1
|
Yang MC, Huang WL, Chen HY, Lin SH, Chang YS, Tseng KY, Lo HJ, Wang IC, Lin CJ, Lan CY. Deletion of RAP1 affects iron homeostasis, azole resistance, and virulence in Candida albicans. mSphere 2025; 10:e0015525. [PMID: 40265929 DOI: 10.1128/msphere.00155-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025] Open
Abstract
Rap1 is a DNA-binding protein conserved from yeast to mammals for its role in telomeric maintenance. Here, to explore additional functions of Candida albicans Rap1, we performed RNA sequencing analysis. Experimental validations further showed that Rap1 plays a role in iron regulation, especially under low-iron conditions. Moreover, Rap1 was involved in iron acquisition and modulation of iron-related genes. Rap1 was found to be associated with fluconazole resistance in a low-iron condition. Finally, we demonstrated that the deletion of RAP1 leads to reduced C. albicans virulence in a mouse model of infection. Together, this study reveals new functions of C. albicans Rap1, particularly in iron homeostasis, azole resistance, and virulence. IMPORTANCE Candida albicans is an important pathogenic fungus that can cause superficial to life-threatening infections. Iron is essential for almost all organisms, yet it is highly restricted within the human host to defend against pathogens. To grow and survive in the iron-limited host environment, C. albicans has evolved multiple iron acquisition mechanisms. Understanding the regulation of iron homeostasis is, therefore, critical for elucidating C. albicans pathogenesis and virulence. This study explores the novel functions of C. albicans Rap1, with a focus on its contribution to iron acquisition and utilization. Our findings further highlight how iron availability impacts antifungal resistance and virulence through Rap1, providing insight into the complex iron regulatory machinery of C. albicans.
Collapse
Affiliation(s)
- Min-Chi Yang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Wei-Luen Huang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsuan-Yu Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Shin-Huey Lin
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yu-Shan Chang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Kuo-Yun Tseng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Hsiu-Jung Lo
- Taiwan Mycology Reference Center, National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - I-Ching Wang
- Institute of Biotechnology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| | - Chi-Jan Lin
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
2
|
Choi G, Bessman NJ. Iron at the crossroads of host-microbiome interactions in health and disease. Nat Microbiol 2025:10.1038/s41564-025-02001-y. [PMID: 40399686 DOI: 10.1038/s41564-025-02001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/31/2025] [Indexed: 05/23/2025]
Abstract
Iron is an essential dietary micronutrient for both humans and microorganisms. Disruption of iron homeostasis is closely linked, as both a cause and an effect, to the development and progression of gut microbiota dysbiosis and multiple diseases. Iron absorption in humans is impacted by diverse environmental factors, including diet, medication and microbiota-derived molecules. Accordingly, treatment outcomes for iron-associated diseases may depend on an individual patient's microbiome. Here we describe various iron acquisition strategies used by the host, commensal microorganisms and pathogens to benefit or outcompete each other in the complex gut environment. We further explore recently discovered microbial species and metabolites modulating host iron absorption, which represent potential effectors of disease and therapeutic targets. Finally, we discuss the need for mechanistic studies on iron-host-microbiome interactions that can affect disease and treatment outcomes, with the ultimate aim of supporting the development of microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Garam Choi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nicholas J Bessman
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Futamura Y, Yamamoto K, Uson-Lopez R, Aono H, Shimizu T, Hori Y, Kino K, Osada H. Inhibitory effect of copper chelators on the budding in Candida albicans. Antimicrob Agents Chemother 2025; 69:e0003325. [PMID: 40202341 PMCID: PMC12057359 DOI: 10.1128/aac.00033-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/03/2025] [Indexed: 04/10/2025] Open
Abstract
Candida albicans exhibits a unique dimorphic behavior, allowing it to switch between unicellular budding yeast and filamentous hyphal growth. This dimorphism is crucial for its pathogenicity, influencing processes such as adhesion, invasion, immune evasion, and host response. A comprehensive understanding of the molecular mechanisms governing yeast and hyphal growth, as well as the switch between these forms, is crucial for the development of effective anticandidal therapies. In this study, we screened for small molecules that interfere with the dimorphism of C. albicans and identified the actinomycete metabolite RK-276A/SF2768 as a potent inhibitor of this process. Time-lapse microscopy revealed that SF2768 inhibited hyphal branching and lateral yeast budding during the hyphal-to-yeast transition. Interestingly, SF2768 also suppressed farnesol-induced yeast growth by inhibiting yeast bud formation. The effects of SF2768 were canceled with copper addition, and other copper chelators, such as trientine and d-penicillamine, induced similar phenotypes, indicating that the copper-chelating activity of SF2768 is crucial for its antifungal properties. Furthermore, copper ions induced both hyphal and yeast bud formation. These findings strongly suggest that copper ions play a role in Candida budding, and the copper chelators could be developed as novel antifungal agents against not only dimorphic Candida spp. but also non-dimorphic Candida spp.
Collapse
Affiliation(s)
- Yushi Futamura
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Waseda Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
| | - Kai Yamamoto
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Rachael Uson-Lopez
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Harumi Aono
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Takeshi Shimizu
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasuhiro Hori
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Kuniki Kino
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Waseda Research Institute of Science and Engineering, Waseda University, Shinjuku, Tokyo, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- Institute of Microbial Chemistry (BIKAKEN), Shinagawa, Tokyo, Japan
| |
Collapse
|
4
|
Nikhil A, Tiwari AK, Tilak R, Bhatia M, Gupta MK. In vitro enrichment of trace elements promotes rapid germination of Aspergillus conidia: a clinical concern for immunosuppressed and hyperglycemic patients. Curr Med Mycol 2024; 10:10: e2024.345251.1549. [PMID: 40330787 PMCID: PMC12050485 DOI: 10.22034/cmm.2024.345251.1549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/12/2024] [Accepted: 11/02/2024] [Indexed: 05/08/2025] Open
Abstract
Background and Purpose This study aimed to examine the effects of essential trace elements, namely iron (Fe), manganese (Mn), zinc (Zn), and copper (Cu), combined with D-dextrose on conidial germination and growth of Aspergillus fumigatus and Aspergillus flavus ATCC strains. Trace elements are vital in metabolic processes, acting as cofactors for various enzymes; however, their precise role in fungal pathogenesis remains poorly understood. Materials and Methods The research involved determining the minimum inhibitory concentrations (MIC) of Fe, Mn, Zn, and Cu for Aspergillus ATCC strains. Following MIC assessment, optimized concentrations of the trace elements (~140 and 550 pM) and various concentrations of D-dextrose (1-3% w/v) were introduced to assess their effects on fungal growth in RPMI 1640 broth. Growth was measured in terms of optical density, while conidial germination rates were also observed. Results The MICs for Fe, Mn, and Zn were found to exceed 35 µM, while Cu exhibited lower MICs of 2 and 7.6 µM against A. fumigatus and A. flavus, respectively. At optimized concentrations, Fe, Mn, Zn, and Cu significantly enhanced fungal growth in both Aspergillus species. Additionally, growth rates increased proportionally with higher D-dextrose concentrations. Notably, the combination of enriched trace elements and D-dextrose resulted in up to 98% conidial germination. Conclusion The findings demonstrate that optimized concentrations of essential trace elements and D-dextrose significantly promote conidial germination and growth of Aspergillus species in vitro. These results suggest that trace element supplementation might have important implications for immunocompromised and hyperglycemic patients. Further studies are warranted to explore the interactions between these micronutrients in fungal physiology and pathogenesis.
