1
|
Venkatraman K, Lipp NF, Budin I. Origin and evolution of mitochondrial inner membrane composition. J Cell Sci 2025; 138:jcs263780. [PMID: 40265338 DOI: 10.1242/jcs.263780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025] Open
Abstract
Unique membrane architectures and lipid building blocks underlie the metabolic and non-metabolic functions of mitochondria. During eukaryogenesis, mitochondria likely arose from an alphaproteobacterial symbiont of an Asgard archaea-related host cell. Subsequently, mitochondria evolved inner membrane folds known as cristae alongside a specialized lipid composition supported by metabolic and transport machinery. Advancements in phylogenetic methods and genomic and metagenomic data have suggested potential origins for cristae-shaping protein complexes, such as the mitochondrial contact site and cristae-organizing system (MICOS). MICOS protein homologs function in the formation of cristae-like intracytoplasmic membranes (ICMs) in diverse extant alphaproteobacteria. The machinery responsible for synthesizing key mitochondrial phospholipids - which cooperate with cristae-shaping proteins to establish inner membrane architecture - could have also evolved from a bacterial ancestor, but its origins have been less explored. In this Review, we examine the current understanding of mitochondrial membrane evolution, highlighting distinctions between prokaryotic and eukaryotic mitochondrial-specific proteins and lipids and their differing roles in shaping cristae and ICM architecture, and propose a model explaining the concurrent specialization of the mitochondrial lipidome and inner membrane structure in eukaryogenesis. We discuss how advancements across a range of disciplines are shedding light on how multiple membrane components co-evolved to support the central functions of eukaryotic mitochondria.
Collapse
Affiliation(s)
- Kailash Venkatraman
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicolas-Frédéric Lipp
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| | - Itay Budin
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Sawasato K, Dowhan W, Bogdanov M. Its own architect: Flipping cardiolipin synthase. SCIENCE ADVANCES 2025; 11:eads0244. [PMID: 39752486 PMCID: PMC11698083 DOI: 10.1126/sciadv.ads0244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Current dogma assumes that lipid asymmetry in biological membranes is actively maintained and dispensable for cell viability. The inner (cytoplasmic) membrane (IM) of Escherichia coli is asymmetric. However, the molecular mechanism that maintains this uneven distribution is unknown. We engineered a conditionally lethal phosphatidylethanolamine (PE)-deficient mutant in which the presence of cardiolipin (CL) on the periplasmic leaflet of the IM is essential for viability, revealing a mechanism that provides CL on the desired leaflet of the IM. CL synthase (ClsA) flips its catalytic cytoplasmic domain upon depletion of PE to supply nonbilayer-prone CL in the periplasmic leaflet of the IM for cell viability. In the presence of a physiological amount of PE, osmotic down-shock induces a topological inversion of ClsA, establishing the biological relevance of membrane protein reorientations in wild-type cells. These findings support a flippase-less mechanism for maintaining membrane lipid asymmetry in biogenic membranes by self-organization of a lipid-synthesizing enzyme.
Collapse
Affiliation(s)
- Katsuhiro Sawasato
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Hu Y, Chen Q, Zhang A, Zhang L, Dong H. Strain of Xanthomonas oryzae pv. oryzae Loses Virulence through Dysregulation of Cardiolipin Synthase. PLANTS (BASEL, SWITZERLAND) 2024; 13:2576. [PMID: 39339552 PMCID: PMC11435070 DOI: 10.3390/plants13182576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/30/2024]
Abstract
Small non-coding RNAs (sRNAs) are pivotal post-transcriptional regulatory factors influencing biological activity. Studies on the rice bacterial blight pathogen Xanthomonas oryzae pathovar oryzae strain PXO99A, previously identified a virulence-associated sRNA, trans3287. A mutant strain lacking this sRNA, named SK01, resulted in markedly diminished virulence towards rice. This study aims to further elucidate the underlying bacterial virulent function of trans3287. The expression of trans3287 was quantified in virulence-inducing and standard nutritional conditions to clarify its production mechanism. The detection of virulence-associated genes revealed that trans3287 regulated the synthesis processes of extracellular polysaccharides, lipopolysaccharides, and the type III secretion system. Moreover, bioinformatics prediction and quantitative PCR indicated a potential direct target of trans3287, PXO_03470, encoding cardiolipin synthase. A dual-plasmid system fusing with GFP tag and protein immunoblotting confirmed that sRNA trans3287 negatively regulated PXO_03470. Bacterial biofilms demonstrated trans3287 regulated the disruption of biofilm integrity through cardiolipin synthase. This study provides preliminary insights into the mechanistic underpinnings of the role of sRNA trans3287 in mediating bacterial virulence through cardiolipin synthase.
