOI: 10.1093/molbev/msv125] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Understanding the genetic and molecular bases of the ability to distinguish self from nonself (allorecognition) and mechanisms underlying evolution of allorecognition systems is an important endeavor for understanding cases where it becomes dysfunctional, such as in autoimmune disorders. In filamentous fungi, allorecognition can result in vegetative or heterokaryon incompatibility, which is a type of programmed cell death that occurs following fusion of genetically different cells. Allorecognition is genetically controlled by het loci, with coexpression of any combination of incompatible alleles triggering vegetative incompatibility. Herein, we identified, characterized, and inferred the evolutionary history of candidate het loci in the filamentous fungus Neurospora crassa. As characterized het loci encode proteins carrying an HET domain, we annotated HET domain genes in 25 isolates from a natural population along with the N. crassa reference genome using resequencing data. Because allorecognition systems can be affected by frequency-dependent selection favoring rare alleles (i.e., balancing selection), we mined resequencing data for HET domain loci whose alleles displayed elevated levels of variability, excess of intermediate frequency alleles, and deep gene genealogies. From these analyses, 34 HET domain loci were identified as likely to be under balancing selection. Using transformation, incompatibility assays and genetic analyses, we determined that one of these candidates functioned as a het locus (het-e). The het-e locus has three divergent allelic groups that showed signatures of positive selection, intra- and intergroup recombination, and trans-species polymorphism. Our findings represent a compelling case of balancing selection functioning on multiple alleles across multiple loci potentially involved in allorecognition.
Collapse
Affiliation(s)
- Jiuhai Zhao
- Plant and Microbial Biology Department, University of California, Berkeley
| | - Pierre Gladieux
- Plant and Microbial Biology Department, University of California, Berkeley INRA, UMR BGPI, TA A54/K, Montpellier, France; CIRAD, Montpellier, France
| | - Elizabeth Hutchison
- Plant and Microbial Biology Department, University of California, Berkeley Biology Department, 1 College Circle SUNY Geneseo, Geneseo, NY
| | - Joanna Bueche
- Plant and Microbial Biology Department, University of California, Berkeley
| | - Charles Hall
- Plant and Microbial Biology Department, University of California, Berkeley
| | - Fanny Perraudeau
- Plant and Microbial Biology Department, University of California, Berkeley Ecole Polytechnique, Palaiseau, France
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley
| |
Collapse
|
19
|
Identification and characterization of LFD-2, a predicted fringe protein required for membrane integrity during cell fusion in neurospora crassa. EUKARYOTIC CELL 2015; 14:265-77. [PMID: 25595444 DOI: 10.1128/ec.00233-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion.
Collapse
|
20
|
HAM-5 functions as a MAP kinase scaffold during cell fusion in Neurospora crassa. PLoS Genet 2014; 10:e1004783. [PMID: 25412208 PMCID: PMC4238974 DOI: 10.1371/journal.pgen.1004783] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
Cell fusion in genetically identical Neurospora crassa germlings and in hyphae is a highly regulated process involving the activation of a conserved MAP kinase cascade that includes NRC-1, MEK-2 and MAK-2. During chemotrophic growth in germlings, the MAP kinase cascade members localize to conidial anastomosis tube (CAT) tips every ∼8 minutes, perfectly out of phase with another protein that is recruited to the tip: SOFT, a recently identified scaffold for the MAK-1 MAP kinase pathway in Sordaria macrospora. How the MAK-2 oscillation process is initiated, maintained and what proteins regulate the MAP kinase cascade is currently unclear. A global phosphoproteomics approach using an allele of mak-2 (mak-2Q100G) that can be specifically inhibited by the ATP analog 1NM-PP1 was utilized to identify MAK-2 kinase targets in germlings that were potentially involved in this process. One such putative target was HAM-5, a protein of unknown biochemical function. Previously, Δham-5 mutants were shown to be deficient for hyphal fusion. Here we show that HAM-5-GFP co-localized with NRC-1, MEK-2 and MAK-2 and oscillated with identical