Collapse
Affiliation(s)
- Aishwarya Nikhil
- Mycology Research Group, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Atul Kumar Tiwari
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi, India
| | - Ragini Tilak
- Mycology Research Group, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| | - Mohit Bhatia
- Department of Tuberculosis and Chest, Sir Sunderlal Hospital (BHU), Varanasi, India
| | - Munesh Kumar Gupta
- Mycology Research Group, Department of Microbiology, Institute of Medical Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
5
|
Ejaz U, Zakir S, Abideen Z, Fahim B, Shaikh W, Shakil F, Mirza FH, Haider SW, Khan A, Sohail M. Assessment of textile effluent treatment by immobilized Trametes pubescens MB 89 for plant growth promotion. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36052-36063. [PMID: 38744768 DOI: 10.1007/s11356-024-33673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
Industrialization and the ever-increasing world population have diminished high-quality water resources for sustainable agriculture. It is imperative to effectively treat industrial effluent to render the treated water available for crop cultivation. This study aimed to assess the effectiveness of textile effluent treated with Trametes pubescens MB 89 in supporting maize cultivation. The fungal treatment reduced the amounts of Co, Pb and As in the textile effluent. The biological oxygen demand, total dissolved solids and total suspended solids were within the permissible limits in the treated effluent. The data indicated that the irrigation of maize with fungal-treated textile effluent improved the growth parameters of the plant including root, shoot length, leaf area and chlorophyll content. Moreover, better antioxidant activity, total phenol content and protein content in roots, stems and leaves of maize plants were obtained. Photosynthetic parameters (potential quantum yield, electron transport rate and fluorescence yield of non-photochemical losses other than heat) were also improved in the plants irrigated with treated effluent as compared to the control groups. In conclusion, the treatment of textile effluent with the immobilized T. pubescens presents a sustainable solution to minimize chemical pollution and effectively utilize water resources.
Collapse
Affiliation(s)
- Uroosa Ejaz
- Department of Biosciences, Faculty of Life Sciences, SZABIST University, Karachi Campus, Pakistan
| | - Saima Zakir
- Dr Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Zainul Abideen
- Dr Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi, 75270, Pakistan
| | - Bushra Fahim
- Department of Biosciences, Faculty of Life Sciences, SZABIST University, Karachi Campus, Pakistan
| | - Waniya Shaikh
- Department of Biosciences, Faculty of Life Sciences, SZABIST University, Karachi Campus, Pakistan
| | - Faryal Shakil
- Department of Biosciences, Faculty of Life Sciences, SZABIST University, Karachi Campus, Pakistan
| | - Fizza Haroon Mirza
- Department of Biosciences, Faculty of Life Sciences, SZABIST University, Karachi Campus, Pakistan
| | - Syed Wasi Haider
- Institute of Space Science & Technology, University of Karachi, Karachi, 75270, Pakistan
| | - Adnan Khan
- Department of Geology, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Sohail
- Department of Microbiology, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
6
|
Wu D, Guan YX, Li CH, Zheng Q, Yin ZJ, Wang H, Liu NN. "Nutrient-fungi-host" tripartite interaction in cancer progression. IMETA 2024; 3:e170. [PMID: 38882486 PMCID: PMC11170973 DOI: 10.1002/imt2.170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 06/18/2024]
Abstract
The human microbiome exhibits a profound connection with the cancer development, progression, and therapeutic response, with particular emphasis on its components of the mycobiome, which are still in the early stages of research. In this review, we comprehensively summarize cancer-related symbiotic and pathogenic fungal genera. The intricate mechanisms through which fungi impact cancer as an integral member of both gut and tissue-resident microbiomes are further discussed. In addition, we shed light on the pivotal physiological roles of various nutrients, including cholesterol, carbohydrates, proteins and minerals, in facilitating the growth, reproduction, and invasive pathogenesis of the fungi. While our exploration of the interplay between nutrients and cancer, mediated by the mycobiome, is ongoing, the current findings have yet to yield conclusive results. Thus, delving into the relationship between nutrients and fungal pathogenesis in cancer development and progression would provide valuable insights into anticancer therapy and foster precision nutrition and individualized treatments that target fungi from bench to bedside.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yun-Xuan Guan
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chen-Hao Li
- Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Quan Zheng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Zuo-Jing Yin
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hui Wang
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ning-Ning Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
7
|
Xu T, Liu P, Yang Y, Duan W, Zhang X, Huang D. Near-infrared Ⅱ light-assisted Cu-containing porous TiO 2 coating for combating implant-associated infection. Colloids Surf B Biointerfaces 2024; 234:113744. [PMID: 38183871 DOI: 10.1016/j.colsurfb.2024.113744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/02/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Treatment implant-associated infections remains a severe challenge in the clinical practice. This work focuses on the fabrication of Cu-containing porous TiO2 coatings on titanium (Ti) by a combination of magnetron sputtering and dealloying techniques. Additionally, photothermal therapy is employed to enhance the effect of Cu ions in preventing bacterial infection. After the dealloying, most of Cu element was removed from the magnetron sputtered Cu-containing films, and porous TiO2 coatings were prepared on Ti. The formation of porous nanostructures significantly enhanced the photothermal conversion performance under NIR-II light irradiation. The combined effect of hyperthermia and Cu ions demonstrated enhanced antibacterial activity in both in vitro and in vivo experiments, and the antibacterial efficiency can reach 99% against Streptococcus mutans. Moreover, the porous TiO2 coatings also exhibited excellent biocompatibility. This modification of the titanium surface structure through dealloying changes may offer a novel approach to enhance the antimicrobial properties of titanium implants.
Collapse
Affiliation(s)
- Tao Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Panyue Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Yongqiang Yang
- National Graphene Products Quality Inspection and Testing Center (Jiangsu), Special Equipment Safety Supervision Inspection Institute of Jiangsu Province, Wuxi 214174, China
| | - Wangping Duan
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China.
| | - Xiangyu Zhang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopedics, Second Hospital of Shanxi Medical University, Taiyuan 030001, China; Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030032, China.
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
| |
Collapse
|
8
|
Pope MA, Curtis RM, Gull H, Horadigala Gamage MA, Abeyrathna SS, Abeyrathna NS, Fahrni CJ, Meloni G. Fluorescence-Based Proteoliposome Methods to Monitor Redox-Active Transition Metal Transmembrane Translocation by Metal Transporters. Methods Mol Biol 2024; 2839:77-97. [PMID: 39008249 PMCID: PMC11411439 DOI: 10.1007/978-1-0716-4043-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Transmembrane transition metal transporter proteins are central gatekeepers in selectively controlling vectorial metal cargo uptake and extrusion across cellular membranes in all living organisms, thus playing key roles in essential and toxic metal homeostasis. Biochemical characterization of transporter-mediated translocation events and transport kinetics of redox-active metals, such as iron and copper, is challenged by the complexity in generating reconstituted systems in which vectorial metal transport can be studied in real time. We present fluorescence-based proteoliposome methods to monitor redox-active metal transmembrane translocation upon reconstitution of purified metal transporters in artificial lipid bilayers. By encapsulating turn-on/-off iron or copper-dependent sensors in the proteoliposome lumen and conducting real-time transport assays using small unilamellar vesicles (SUVs), in which selected purified Fe(II) and Cu(I) transmembrane importer and exporter proteins have been reconstituted, we provide a platform to monitor metal translocation events across lipid bilayers in real time. The strategy is modular and expandable toward the study of different transporter families featuring diverse metal substrate selectivity and promiscuity.