Collapse
Affiliation(s)
- Yiqun Hu
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Y.H.); (Q.C.)
| | - Qingqing Chen
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Y.H.); (Q.C.)
| | - Aifang Zhang
- Anhui Province Key Laboratory of Pesticide Resistance Management on Grain and Vegetable Pests, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China; (Y.H.); (Q.C.)
| | - Liyuan Zhang
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| | - Hansong Dong
- National Key Laboratory of Wheat Improvement, College of Plant Protection, Shandong Agricultural University, Taian 271018, China;
| |
Collapse
|
4
|
Wang Y, Gao S, Wu F, Gong Y, Mu N, Wei C, Wu C, Wang J, Yan N, Yang H, Zhang Y, Liu J, Wang Z, Yang X, Lam SM, Shui G, Li S, Da L, Guddat LW, Rao Z, Zhang L. Cryo-EM structures of a mycobacterial ABC transporter that mediates rifampicin resistance. Proc Natl Acad Sci U S A 2024; 121:e2403421121. [PMID: 39226350 PMCID: PMC11406275 DOI: 10.1073/pnas.2403421121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/18/2024] [Indexed: 09/05/2024] Open
Abstract
Drug-resistant Tuberculosis (TB) is a global public health problem. Resistance to rifampicin, the most effective drug for TB treatment, is a major growing concern. The etiological agent, Mycobacterium tuberculosis (Mtb), has a cluster of ATP-binding cassette (ABC) transporters which are responsible for drug resistance through active export. Here, we describe studies characterizing Mtb Rv1217c-1218c as an ABC transporter that can mediate mycobacterial resistance to rifampicin and have determined the cryo-electron microscopy structures of Rv1217c-1218c. The structures show Rv1217c-1218c has a type V exporter fold. In the absence of ATP, Rv1217c-1218c forms a periplasmic gate by two juxtaposed-membrane helices from each transmembrane domain (TMD), while the nucleotide-binding domains (NBDs) form a partially closed dimer which is held together by four salt-bridges. Adenylyl-imidodiphosphate (AMPPNP) binding induces a structural change where the NBDs become further closed to each other, which downstream translates to a closed conformation for the TMDs. AMPPNP binding results in the collapse of the outer leaflet cavity and the opening of the periplasmic gate, which was proposed to play a role in substrate export. The rifampicin-bound structure shows a hydrophobic and periplasm-facing cavity is involved in rifampicin binding. Phospholipid molecules are observed in all determined structures and form an integral part of the Rv1217c-1218c transporter system. Our results provide a structural basis for a mycobacterial ABC exporter that mediates rifampicin resistance, which can lead to different insights into combating rifampicin resistance.
Collapse
Affiliation(s)
- Yinan Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- Shanghai Clinical Research and Trial Center, Shanghai201210, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Fangyu Wu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yicheng Gong
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Nengjiang Mu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Chuancun Wei
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Chengyao Wu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jun Wang
- School of Life Sciences, Tianjin University, Tianjin300072, China
| | - Ning Yan
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Huifang Yang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yifan Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jiayi Liu
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Zeyu Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Siyuan Li
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Lintai Da
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai200240, China
| | - Luke W. Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Response, College of Life Sciences, Nankai University, Tianjin300353, China
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- School of Life Sciences, Tianjin University, Tianjin300072, China
- Laboratory of Structural Biology, Tsinghua University, Beijing10084, China
| | - Lu Zhang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- Laboratory of Structural Biology, Tsinghua University, Beijing10084, China
| |
Collapse
|
5
|
Hopmans EC, Grossi V, Sahonero-Canavesi DX, Bale NJ, Cravo-Laureau C, Sinninghe Damsté JS. Mono- to tetra-alkyl ether cardiolipins in a mesophilic, sulfate-reducing bacterium identified by UHPLC-HRMS n: a novel class of membrane lipids. Front Microbiol 2024; 15:1404328. [PMID: 38841066 PMCID: PMC11150832 DOI: 10.3389/fmicb.2024.1404328] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/06/2024] [Indexed: 06/07/2024] Open
Abstract