dynamics from the cytoplasm to CAT tips during chemotropic interactions. In the Δmak-2 strain, HAM-5-GFP localized to punctate complexes that did not oscillate, but still localized to the germling tip, suggesting that MAK-2 activity influences HAM-5 function/localization. However, MAK-2-GFP showed cytoplasmic and nuclear localization in a Δham-5 strain and did not localize to puncta. Via co-immunoprecipitation experiments, HAM-5 was shown to physically interact with NRC-1, MEK-2 and MAK-2, suggesting that it functions as a scaffold/transport hub for the MAP kinase cascade members for oscillation and chemotropic interactions during germling and hyphal fusion in N. crassa. The identification of HAM-5 as a scaffold-like protein will help to link the activation of MAK-2 cascade to upstream factors and proteins involved in this intriguing process of fungal communication. Cell fusion between genetically identical cells of the fungus Neurospora crassa occurs when germinating asexual cells (conidia) sense each other's proximity and redirect their growth. Chemotropic growth is dependent upon the assembly of a MAPK cascade (NRC-1/MEK-2/MAK-2) at the cell cortex (conidial anastomosis tubes; CATs), followed by disassembly over an ∼8 min cycle. A second protein required for fusion, SO, also assembles and disassembles at CAT tips during chemotropic growth, but with perfectly opposite dynamics to the MAK-2 complex. This process of germling chemotropism, oscillation and cell fusion is regulated by many genes and is poorly understood. Via a phosphoproteomics approach, we identify HAM-5, which functions as a scaffold for the MAK-2 signal transduction complex. HAM-5 is required for assembly/disassembly and oscillation of the MAK-2 complex during chemotropic growth. Our data supports a model whereby regulated modification of HAM-5 controls the disassembly of the MAK-2 MAPK complex and is essential for modulating the tempo of oscillation during chemotropic interactions.
Collapse
|
21
|
Gonçalves AP, Monteiro J, Lucchi C, Kowbel DJ, Cordeiro JM, Correia-de-Sá P, Rigden DJ, Glass NL, Videira A. Extracellular calcium triggers unique transcriptional programs and modulates staurosporine-induced cell death in Neurospora crassa. MICROBIAL CELL 2014; 1:289-302. [PMID: 28357255 PMCID: PMC5349132 DOI: 10.15698/mic2014.09.165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in the intracellular levels of calcium are a common response to cell death stimuli in animals and fungi and, particularly, in the Neurospora crassa response to staurosporine. We highlight the importance of the extracellular availability of Ca2+ for this response. Limitation of the ion in the culture medium further sensitizes cells to the drug and results in increased accumulation of reactive oxygen species (ROS). Conversely, an approximately 30-fold excess of external Ca2+ leads to increased drug tolerance and lower ROS generation. In line with this, distinct staurosporine-induced cytosolic Ca2+ signaling profiles were observed in the absence or presence of excessive external Ca2+. High-throughput RNA sequencing revealed that different concentrations of extracellular Ca2+ define distinct transcriptional programs. Our transcriptional profiling also pointed to two putative novel Ca2+-binding proteins, encoded by the NCU08524 and NCU06607 genes, and provides a reference dataset for future investigations on the role of Ca2+ in fungal biology.
Collapse
Affiliation(s)
- A P Gonçalves
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - João Monteiro
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Chiara Lucchi
- IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - David J Kowbel
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - J M Cordeiro
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; UMIB-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paulo Correia-de-Sá
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; UMIB-Unidade Multidisciplinar de Investigação Biomédica, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Daniel J Rigden
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, United Kingdom
| | - N L Glass
- Plant and Microbial Biology Department, The University of California, Berkeley, CA 94720, USA
| | - Arnaldo Videira
- ICBAS-Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal. ; IBMC-Instituto de Biologia Molecular e Celular - Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| |
Collapse
|