Collapse
Affiliation(s)
- Mitchell A Pope
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Rose M Curtis
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Humera Gull
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | | | - Sameera S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Nisansala S Abeyrathna
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Christoph J Fahrni
- Petit Institute for Bioengineering and Bioscience, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gabriele Meloni
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
9
|
Sharma R, Gibb AA, Barnts K, Elrod JW, Puri S. Alternative oxidase promotes high iron tolerance in Candida albicans. Microbiol Spectr 2023; 11:e0215723. [PMID: 37929974 PMCID: PMC10714975 DOI: 10.1128/spectrum.02157-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE The yeast C. albicans exhibits metabolic flexibility for adaptability to host niches with varying availability of nutrients including essential metals like iron. For example, blood is iron deplete, while the oral cavity and the intestinal lumen are considered iron replete. We show here that C. albicans can tolerate very high levels of environmental iron, despite an increase in high iron-induced reactive oxygen species (ROS) that it mitigates with the help of a unique oxidase, known as alternative oxidase (AOX). High iron induces AOX1/2 that limits mitochondrial accumulation of ROS. Genetic elimination of AOX1/2 resulted in diminished virulence during oropharyngeal candidiasis in high iron mice. Since human mitochondria lack AOX protein, it represents a unique target for treatment of fungal infections.
Collapse
Affiliation(s)
- Rishabh Sharma
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - Andrew A. Gibb
- Department of Cardiovascular Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Kelcie Barnts
- Oral and Maxillofacial Pathology, Medicine and Surgery, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| | - John W. Elrod
- Department of Cardiovascular Sciences, Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, USA
| | - Sumant Puri
- Oral Microbiome Research Laboratory, Kornberg School of Dentistry, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Sun K, Li Y, Gai Y, Wang J, Jian Y, Liu X, Wu L, Shim WB, Lee YW, Ma Z, Haas H, Yin Y. HapX-mediated H2B deub1 and SreA-mediated H2A.Z deposition coordinate in fungal iron resistance. Nucleic Acids Res 2023; 51:10238-10260. [PMID: 37650633 PMCID: PMC10602907 DOI: 10.1093/nar/gkad708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 07/26/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023] Open
Abstract
Plant pathogens are challenged by host-derived iron starvation or excess during infection, but the mechanism through which pathogens counteract iron stress is unclear. Here, we found that Fusarium graminearum encounters iron excess during the colonization of wheat heads. Deletion of heme activator protein X (FgHapX), siderophore transcription factor A (FgSreA) or both attenuated virulence. Further, we found that FgHapX activates iron storage under iron excess by promoting histone H2B deubiquitination (H2B deub1) at the promoter of the responsible gene. Meanwhile, FgSreA is shown to inhibit genes mediating iron acquisition during iron excess by facilitating the deposition of histone variant H2A.Z and histone 3 lysine 27 trimethylation (H3K27 me3) at the first nucleosome after the transcription start site. In addition, the monothiol glutaredoxin FgGrx4 is responsible for iron sensing and control of the transcriptional activity of FgHapX and FgSreA via modulation of their enrichment at target genes and recruitment of epigenetic regulators, respectively. Taken together, our findings elucidated the molecular mechanisms for adaptation to iron excess mediated by FgHapX and FgSreA during infection in F. graminearum and provide novel insights into regulation of iron homeostasis at the chromatin level in eukaryotes.
Collapse
Affiliation(s)
- Kewei Sun
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yiqing Li
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunpeng Gai
- School of Grassland Science, Beijing Forestry University, Beijing, China
| | - Jingrui Wang
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yunqing Jian
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Wu
- Institute of Crop Science, Zhejiang University, Hangzhou, China
| | - Won-Bo Shim
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, USA
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Hubertus Haas
- Instiute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck A-6020, Austria
| | - Yanni Yin
- State Key Laboratory of Rice Biology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Khan S, Lang M. A Comprehensive Review on the Roles of Metals Mediating Insect-Microbial Pathogen Interactions. Metabolites 2023; 13:839. [PMID: 37512546 PMCID: PMC10384549 DOI: 10.3390/metabo13070839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Insects and microbial pathogens are ubiquitous and play significant roles in various biological processes, while microbial pathogens are microscopic organisms that can cause diseases in multiple hosts. Insects and microbial pathogens engage in diverse interactions, leveraging each other's presence. Metals are crucial in shaping these interactions between insects and microbial pathogens. However, metals such as Fe, Cu, Zn, Co, Mo, and Ni are integral to various physiological processes in insects, including immune function and resistance against pathogens. Insects have evolved multiple mechanisms to take up, transport, and regulate metal concentrations to fight against pathogenic microbes and act as a vector to transport microbial pathogens to plants and cause various plant diseases. Hence, it is paramount to inhibit insect-microbe interaction to control pathogen transfer from one plant to another or carry pathogens from other sources. This review aims to succinate the role of metals in the interactions between insects and microbial pathogens. It summarizes the significance of metals in the physiology, immune response, and competition for metals between insects, microbial pathogens, and plants. The scope of this review covers these imperative metals and their acquisition, storage, and regulation mechanisms in insect and microbial pathogens. The paper will discuss various scientific studies and sources, including molecular and biochemical studies and genetic and genomic analysis.
Collapse
Affiliation(s)
- Subhanullah Khan
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minglin Lang
- CAS Center for Excellence in Biotic Interactions, College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Life Science, Agricultural University of Hebei, Baoding 071000, China
| |
Collapse
|
12
|
Mitochondria in Cryptococcus: an update of mitochondrial transcriptional regulation in Cryptococcus. Curr Genet 2023; 69:1-6. [PMID: 36729179 DOI: 10.1007/s00294-023-01261-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Encapsulated Cryptococcus species are responsible for approximately 15% of AIDS-related mortality. Numerous intriguing investigations have demonstrated that mitochondria play a crucial role in the pathogen-host axis of microorganisms. Mitochondria are vital energy-generating organelles, but they also regulate a variety of cellular activities, such as fungal adaptability in the host and drug resistance. Mitochondria are also the source of reactive oxygen species, which serve as intracellular messengers but are harmful when produced in excess. Thus, precise and stringent regulation of mitochondrial activity, including oxidative phosphorylation and the ROS detoxification process, is essential to ensure that only the amount required to maintain basic biological activities and prevent ROS toxicity in the cell is maintained. However, the relationship between mitochondria and the pathogenicity of Cryptococcus remains poorly understood. In this review, we focus on transcription regulation and maintenance of mitochondrial function along the pathogen-host interaction axis, as well as prospective antifungal strategies that target mitochondria.