The composition of membrane lipids varies in a number of ways as adjustment to growth conditions. Variations in head group composition and carbon skeleton and degree of unsaturation of glycerol-bound acyl or alkyl chains results in a high structural complexity of the lipidome of bacterial cells. We studied the lipidome of the mesophilic, sulfate-reducing bacterium, Desulfatibacillum alkenivorans strain PF2803T by ultra-high-pressure liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMSn). This anaerobic bacterium has been previously shown to produce high amounts of mono-and di-alkyl glycerol ethers as core membrane lipids. Our analyses revealed that these core lipids occur with phosphatidylethanomamine (PE) and phosphatidylglycerol (PG) head groups, representing each approximately one third of the phospholipids. The third class was a novel group of phospholipids, i.e., cardiolipins (CDLs) containing one (monoether/triester) to four (tetraether) ether-linked saturated straight-chain or methyl-branched alkyl chains. Tetraether CDLs have been shown to occur in archaea (with isoprenoid alkyl chains) but have not been previously reported in the bacterial Domain. Structurally related CDLs with one or two alkyl/acyl chains missing, so-called monolyso-and dilyso-CDLs, were also observed. The potential biosynthetic pathway of these novel CDLs was investigated by examining the genome of D. alkenivorans. Three CDL synthases were identified; one catalyzes the condensation of two PGs, the other two are probably involved in the condensation of a PE with a PG. A heterologous gene expression experiment showed the in vivo production of dialkylglycerols upon anaerobic expression of the glycerol ester reductase enzyme of D. alkenivorans in E. coli. Reduction of the ester bonds probably occurs first at the sn-1 and subsequently at the sn-2 position after the formation of PEs and PGs.
Collapse
Affiliation(s)
- Ellen C. Hopmans
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Vincent Grossi
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (LGL-TPE, UMR CNRS 5276), Univ Lyon, UCBL, Villeurbanne, France
| | - Diana X. Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, Den Burg, Netherlands
| | - Nicole J. Bale
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, Den Burg, Netherlands
| | | | - Jaap S. Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
6
|
Murakami Y, Ikuta S, Fukuda W, Akasaka N, Maruyama JI, Shinma S, Fukusaki E, Fujiwara S. Identification and enzymatic properties of arginine decarboxylase from Aspergillus oryzae. Appl Environ Microbiol 2024; 90:e0029424. [PMID: 38624200 PMCID: PMC11107147 DOI: 10.1128/aem.00294-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/23/2024] [Indexed: 04/17/2024] Open
Abstract
Aspergillus oryzae spores, when sprinkled onto steamed rice and allowed to propagate, are referred to as rice "koji." Agmatine, a natural polyamine derived from arginine through the action of arginine decarboxylase (ADC), is abundantly produced by solid state-cultivated rice koji of A. oryzae RIB40 under low pH conditions, despite the apparent absence of ADC orthologs in its genome. Mass spectrometry imaging revealed that agmatine was accumulated inside rice koji at low pH conditions, where arginine was distributed. ADC activity was predominantly observed in substrate mycelia and minimally in aerial mycelia. Natural ADC was isolated from solid state-cultivated A. oryzae rice koji containing substrate mycelia, using ammonium sulfate fractionation, ion exchange, and gel-filtration chromatography. The purified protein was subjected to sodium dodecyl sulfate poly-acrylamide gel electrophoresis (SDS-PAGE), and the detected peptide band was digested for identification by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The gene AO090102000327 of strain RIB40 was identified, previously annotated as phosphatidylserine decarboxylase (PSD), and encoded a 483-amino acid peptide. Recombinant protein encoded by AO090102000327 was expressed in Escherichia coli cells cultivated at 20°C, resulting in the detection of 49 kDa and 5 kDa peptides. The protein exhibited pyruvoyl-dependent decarboxylase activity, favoring arginine over ornithine and showing no activity with phosphatidylserine. The gene was designated Ao-adc1. Ao-ADC1 expression in rice koji at pH 4-6 was confirmed through western blotting using the anti-Ao-ADC1 serum. These findings indicate that Ao-adc1 encodes arginine decarboxylase involved in agmatine production.IMPORTANCEGene AO090102000327 in A. oryzae RIB40, previously annotated as a PSD, falls into a distinct clade when examining the phylogenetic distribution of PSDs. Contrary to the initial PSD annotation, our analysis indicates that the protein encoded by AO090102000327 is expressed in the substrate mycelia area of solid state-cultivated A. oryzae rice koji and functions as an arginine decarboxylase (ADC). The clade to which Ao-ADC1 belongs includes three other Ao-ADC1 paralogs (AO090103000445, AO090701000800, and AO090701000802) that presumably encode ADC rather than PSDs. Regarding PSD, AO090012000733 and AO090005001124 were speculated to be nonmitochondrial and mitochondrial PSDs in A. oryzae RIB40, respectively.
Collapse
Affiliation(s)
- Yui Murakami
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Soichiro Ikuta
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Wakao Fukuda
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| | - Naoki Akasaka
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Laboratory for Circular Bioeconomy Development, Office of Society-Academia Collaboration for Innovation, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto, Japan
| | - Jun-ichi Maruyama
- Department of Biotechnology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shuichi Shinma
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
- Osaka University Shimadzu Analytical Innovation Laboratory, Osaka University, Suita,, Osaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Shinsuke Fujiwara
- Department of Biosciences, Graduate School of Science and Technology, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
- Department of Biosciences, School of Biological and Environmental Sciences, Kwansei-Gakuin University, Gakuen-Uegahara, Sanda, Hyogo, Japan
| |
Collapse
|
7
|
Vasilopoulos G, Moser R, Petersen J, Aktas M, Narberhaus F. Promiscuous phospholipid biosynthesis enzymes in the plant pathogen Pseudomonas syringae. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158926. [PMID: 33766680 DOI: 10.1016/j.bbalip.2021.158926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022]
Abstract
Bacterial membranes are primarily composed of phosphatidylethanolamine (PE), phosphatidylglycerol (PG) and cardiolipin (CL). In the canonical PE biosynthesis pathway, phosphatidylserine (PS) is decarboxylated by the Psd enzyme. CL formation typically depends on CL synthases (Cls) using two PG molecules as substrates. Only few bacteria produce phosphatidylcholine (PC), the hallmark of eukaryotic membranes. Most of these bacteria use phospholipid N-methyltransferases to successively methylate PE to PC and/or a PC synthase (Pcs) to catalyze the condensation of choline and CDP-diacylglycerol (CDP-DAG) to PC. In this study, we show that membranes of Pseudomonas species able to interact with eukaryotes contain PE, PG, CL and PC. More specifically, we report on PC formation and a poorly characterized CL biosynthetic pathway in the plant pathogen P. syringae pv. tomato. It encodes a Pcs enzyme responsible for choline-dependent PC biosynthesis. CL formation is catalyzed by a promiscuous phospholipase D (PLD)-type enzyme (PSPTO_0095) that we characterized in vivo and in vitro. Like typical bacterial CL biosynthesis enzymes, it uses PE and PG for CL production. This enzyme is also able to convert PE and glycerol to PG, which is then combined with another PE molecule to synthesize CL. In addition, the enzyme is capable of converting ethanolamine or methylated derivatives into the corresponding phospholipids such as PE both in P. syringae and in E. coli. It can also hydrolyze CDP-DAG to yield phosphatidic acid (PA). Our study adds an example of a promiscuous Cls enzyme able to synthesize a suite of products according to the available substrates.
Collapse
Affiliation(s)
| | - Roman Moser
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Jonas Petersen
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | - Meriyem Aktas
- Microbial Biology, Ruhr University Bochum, Bochum, Germany.
| | | |
Collapse
|
8
|
Watanabe Y, Watanabe Y, Watanabe S. Structural Basis for Phosphatidylethanolamine Biosynthesis by Bacterial Phosphatidylserine Decarboxylase. Structure 2020; 28:799-809.e5. [PMID: 32402247 DOI: 10.1016/j.str.2020.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/12/2020] [Accepted: 04/08/2020] [Indexed: 02/06/2023]
Abstract
In both prokaryotes and eukaryotes, phosphatidylethanolamine (PE), one of the most abundant membrane phospholipids, plays important roles in various membrane functions and is synthesized through the decarboxylation of phosphatidylserine (PS) by PS decarboxylases (PSDs). However, the catalysis and substrate recognition mechanisms of PSDs remain unclear. In this study, we focused on the PSD from Escherichia coli (EcPsd) and determined the crystal structures of EcPsd in the apo form and PE-bound form at resolutions of 2.6 and 3.6 Å, respectively. EcPsd forms a homodimer, and each protomer has a positively charged substrate binding pocket at the active site. Structure-based mutational analyses revealed that conserved residues in the pocket are involved in PS decarboxylation. EcPsd has an N-terminal hydrophobic helical region that is important for membrane binding, thereby achieving efficient PS recognition. These results provide a structural basis for understanding the mechanism of PE biosynthesis by PSDs.