Collapse
|
13
|
Tsers I, Marenina E, Meshcherov A, Petrova O, Gogoleva O, Tkachenko A, Gogoleva N, Gogolev Y, Potapenko E, Muraeva O, Ponomareva M, Korzun V, Gorshkov V. First genome-scale insights into the virulence of the snow mold causal fungus Microdochium nivale. IMA Fungus 2023; 14:2. [PMID: 36627722 PMCID: PMC9830731 DOI: 10.1186/s43008-022-00107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Pink snow mold, caused by a phytopathogenic and psychrotolerant fungus, Microdochium nivale, is a severe disease of winter cereals and grasses that predominantly occurs under snow cover or shortly after its melt. Snow mold has significantly progressed during the past decade, often reaching epiphytotic levels in northern countries and resulting in dramatic yield losses. In addition, M. nivale gradually adapts to a warmer climate, spreading to less snowy territories and causing different types of plant diseases throughout the growing period. Despite its great economic importance, M. nivale is poorly investigated; its genome has not been sequenced and its crucial virulence determinants have not been identified or even predicted. In our study, we applied a hybrid assembly based on Oxford Nanopore and Illumina reads to obtain the first genome sequence of M. nivale. 11,973 genes (including 11,789 protein-encoding genes) have been revealed in the genome assembly. To better understand the genetic potential of M. nivale and to obtain a convenient reference for transcriptomic studies on this species, the identified genes were annotated and split into hierarchical three-level functional categories. A file with functionally classified M. nivale genes is presented in our study for general use. M. nivale gene products that best meet the criteria for virulence factors have been identified. The genetic potential to synthesize human-dangerous mycotoxins (fumonisin, ochratoxin B, aflatoxin, and gliotoxin) has been revealed for M. nivale. The transcriptome analysis combined with the assays for extracellular enzymatic activities (conventional virulence factors of many phytopathogens) was carried out to assess the effect of host plant (rye) metabolites on the M. nivale phenotype. In addition to disclosing plant-metabolite-upregulated M. nivale functional gene groups (including those related to host plant protein destruction and amino acid metabolism, xenobiotic detoxication (including phytoalexins benzoxazinoids), cellulose destruction (cellulose monooxygenases), iron transport, etc.), the performed analysis pointed to a crucial role of host plant lipid destruction and fungal lipid metabolism modulation in plant-M. nivale interactions.
Collapse
Affiliation(s)
- Ivan Tsers
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Ekaterina Marenina
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Azat Meshcherov
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Olga Petrova
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Olga Gogoleva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Alexander Tkachenko
- grid.35915.3b0000 0001 0413 4629Laboratory of Computer Technologies, ITMO University, Saint Petersburg, Russia 197101
| | - Natalia Gogoleva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Yuri Gogolev
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Evgenii Potapenko
- grid.18098.380000 0004 1937 0562Institute of Evolution, University of Haifa, 3498838 Haifa, Israel ,grid.18098.380000 0004 1937 0562Department of Evolutionary and Environmental Biology, University of Haifa, 3498838 Haifa, Israel
| | - Olga Muraeva
- grid.512700.1Bioinformatics Institute, Saint Petersburg, Russia 197342
| | - Mira Ponomareva
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| | - Viktor Korzun
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111 ,grid.425691.dKWS SAAT SE & Co. KGaA, 37555 Einbeck, Germany
| | - Vladimir Gorshkov
- grid.465285.80000 0004 0637 9007Federal Research Center, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, Russia 420111
| |
Collapse
|
14
|
Liu W, Li M, Tian B, Yang X, Du W, Wang X, Zhou H, Ding C, Sai S. Calcofluor white-cholesteryl hydrogen succinate conjugate mediated liposomes for enhanced targeted delivery of voriconazole into Candida albicans. Biomater Sci 2023; 11:307-321. [DOI: 10.1039/d2bm01263d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
A nano antifungal-drug delivery system is designed to increase voriconazole efficacy by specifically binding to chitin in the fungal cell wall.
Collapse
Affiliation(s)
- Wei Liu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Mengshun Li
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Xuesong Yang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Wei Du
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Xiuwen Wang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| | - Huihui Zhou
- Department of Pathology, Affiliated Yuhuangding Hospital of Qingdao University, Yantai, Shandong 266071, China
| | - Chen Ding
- College of Life and Health Science, Northeastern University, Shenyang, 110015, China
| | - Sixiang Sai
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong, 264003, China
| |
Collapse
|
15
|
A GATA-type transcription factor SreA affects manganese susceptibility by regulating the expression of iron uptake-related genes. Fungal Genet Biol 2022; 163:103731. [PMID: 36087858 DOI: 10.1016/j.fgb.2022.103731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 01/06/2023]
Abstract
SreA has been identified as a GATA-type transcription factor that represses iron uptake to avoid iron excess during iron sufficiency. However, knowledge about whether SreA also affects the homeostasis of other divalent metal ions is limited. In this study, by screening Aspergillus fumigatus transcription factor deletion mutant libraries, we demonstrate that the sreA deletion mutant shows the greatest tolerance to MnCl2 among the tested divalent metal ions. Fe and Mn stimuli are able to enhance the expression of SreA with the different time-dependent manner, while the expression of SreA contributes to Mn2+ tolerance. Lack of SreA results in abnormally increased expression of a series of siderophore biosynthesis genes and iron transport-related genes, especially under MnCl2 treatment. Further mechanistic exploration indicated that lack of SreA exacerbates abnormal iron uptake, and iron excess inhibits cellular Mn content; thus, deletion of sreA results in Mn tolerance. Thus, findings in this study have demonstrated a new unexplored function for the transcription factor SreA in regulation of the Mn2+ tolerance.
Collapse
|
16
|
Nagasa GD, Belete A. Review on Nanomaterials and Nano-Scaled Systems for Topical and Systemic Delivery of Antifungal Drugs. J Multidiscip Healthc 2022; 15:1819-1840. [PMID: 36060421 PMCID: PMC9432385 DOI: 10.2147/jmdh.s359282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Fungal infections are human infections that topically affect the skin, mucous membranes, or more serious, invasive, and systemic diseases of the internal organs. The design and advancement of the formulation and approach of administration for therapeutic agents depend on many variables. The correlation between the formulations, mode of administration, pharmacokinetics, toxicity and clinical indication must be thoroughly studied for the successful evolution of suitable drug delivery systems. There are several NP formulations that serve as good delivery approaches for antifungal drugs. This paper covers various groups of nanoparticles utilized in antifungal drug delivery, such as phospholipid-based vesicles (nanovesicles), non-phospholipid vesicles, polymeric nanoparticles, inorganic nanoparticles and dendrimers, whereby their advantages and drawbacks are emphasized. Many in vitro or cell culture studies with NP formulations achieve an adequate high drug-loading capacity; they do not reach the clinically significant concentrations anticipated for in vivo studies. Because of this, the transfer of these nano-formulations from the laboratory to the clinic could be aided by focusing studies on overcoming problems related to nanoparticle stability, drug loading, and high production and standardization costs.
Collapse
Affiliation(s)
| | - Anteneh Belete
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
17
|
Kajal S, Quadri JA, Verma P, Thota R, Sikka K, Pandey S, Thakar A, Verma H. Estimation of Serum Levels of Heavy Metals in Patients with Chronic Invasive Fungal Rhinosinusitis Before the COVID-19 Era: A Pilot Study. Turk Arch Otorhinolaryngol 2022; 60:29-35. [PMID: 35634227 PMCID: PMC9103563 DOI: 10.4274/tao.2022.2021-11-12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 03/04/2022] [Indexed: 12/01/2022] Open
Abstract
Objective: Various metals play role in the survival and pathogenesis of the invasive fungal disease. The objectives of this study were to compare the levels of heavy metals in patients with chronic invasive fungal rhinosinusitis (CIFR) and healthy controls, and to analyze their role in disease outcome. Methods: Twenty-three patients (15 with invasive mucormycosis and 8 with invasive aspergillosis, Group 1), and 14 healthy controls (Group 2) were recruited. Blood samples were collected from each group into ion-free tubes and analyzed for serum levels of Nickel (Ni), Copper (Cu), Zinc (Zn), Gallium (Ga), Arsenic (As), Selenium (Se), Rubidium (Rb), Strontium (Sr), Cadmium (Cd), and Lead (Pb). The final outcome of the patients during their hospital stay was categorized clinico-radiologically as improved or worsened, or death. Results: The levels of all metals were higher in Group 1 except for As and Pb. However, the differences in Cu (p=0.0026), Ga (p=0.002), Cd (p=0.0027), and Pb (p=0.0075) levels were significant. Higher levels of Zn (p=0.009), Se (p=0.020), and Rb (p=0.016) were seen in the invasive aspergillosis subgroup. Although Zn (p=0.035), As (p=0.022), and Sr (p=0.002) levels were higher in patients with improved outcome, subgroup analysis showed no differences. Conclusion: The levels of some heavy metals in CIFR significantly differ from those of the general population and also vary with the type of the disease and its outcome. These levels may not have a direct effect on the outcome of the patient, but they do play a role in the pathogenesis of the invading fungus.
Collapse
|
18
|
Vélez N, Monteoliva L, Sánchez-Quitian ZA, Amador-García A, García-Rodas R, Ceballos-Garzón A, Gil C, Escandón P, Zaragoza Ó, Parra-Giraldo CM. The Combination of Iron and Copper Increases Pathogenicity and Induces Proteins Related to the Main Virulence Factors in Clinical Isolates of Cryptococcus neoformans var. grubii. J Fungi (Basel) 2022; 8:jof8010057. [PMID: 35049997 PMCID: PMC8778102 DOI: 10.3390/jof8010057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 01/09/2023] Open
Abstract
In fungi, metals are associated with the expression of virulence factors. However, it is unclear whether the uptake of metals affects their pathogenicity. This study aimed to evaluate the effect of iron/copper in modulating pathogenicity and proteomic response in two clinical isolates of C. neoformans with high and low pathogenicity. Methods: In both isolates, the effect of 50 µM iron and 500 µM copper on pathogenicity, capsule induction, and melanin production was evaluated. We then performed a quantitative proteomic analysis of cytoplasmic extracts exposed to that combination. Finally, the effect on pathogenicity by iron and copper was evaluated in eight additional isolates. Results: In both isolates, the combination of iron and copper increased pathogenicity, capsule size, and melanin production. Regarding proteomic data, proteins with increased levels after iron and copper exposure were related to biological processes such as cell stress, vesicular traffic (Ap1, Vps35), cell wall structure (Och1, Ccr4, Gsk3), melanin biosynthesis (Hem15, Mln2), DNA repair (Chk1), protein transport (Mms2), SUMOylation (Uba2), and mitochondrial transport (Atm1). Increased pathogenicity by exposure to metal combination was also confirmed in 90% of the eight isolates. Conclusions: The combination of these metals enhances pathogenicity and increases the abundance of proteins related to the main virulence factors.
Collapse
Affiliation(s)
- Nórida Vélez
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Lucía Monteoliva
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Zilpa-Adriana Sánchez-Quitian
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
| | - Ahinara Amador-García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Rocío García-Rodas
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Andrés Ceballos-Garzón
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Department of Parasitology and Medical Mycology, Faculty of Pharmacy, University of Nantes, 44200 Nantes, France
| | - Concha Gil
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.M.); (A.A.-G.); (C.G.)
| | - Patricia Escandón
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá 111321, Colombia;
| | - Óscar Zaragoza
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Carretera Majadahonda-Pozuelo, 28013 Madrid, Spain; (R.G.-R.); (Ó.Z.)
| | - Claudia-Marcela Parra-Giraldo
- Unidad de Proteómica y Micosis Humanas, Grupo de Enfermedades Infecciosas, Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia; (N.V.); (Z.-A.S.-Q.); (A.C.-G.)
- Correspondence:
| |
Collapse
|
19
|
Li Y, Li H, Sun T, Ding C. Pathogen-Host Interaction Repertoire at Proteome and Posttranslational Modification Levels During Fungal Infections. Front Cell Infect Microbiol 2021; 11:774340. [PMID: 34926320 PMCID: PMC8674643 DOI: 10.3389/fcimb.2021.774340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022] Open
Abstract
Prevalence of fungal diseases has increased globally in recent years, which often associated with increased immunocompromised patients, aging populations, and the novel Coronavirus pandemic. Furthermore, due to the limitation of available antifungal agents mortality and morbidity rates of invasion fungal disease remain stubbornly high, and the emergence of multidrug-resistant fungi exacerbates the problem. Fungal pathogenicity and interactions between fungi and host have been the focus of many studies, as a result, lots of pathogenic mechanisms and fungal virulence factors have been identified. Mass spectrometry (MS)-based proteomics is a novel approach to better understand fungal pathogenicities and host–pathogen interactions at protein and protein posttranslational modification (PTM) levels. The approach has successfully elucidated interactions between pathogens and hosts by examining, for example, samples of fungal cells under different conditions, body fluids from infected patients, and exosomes. Many studies conclude that protein and PTM levels in both pathogens and hosts play important roles in progression of fungal diseases. This review summarizes mass spectrometry studies of protein and PTM levels from perspectives of both pathogens and hosts and provides an integrative conceptual outlook on fungal pathogenesis, antifungal agents development, and host–pathogen interactions.
Collapse
Affiliation(s)
- Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Hailong Li
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| |
Collapse
|
20
|
Radionuclide Imaging of Invasive Fungal Disease in Immunocompromised Hosts. Diagnostics (Basel) 2021; 11:diagnostics11112057. [PMID: 34829403 PMCID: PMC8620393 DOI: 10.3390/diagnostics11112057] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Invasive fungal disease (IFD) leads to increased mortality, morbidity, and costs of treatment in patients with immunosuppressive conditions. The definitive diagnosis of IFD relies on the isolation of the causative fungal agents through microscopy, culture, or nucleic acid testing in tissue samples obtained from the sites of the disease. Biopsy is not always feasible or safe to be undertaken in immunocompromised hosts at risk of IFD. Noninvasive diagnostic techniques are, therefore, needed for the diagnosis and treatment response assessment of IFD. The available techniques that identify fungal-specific antigens in biological samples for diagnosing IFD have variable sensitivity and specificity. They also have limited utility in response assessment. Imaging has, therefore, been applied for the noninvasive detection of IFD. Morphologic imaging with computed tomography (CT) and magnetic resonance imaging (MRI) is the most applied technique. These techniques are neither sufficiently sensitive nor specific for the early diagnosis of IFD. Morphologic changes evaluated by CT and MRI occur later in the disease course and during recovery after successful treatment. These modalities may, therefore, not be ideal for early diagnosis and early response to therapy determination. Radionuclide imaging allows for targeting the host response to pathogenic fungi or specific structures of the pathogen itself. This makes radionuclide imaging techniques suitable for the early diagnosis and treatment response assessment of IFD. In this review, we aimed to discuss the interplay of host immunity, immunosuppression, and the occurrence of IFD. We also discuss the currently available radionuclide probes that have been evaluated in preclinical and clinical studies for their ability to detect IFD.