Collapse
Affiliation(s)
- Yasunori Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan.
| | - Yasuo Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Seiya Watanabe
- Department of Bioscience, Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
9
|
Shiratori T, Suzuki S, Kakizawa Y, Ishida KI. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat Commun 2019; 10:5529. [PMID: 31827088 PMCID: PMC6906331 DOI: 10.1038/s41467-019-13499-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 11/08/2019] [Indexed: 11/25/2022] Open
Abstract
Phagocytosis is a key eukaryotic feature, conserved from unicellular protists to animals, that enabled eukaryotes to feed on other organisms. It could also be a driving force behind endosymbiosis, a process by which α-proteobacteria and cyanobacteria evolved into mitochondria and plastids, respectively. Here we describe a planctomycete bacterium, 'Candidatus Uab amorphum', which is able to engulf other bacteria and small eukaryotic cells through a phagocytosis-like mechanism. Observations via light and electron microscopy suggest that this bacterium digests prey cells in specific compartments. With the possible exception of a gene encoding an actin-like protein, analysis of the 'Ca. Uab amorphum' genomic sequence does not reveal any genes homologous to eukaryotic phagocytosis genes, suggesting that cell engulfment in this microorganism is probably not homologous to eukaryotic phagocytosis. The discovery of this "phagotrophic" bacterium expands our understanding of the cellular complexity of prokaryotes, and may be relevant to the origin of eukaryotic cells.
Collapse
Affiliation(s)
- Takashi Shiratori
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan.
- Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Kanagawa, 237-0061, Japan.
| | - Shigekatsu Suzuki
- National Institute for Environmental Studies, Tsukuba, Ibaraki, 305-0053, Japan
| | - Yukako Kakizawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| | - Ken-Ichiro Ishida
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-0053, Japan
| |
Collapse
|
10
|
Ma J, Karnovsky A, Afshinnia F, Wigginton J, Rader DJ, Natarajan L, Sharma K, Porter AC, Rahman M, He J, Hamm L, Shafi T, Gipson D, Gadegbeku C, Feldman H, Michailidis G, Pennathur S. Differential network enrichment analysis reveals novel lipid pathways in chronic kidney disease. Bioinformatics 2019; 35:3441-3452. [PMID: 30887029 PMCID: PMC6748777 DOI: 10.1093/bioinformatics/btz114] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
MOTIVATION Functional enrichment testing methods can reduce data comprising hundreds of altered biomolecules to smaller sets of altered biological 'concepts' that help generate testable hypotheses. This study leveraged differential network enrichment analysis methodology to identify and validate lipid subnetworks that potentially differentiate chronic kidney disease (CKD) by severity or progression. RESULTS We built a partial correlation interaction network, identified highly connected network components, applied network-based gene-set analysis to identify differentially enriched subnetworks, and compared the subnetworks in patients with early-stage versus late-stage CKD. We identified two subnetworks 'triacylglycerols' and 'cardiolipins-phosphatidylethanolamines (CL-PE)' characterized by lower connectivity, and a higher abundance of longer polyunsaturated triacylglycerols in patients with severe CKD (stage ≥4) from the Clinical Phenotyping Resource and Biobank Core. These finding were replicated in an independent cohort, the Chronic Renal Insufficiency Cohort. Using an innovative method for elucidating biological alterations in lipid networks, we demonstrated alterations in triacylglycerols and cardiolipins-phosphatidylethanolamines that precede the clinical outcome of end-stage kidney disease by several years. AVAILABILITY AND IMPLEMENTATION A complete list of NetGSA results in HTML format can be found at http://metscape.ncibi.org/netgsa/12345-022118/cric_cprobe/022118/results_cric_cprobe/main.html. The DNEA is freely available at https://github.com/wiggie/DNEA. Java wrapper leveraging the cytoscape.js framework is available at http://js.cytoscape.org. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jing Ma
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Alla Karnovsky
- Department of Computational Medicine & Bioinformatics, Ann Arbor, MI, USA
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
| | - Farsad Afshinnia
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Janis Wigginton
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
| | - Daniel J Rader
- Department of Medicine, Translational-Clinical Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Loki Natarajan
- Department of Family Medicine and Public Health, University of California at San Diego, San Diego, CA, USA
| | - Kumar Sharma
- Department of Internal Medicine, University of Texas Health at San Antonio, San Antonio, TX, USA
| | - Anna C Porter
- Department of Internal Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Mahboob Rahman
- Department of Internal Medicine, Case-Western Reserve University, Cleveland, OH, USA
| | - Jiang He
- Department of Epidemiology, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Lee Hamm
- School of Medicine, Division of Nephrology and Hypertension, Tulane University, New Orleans, LA, USA
| | - Tariq Shafi
- Department of Internal Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Debbie Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Crystal Gadegbeku
- Department of Internal Medicine, Temple University, Philadelphia, PA, USA
| | - Harold Feldman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - George Michailidis
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
- Department of Statistics and the Informatics Institute, University of Florida, Gainesville, FL, USA
| | - Subramaniam Pennathur
- Michigan Regional Comprehensive Metabolomics Resource Core, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
11
|
Scala V, Reverberi M, Salustri M, Pucci N, Modesti V, Lucchesi S, Loreti S. Lipid Profile of Xylella fastidiosa Subsp. pauca Associated With the Olive Quick Decline Syndrome. Front Microbiol 2018; 9:1839. [PMID: 30154768 PMCID: PMC6102392 DOI: 10.3389/fmicb.2018.01839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Lipids, components of the plasma and intracellular membranes as well as of droplets, provide different biological functions related to energy, carbon storage, and stress responses. Bacterial species display diverse membrane composition that changes in response to the different environmental conditions. During plant-pathogen interactions, lipids might have roles in several aspects such as recognition, signal transduction, and downstream responses. Among lipid entities, free fatty acids (FFAs) and their oxidized form, the oxylipins, represent an important class of signaling molecules in host-pathogen perception, especially related to virulence and defense. In bacteria, FFAs (e.g., diffusible signaling factors) and oxylipins have a crucial role in modulating motility, biofilm formation, and virulence. In this study, we explore by LC-TOF and LC-MS/MS the lipid composition of Xylella fastidiosa subsp. pauca strain De Donno in pure culture; some specific lipids (e.g., ornithine lipids and the oxylipin 7,10-diHOME), characteristic of other pathogenic bacteria, were revealed. Nicotiana tabacum was used for testing the ability of this pathogen in producing such lipids in the host. Different lipid compounds present a clear distribution pattern within the infected plant tissues compared to the uninfected ones.
Collapse
Affiliation(s)
- Valeria Scala
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Massimo Reverberi
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Manuel Salustri
- Dipartimento di Biologia Ambientale, Sapienza University of Rome, Rome, Italy
| | - Nicoletta Pucci
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Vanessa Modesti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Simone Lucchesi
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| | - Stefania Loreti
- Centro di Ricerca Difesa e Certificazione, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Rome, Italy
| |
Collapse
|
12
|
Cassilly CD, Reynolds TB. PS, It's Complicated: The Roles of Phosphatidylserine and Phosphatidylethanolamine in the Pathogenesis of Candida albicans and Other Microbial Pathogens. J Fungi (Basel) 2018; 4:jof4010028. [PMID: 29461490 PMCID: PMC5872331 DOI: 10.3390/jof4010028] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/09/2018] [Accepted: 02/13/2018] [Indexed: 12/24/2022] Open
Abstract
The phospholipids phosphatidylserine (PS) and phosphatidylethanolamine (PE) play important roles in the virulence of Candida albicans and loss of PS synthesis or synthesis of PE from PS (PS decarboxylase) severely compromises virulence in C. albicans in a mouse model of systemic candidiasis. This review discusses synthesis of PE and PS in C. albicans and mechanisms by which these lipids impact virulence in this fungus. This is further compared to how PS and PE synthesis impact virulence in other fungi, parasites and bacteria. Furthermore, the impact of PS asymmetry on virulence and extracellular vesicle formation in several microbes is reviewed. Finally, the potential for PS and PE synthases as drug targets in these various kingdoms is also examined.