Collapse
|
21
|
Abstract
The antifungal resistance threat posed by Candida auris necessitates bold and innovative therapeutic options. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment regimens. To gain further insights into the farnesol-related effect on C. auris, genome-wide gene transcription analysis was performed using transcriptome sequencing (RNA-Seq). Farnesol exposure resulted in 1,766 differentially expressed genes. Of these genes, 447 and 304 genes with at least 1.5-fold increase or decrease in transcription, respectively, were selected for further investigation. Genes involved in morphogenesis, biofilm events (maturation and dispersion), gluconeogenesis, iron metabolism, and regulation of RNA biosynthesis showed downregulation, whereas those related to antioxidative defense, transmembrane transport, glyoxylate cycle, fatty acid β-oxidation, and peroxisome processes were upregulated. In addition, farnesol treatment increased the transcription of certain efflux pump genes, including MDR1, CDR1, and CDR2. Growth, measured by the change in the number of CFU, was significantly inhibited within 2 h of the addition of farnesol (5.8 × 107 ± 1.1 × 107 and 1.1 × 107 ± 0.3 × 107 CFU/ml for untreated control and farnesol-exposed cells, respectively) (P < 0.001). In addition, farnesol treatment caused a significant reduction in intracellular iron (152.2 ± 21.1 versus 116.0 ± 10.0 mg/kg), manganese (67.9 ± 5.1 versus 18.6 ± 1.8 mg/kg), and zinc (787.8 ± 22.2 versus 245.8 ± 34.4 mg/kg) (P < 0.05 to 0.001) compared to untreated control cells, whereas the level of cooper was significantly increased (274.6 ± 15.7 versus 828.8 ± 106.4 mg/kg) (P < 0.001). Our data demonstrate that farnesol significantly influences the growth, intracellular metal ion contents, and gene transcription related to fatty acid metabolism, which could open new directions in developing alternative therapies against C. auris. IMPORTANCECandida auris is a dangerous fungal pathogen that causes outbreaks in health care facilities, with infections associated with a high mortality rate. As conventional antifungal drugs have limited effects against the majority of clinical isolates, new and innovative therapies are urgently needed. Farnesol is a key regulator molecule of fungal morphogenesis, inducing phenotypic adaptations and influencing biofilm formation as well as virulence. Alongside these physiological modulations, it has a potent antifungal effect alone or in combination with traditional antifungals, especially at supraphysiological concentrations. However, our knowledge about the mechanisms underlying this antifungal effect against C. auris is limited. This study has demonstrated that farnesol enhances the oxidative stress and reduces the fungal survival strategies. Furthermore, it inhibits manganese, zinc transport, and iron metabolism as well as increases fungal intracellular copper content. In addition, metabolism was modulated toward β-oxidation. These results provide definitive explanations for the observed antifungal effects.
Collapse
|
22
|
Sun T, Li Y, Li Y, Li H, Gong Y, Wu J, Ning Y, Ding C, Xu Y. Proteomic Analysis of Copper Toxicity in Human Fungal Pathogen Cryptococcus neoformans. Front Cell Infect Microbiol 2021; 11:662404. [PMID: 34485169 PMCID: PMC8415117 DOI: 10.3389/fcimb.2021.662404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Cryptococcus neoformans is an invasive human fungal pathogen that causes more than 181,000 deaths each year. Studies have demonstrated that pulmonary C. neoformans infection induces innate immune responses involving copper, and copper detoxification in C. neoformans improves its fitness and pathogenicity during pulmonary C. neoformans infection. However, the molecular mechanism by which copper inhibits C. neoformans proliferation is unclear. We used a metallothionein double-knockout C. neoformans mutant that was highly sensitive to copper to demonstrate that exogenous copper ions inhibit fungal cell growth by inducing reactive oxygen species generation. Using liquid chromatography-tandem mass spectrometry, we found that copper down-regulated factors involved in protein translation, but up-regulated proteins involved in ubiquitin-mediated protein degradation. We propose that the down-regulation of protein synthesis and the up-regulation of protein degradation are the main effects of copper toxicity. The ubiquitin modification of total protein and proteasome activity were promoted under copper stress, and inhibition of the proteasome pathway alleviated copper toxicity. Our proteomic analysis sheds new light on the antifungal mechanisms of copper.
Collapse
Affiliation(s)
- Tianshu Sun
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Yanjian Li
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingxing Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China.,Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China
| | - Hailong Li
- National Health Commission Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yiyi Gong
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Jianqiang Wu
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, China
| | - Yating Ning
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yingchun Xu
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, China.,Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Sándor E, Kolláth IS, Fekete E, Bíró V, Flipphi M, Kovács B, Kubicek CP, Karaffa L. Carbon-Source Dependent Interplay of Copper and Manganese Ions Modulates the Morphology and Itaconic Acid Production in Aspergillus terreus. Front Microbiol 2021; 12:680420. [PMID: 34093503 PMCID: PMC8173074 DOI: 10.3389/fmicb.2021.680420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022] Open
Abstract
The effects of the interplay of copper(II) and manganese(II) ions on growth, morphology and itaconic acid formation was investigated in a high-producing strain of Aspergillus terreus (NRRL1960), using carbon sources metabolized either mainly via glycolysis (D-glucose, D-fructose) or primarily via the pentose phosphate shunt (D-xylose, L-arabinose). Limiting Mn2+ concentration in the culture broth is indispensable to obtain high itaconic acid yields, while in the presence of higher Mn2+ concentrations yield decreases and biomass formation is favored. However, this low yield in the presence of high Mn2+ ion concentrations can be mitigated by increasing the Cu2+ concentration in the medium when D-glucose or D-fructose is the growth substrate, whereas this effect was at best modest during growth on D-xylose or L-arabinose. A. terreus displays a high tolerance to Cu2+ which decreased when Mn2+ availability became increasingly limiting. Under such conditions biomass formation on D-glucose or D-fructose could be sustained at concentrations up to 250 mg L–1 Cu2+, while on D-xylose- or L-arabinose biomass formation was completely inhibited at 100 mg L–1. High (>75%) specific molar itaconic acid yields always coincided with an “overflow-associated” morphology, characterized by small compact pellets (<250 μm diameter) and short chains of “yeast-like” cells that exhibit increased diameters relative to the elongated cells in growing filamentous hyphae. At low concentrations (≤1 mg L–1) of Cu2+ ions, manganese deficiency did not prevent filamentous growth. Mycelial- and cellular morphology progressively transformed into the typical overflow-associated one when external Cu2+ concentrations increased, irrespective of the available Mn2+. Our results indicate that copper ions are relevant for overflow metabolism and should be considered when optimizing itaconic acid fermentation in A. terreus.