Collapse
Affiliation(s)
- Chelsi D Cassilly
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| | - Todd B Reynolds
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
13
|
Gottier P, Serricchio M, Vitale R, Corcelli A, Bütikofer P. Cross-species complementation of bacterial- and eukaryotic-type cardiolipin synthases. MICROBIAL CELL 2017; 4:376-383. [PMID: 29167800 PMCID: PMC5695855 DOI: 10.15698/mic2017.11.598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The glycerophospholipid cardiolipin is a unique constituent of bacterial and mitochondrial membranes. It is involved in forming and stabilizing high molecular mass membrane protein complexes and in maintaining membrane architecture. Absence of cardiolipin leads to reduced efficiency of the electron transport chain, decreased membrane potential, and, ultimately, impaired respiratory metabolism. For the protozoan parasite Trypanosoma brucei cardiolipin synthesis is essential for survival, indicating that the enzymes involved in cardiolipin production represent potential drug targets. T. brucei cardiolipin synthase (TbCLS) is unique as it belongs to the family of phospholipases D (PLD), harboring a prokaryotic-type cardiolipin synthase (CLS) active site domain. In contrast, most other eukaryotic CLS, including the yeast ortholog ScCrd1, are members of the CDP-alcohol phosphatidyltransferase family. To study if these mechanistically distinct CLS enzymes are able to catalyze cardiolipin production in a cell that normally expresses a different type of CLS, we expressed TbCLS and ScCrd1 in CLS-deficient yeast and trypanosome strains, respectively. Our results show that TbCLS complemented cardiolipin production in CRD1 knockout yeast and partly restored wild-type colony forming capability under stress conditions. Remarkably, CL remodeling appeared to be impaired in the transgenic construct, suggesting that CL production and remodeling are tightly coupled processes that may require a clustering of the involved proteins into specific CL-synthesizing domains. In contrast, no complementation was observed by heterologous expression of ScCrd1 in conditional TbCLS knockout trypanosomes, despite proper mitochondrial targeting of the protein.
Collapse
Affiliation(s)
- Petra Gottier
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Mauro Serricchio
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Rita Vitale
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Angela Corcelli
- School of Medicine: Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Peter Bütikofer
- Institute for Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
López-Lara IM, Geiger O. Bacterial lipid diversity. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:1287-1299. [DOI: 10.1016/j.bbalip.2016.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 11/25/2022]
|
15
|
El Khoury M, Swain J, Sautrey G, Zimmermann L, Van Der Smissen P, Décout JL, Mingeot-Leclercq MP. Targeting Bacterial Cardiolipin Enriched Microdomains: An Antimicrobial Strategy Used by Amphiphilic Aminoglycoside Antibiotics. Sci Rep 2017; 7:10697. [PMID: 28878347 PMCID: PMC5587548 DOI: 10.1038/s41598-017-10543-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 08/11/2017] [Indexed: 01/31/2023] Open
Abstract
Some bacterial proteins involved in cell division and oxidative phosphorylation are tightly bound to cardiolipin. Cardiolipin is a non-bilayer anionic phospholipid found in bacterial inner membrane. It forms lipid microdomains located at the cell poles and division plane. Mechanisms by which microdomains are affected by membrane-acting antibiotics and the impact of these alterations on membrane properties and protein functions remain unclear. In this study, we demonstrated cardiolipin relocation and clustering as a result of exposure to a cardiolipin-acting amphiphilic aminoglycoside antibiotic, the 3′,6-dinonyl neamine. Changes in the biophysical properties of the bacterial membrane of P. aeruginosa, including decreased fluidity and increased permeability, were observed. Cardiolipin-interacting proteins and functions regulated by cardiolipin were impacted by the amphiphilic aminoglycoside as we demonstrated an inhibition of respiratory chain and changes in bacterial shape. The latter effect was characterized by the loss of bacterial rod shape through a decrease in length and increase in curvature. It resulted from the effect on MreB, a cardiolipin dependent cytoskeleton protein as well as a direct effect of 3′,6-dinonyl neamine on cardiolipin. These results shed light on how targeting cardiolipin microdomains may be of great interest for developing new antibacterial therapies.
Collapse
Affiliation(s)
- Micheline El Khoury
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium
| | - Jitendriya Swain
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium
| | - Guillaume Sautrey
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium.,Université de Lorraine, UMR CNRS UL 7565, 1 Blvd. Des Aiguillettes, BP 70239, 54506 Vandoeuvre-lès-Nancy Cedex, Nancy, France
| | - Louis Zimmermann
- Université Grenoble Alpes, Joseph Fourier/CNRS, Institut de Pharmacochimie Moléculaire, rue de la Chimie, F-38041, Grenoble, France
| | - Patrick Van Der Smissen
- Université Catholique de Louvain, de Duve Institute, avenue Hippocrate 75, UCL B1.75.05, 1200, Brussels, Belgium
| | - Jean-Luc Décout
- Université Grenoble Alpes, Joseph Fourier/CNRS, Institut de Pharmacochimie Moléculaire, rue de la Chimie, F-38041, Grenoble, France
| | - Marie-Paule Mingeot-Leclercq
- Université catholique de Louvain, Louvain Drug Research Institute, Pharmacologie Cellulaire et Moléculaire, avenue E. Mounier 73, UCL B1.73.05, 1200, Brussels, Belgium.