Collapse
Affiliation(s)
- Erzsébet Sándor
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - István S Kolláth
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Doctoral School of Chemistry, University of Debrecen, Debrecen, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Vivien Bíró
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, Hungary
| | - Michel Flipphi
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Béla Kovács
- Institute of Food Science, Faculty of Agricultural and Food Science and Environmental Management, University of Debrecen, Debrecen, Hungary
| | - Christian P Kubicek
- Institute of Chemical, Environmental & Bioscience Engineering, TU Wien, Vienna, Austria
| | - Levente Karaffa
- Department of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
24
|
Zhao H, Zhou M, Zheng Q, Zhu M, Yang Z, Hu C, Xu L. Clinical features and Outcomes of Cryptococcemia patients with and without HIV infection. Mycoses 2021; 64:656-667. [PMID: 33609302 DOI: 10.1111/myc.13261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The effects of cryptococcemia on patient outcomes in those with or without HIV remain unclear. METHODS One hundred and seventy-nine cryptococcemia patients were enrolled in this retrospective study. Demographic characteristics, blood test results and outcome were compared between the two groups. RESULTS The diagnosis time of Cryptococcus infection was 2.0(0-6.0) days for HIV-infected patients, 5.0 (1.5-8.0) days for HIV-uninfected patients (p = .008), 2.0 (1.0-6.0) days for cryptococcal meningitis (CM) patients and 6.0 (5.0-8.0) days for non-CM patients (p < .001). HIV infection [adjusted odds ratio (AOR) (95% confidence interval): 6.0(2.3-15.9)], CRP < 15 mg/L [AOR:3.7(1.7-8.1)) and haemoglobin > 110 g/L [AOR:2.5(1.2-5.4)] were risk factors for CM development. Forty-six (25.7%) patients died within 90 days. ICU stay [AOR:2.8(1.1-7.1)], hypoalbuminemia [AOR:2.7(1.4-5.3)], no anti-cryptococcal treatment [AOR:4.7(1.9-11.7)] and altered consciousness [AOR:2.4(1.0-5.5)] were independent risk factors for 90-day mortality in all patients. HIV infection did not increase the 90-day mortality of cryptococcemia patients when anti-Cryptococcus treatment was available. Non-Amphotericin B treatment [AOR:3.4(1.0-11.2)] was associated with 90-day mortality in HIV-infected patients, but age ≥ 50.0 years old [AOR:2.7(1.0-2.9)], predisposing disease [AOR:4.1(1.2-14.2)] and altered consciousness [AOR:3.7(1.1-12.9)] were associated with 90-day mortality in HIV-uninfected patients who accepted anti-Cryptococcus treatment. CONCLUSION HIV infection increased the incidence of CM rather than mortality in cryptococcemia patients. The predictive model was completely divergent in HIV-infected and HIV-uninfected patients, suggesting that novel strategies for diagnosis and treatment algorithms are urgently needed.
Collapse
Affiliation(s)
- Handan Zhao
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Minghan Zhou
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Qing Zheng
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Mingjian Zhu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Zongxing Yang
- Department II of Infectious Diseases, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Caiqin Hu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,College of Medicine, Zhejiang University, Hangzhou, China
| | - Lijun Xu
- National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China.,The State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Culbertson EM, Culotta VC. Copper in infectious disease: Using both sides of the penny. Semin Cell Dev Biol 2021; 115:19-26. [PMID: 33423931 DOI: 10.1016/j.semcdb.2020.12.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/28/2020] [Accepted: 12/08/2020] [Indexed: 12/17/2022]
Abstract
The transition metal Cu is an essential micronutrient that serves as a co-factor for numerous enzymes involved in redox and oxygen chemistry. However, Cu is also a potentially toxic metal, especially to unicellular microbes that are in direct contact with their environment. Since 400 BCE, Cu toxicity has been leveraged for its antimicrobial properties and even today, Cu based materials are being explored as effective antimicrobials against human pathogens spanning bacteria, fungi, and viruses, including the SARS-CoV-2 agent of the 2019-2020 pandemic. Given that Cu has the double-edged property of being both highly toxic and an essential micronutrient, it plays an active and complicated role at the host-pathogen interface. Humans have evolved methods of incorporating Cu into innate and adaptive immune processes and both sides of the penny (Cu toxicity and Cu as a nutrient) are employed. Here we review the evolution of Cu in biology and its multi-faceted roles in infectious disease, from the viewpoints of the microbial pathogens as well as the animal hosts they infect.
Collapse
Affiliation(s)
- Edward M Culbertson
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Valeria C Culotta
- The Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
26
|
Kang S, Seo H, Moon HS, Kwon JH, Park YS, Yun CW. The Role of Zinc in Copper Homeostasis of Aspergillus fumigatus. Int J Mol Sci 2020; 21:ijms21207665. [PMID: 33081273 PMCID: PMC7593903 DOI: 10.3390/ijms21207665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Copper is an essential metal ion that performs many physiological functions in living organisms. Deletion of Afmac1, which is a copper-responsive transcriptional activator in A. fumigatus, results in a growth defect on aspergillus minimal medium (AMM). Interestingly, we found that zinc starvation suppressed the growth defect of the Δafmac1 strain on AMM. In addition, the growth defect of the Δafmac1 strain was recovered by copper supplementation or introduction of the CtrC gene into the Δafmac1 strain. However, chelation of copper by addition of BCS to AMM failed to recover the growth defect of the Δafmac1 strain. Through Northern blot analysis, we found that zinc starvation upregulated CtrC and CtrA2, which encode membrane copper transporters. Interestingly, we found that the conserved ZafA binding motif 5'-CAA(G)GGT-3' was present in the upstream region of CtrC and CtrA2 and that mutation of the binding motif led to failure of ZafA binding to the upstream region of CtrC and upregulation of CtrC expression under zinc starvation. Furthermore, the binding activity of ZafA to the upstream region of CtrC was inversely proportional to the zinc concentration, and copper inhibited the binding of ZafA to the upstream region of CtrC under a low zinc concentration. Taken together, these results suggest that ZafA upregulates copper metabolism by binding to the ZafA binding motif in the CtrC promoter region under low zinc concentration, thus regulating copper homeostasis. Furthermore, we found that copper and zinc interact in cells to maintain metal homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheol-Won Yun
- Correspondence: ; Tel.: +82-2-3290-3456; Fax: +82-2-927-9028
| |
Collapse
|
27
|