| |
Collapse
|
16
|
Rathmann C, Schlösser AS, Schiller J, Bogdanov M, Brüser T. Tat transport in Escherichia coli requires zwitterionic phosphatidylethanolamine but no specific negatively charged phospholipid. FEBS Lett 2017; 591:2848-2858. [PMID: 28815570 DOI: 10.1002/1873-3468.12794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/04/2017] [Accepted: 08/09/2017] [Indexed: 02/04/2023]
Abstract
Translocation of folded proteins by the Tat system of Escherichia coli is believed to rely on the presence of phosphatidylethanolamine (PE) and the negatively charged phospholipids cardiolipin (CL) and phosphatidylglycerol (PG). Here, we show that while PE is indeed essential for activity, the Tat system is fully functional in a clsA/clsB/clsC deletion strain lacking CL, and in a pgsA deletion strain lacking both PG and CL during aerobic growth on complex media. In contrast to early studies that relied on strains with reduced lipid levels, this study therefore demonstrates that PG and CL are dispensable for Tat transport. The lack of these lipids may be compensated by other anionic phospholipids such as phosphatidic acid, CDP-diacylglycerol or N-acyl-PE.
Collapse
Affiliation(s)
| | | | - Jürgen Schiller
- Institute of Medical Physics and Biophysics, University of Leipzig, Germany
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, TX, USA
| | - Thomas Brüser
- Institute of Microbiology, Leibniz University Hannover, Germany
| |
Collapse
|
17
|
López G, Heredia R, Boeris P, Lucchesi G. Content of cardiolipin of the membrane and sensitivity to cationic surfactants in Pseudomonas putida. J Appl Microbiol 2016; 121:1004-14. [DOI: 10.1111/jam.13238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 06/27/2016] [Accepted: 07/13/2016] [Indexed: 02/04/2023]
Affiliation(s)
- G.A. López
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - R.M. Heredia
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - P.S. Boeris
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| | - G.I. Lucchesi
- Departamento de Biología Molecular; Facultad de Ciencias Exactas; Físico-Químicas y Naturales; Universidad Nacional de Río Cuarto; Río Cuarto Córdoba Argentina
| |
Collapse
|
18
|
Two Distinct Cardiolipin Synthases Operate in Agrobacterium tumefaciens. PLoS One 2016; 11:e0160373. [PMID: 27472399 PMCID: PMC4966929 DOI: 10.1371/journal.pone.0160373] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/18/2016] [Indexed: 12/14/2022] Open
Abstract
Cardiolipin (CL) is a universal component of energy generating membranes. In most bacteria, it is synthesized via the condensation of two molecules phosphatidylglycerol (PG) by phospholipase D-type cardiolipin synthases (PLD-type Cls). In the plant pathogen and natural genetic engineer Agrobacterium tumefaciens CL comprises up to 15% of all phospholipids in late stationary growth phase. A. tumefaciens harbors two genes, atu1630 (cls1) and atu2486 (cls2), coding for PLD-type Cls. Heterologous expression of either cls1 or cls2 in Escherichia coli resulted in accumulation of CL supporting involvement of their products in CL synthesis. Expression of cls1 and cls2 in A. tumefaciens is constitutive and irrespective of the growth phase. Membrane lipid profiling of A. tumefaciens mutants suggested that Cls2 is required for CL synthesis at early exponential growth whereas both Cls equally contribute to CL production at later growth stages. Contrary to many bacteria, which suffer from CL depletion, A. tumefaciens tolerates large changes in CL content since the CL-deficient cls1/cls2 double mutant showed no apparent defects in growth, stress tolerance, motility, biofilm formation, UV-stress and tumor formation on plants.
Collapse
|
19
|
Aktas M, Narberhaus F. Unconventional membrane lipid biosynthesis inXanthomonas campestris. Environ Microbiol 2015; 17:3116-24. [DOI: 10.1111/1462-2920.12956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/03/2015] [Accepted: 06/14/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Meriyem Aktas
- Microbial Biology; Ruhr University Bochum; Universitätsstrasse 150, NDEF 06/783 Bochum D-44780 Germany
| | - Franz Narberhaus
- Microbial Biology; Ruhr University Bochum; Universitätsstrasse 150, NDEF 06/783 Bochum D-44780 Germany
| |
Collapse
|
20
|
Sohlenkamp C, Geiger O. Bacterial membrane lipids: diversity in structures and pathways. FEMS Microbiol Rev 2015; 40:133-59. [DOI: 10.1093/femsre/fuv008] [Citation(s) in RCA: 571] [Impact Index Per Article: 57.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2015] [Indexed: 12/22/2022] Open
|