Harata K, Daimon H, Okuno T. Trade-Off Relation between Fungicide Sensitivity and Melanin Biosynthesis in Plant Pathogenic Fungi. iScience 2020; 23:101660. [PMID: 33117970 PMCID: PMC7582099 DOI: 10.1016/j.isci.2020.101660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/24/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Circumventing the emergence of fungicide-resistant strains is a crucial issue for robust disease management in agriculture. The agricultural fungicide ferimzone has been used for the control of rice diseases including rice blast. The emergence of ferimzone-resistant strains in rice fields has not been reported. Here, we identified the copper transport CoICT1 gene as the ferimzone sensitivity gene in Colletotrichum orbiculare and the rice blast fungus Magnaporthe oryzae. Genetic and cytological analyses showed that functional defects in the copper transport pathways, consisting of CoIct1 and P-type ATPase CoCcc2, led to the low sensitivity to ferimzone and the pathogenicity defect due to attenuated melanization in the appressorium. Importantly, the presence of CuSO4 induced high sensitivity to ferimzone even in the coict1 mutant. Our study shows that there is a trade-off relation between the sensitivity to ferimzone and fungal pathogenicity. Fungal copper transporters, Ict1 and Ccc2, are involved in ferimzone sensitivity Melanin biosynthesis requires a laccase activity instigated by Ict1-mediated copper A metal-binding site in Ict1 is crucial for ferimzone sensitivity and pathogenicity CuSO4 has an enhancing effect on ferimzone sensitivity
Collapse
Affiliation(s)
- Ken Harata
- Department of Plant Life Science, Ryukoku University, Seta, Shiga 520-2194, Japan
| | - Hiroyuki Daimon
- Graduate School of Agriculture, Ryukoku University, Seta, Shiga 520-2194, Japan
| | - Tetsuro Okuno
- Department of Plant Life Science, Ryukoku University, Seta, Shiga 520-2194, Japan
| |
Collapse
|
28
|
Petito G, de Curcio JS, Pereira M, Bailão AM, Paccez JD, Tristão GB, de Morais COB, de Souza MV, de Castro Moreira Santos A, Fontes W, Ricart CAO, de Almeida Soares CM. Metabolic Adaptation of Paracoccidioides brasiliensis in Response to in vitro Copper Deprivation. Front Microbiol 2020; 11:1834. [PMID: 32849434 PMCID: PMC7430155 DOI: 10.3389/fmicb.2020.01834] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Copper is an essential micronutrient for the performance of important biochemical processes such as respiration detoxification, and uptake of metals like iron. Studies have shown that copper deprivation is a strategy used by the host against pathogenic fungi such as Cryptoccocus neoformans and Candida albicans during growth and development of infections in the lungs and kidneys. Although there are some studies, little is known about the impact of copper deprivation in members of the Paracoccidioides genus. Therefore, using isobaric tag labeling (iTRAQ)-Based proteomic approach and LC-MS/MS, we analyzed the impact of in vitro copper deprivation in the metabolism of Paracoccidioides brasiliensis. One hundred and sixty-four (164) differentially abundant proteins were identified when yeast cells were deprived of copper, which affected cellular respiration and detoxification processes. Changes in cellular metabolism such as increased beta oxidation and cell wall remodeling were described.
Collapse
Affiliation(s)
- Guilherme Petito
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliana Santana de Curcio
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Gabriel Brum Tristão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Marcelo Valle de Souza
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | | | - Wagner Fontes
- Departamento de Biologia Celular, Instituto de Biologia, Universidade de Brasília, Brasília, Brazil
| | | | | |
Collapse
|
29
|
Furukawa T, Scheven MT, Misslinger M, Zhao C, Hoefgen S, Gsaller F, Lau J, Jöchl C, Donaldson I, Valiante V, Brakhage AA, Bromley MJ, Haas H, Hortschansky P. The fungal CCAAT-binding complex and HapX display highly variable but evolutionary conserved synergetic promoter-specific DNA recognition. Nucleic Acids Res 2020; 48:3567-3590. [PMID: 32086516 PMCID: PMC7144946 DOI: 10.1093/nar/gkaa109] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 12/13/2022] Open
Abstract
To sustain iron homeostasis, microorganisms have evolved fine-tuned mechanisms for uptake, storage and detoxification of the essential metal iron. In the human pathogen Aspergillus fumigatus, the fungal-specific bZIP-type transcription factor HapX coordinates adaption to both iron starvation and iron excess and is thereby crucial for virulence. Previous studies indicated that a HapX homodimer interacts with the CCAAT-binding complex (CBC) to cooperatively bind bipartite DNA motifs; however, the mode of HapX-DNA recognition had not been resolved. Here, combination of in vivo (genetics and ChIP-seq), in vitro (surface plasmon resonance) and phylogenetic analyses identified an astonishing plasticity of CBC:HapX:DNA interaction. DNA motifs recognized by the CBC:HapX protein complex comprise a bipartite DNA binding site 5′-CSAATN12RWT-3′ and an additional 5′-TKAN-3′ motif positioned 11–23 bp downstream of the CCAAT motif, i.e. occasionally overlapping the 3′-end of the bipartite binding site. Phylogenetic comparison taking advantage of 20 resolved Aspergillus species genomes revealed that DNA recognition by the CBC:HapX complex shows promoter-specific cross-species conservation rather than regulon-specific conservation. Moreover, we show that CBC:HapX interaction is absolutely required for all known functions of HapX. The plasticity of the CBC:HapX:DNA interaction permits fine tuning of CBC:HapX binding specificities that could support adaptation of pathogens to their host niches.
Collapse
Affiliation(s)
- Takanori Furukawa
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Mareike Thea Scheven
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena D-07745, Germany
| | - Matthias Misslinger
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria
| | - Can Zhao
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Sandra Hoefgen
- Leibniz Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena D-07745, Germany
| | - Fabio Gsaller
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria
| | - Jeffrey Lau
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Christoph Jöchl
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria
| | - Ian Donaldson
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Vito Valiante
- Leibniz Research Group Biobricks of Microbial Natural Product Syntheses, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena D-07745, Germany.,Friedrich Schiller University Jena, Jena D-07745, Germany
| | - Axel A Brakhage
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena D-07745, Germany.,Friedrich Schiller University Jena, Jena D-07745, Germany
| | - Michael J Bromley
- Manchester Fungal Infection Group, Institute of Inflammation and Repair, University of Manchester, Manchester M13 9PL, UK
| | - Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, A-6020, Austria
| | - Peter Hortschansky
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Jena D-07745, Germany
| |
Collapse
|
30
|
Liu X, Jiang Y, He D, Fang X, Xu J, Lee YW, Keller NP, Shi J. Copper Tolerance Mediated by FgAceA and FgCrpA in Fusarium graminearum. Front Microbiol 2020; 11:1392. [PMID: 32676062 PMCID: PMC7333239 DOI: 10.3389/fmicb.2020.01392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/29/2020] [Indexed: 01/01/2023] Open
Abstract
All organisms must secure essential trace elements (e.g., Cu) for survival and reproduction. However, excess trace element accumulation in cells is highly toxic. The maintenance of copper (Cu) homeostasis has been extensively studied in mammals, bacteria, and yeast but not in plant pathogens. In this study, we investigated the molecular mechanisms of copper tolerance in Fusarium graminearum, the important wheat head scab fungus. RNA-seq revealed induced expression of the P-type ATPase transporter FgCrpA and metallothionein (MT) FgCrdA after excess Cu treatment. Deletion of FgCrpA but not FgCrdA resulted in reduced tolerance to Cu toxicity. The “Cu fist” transcription factor FgAceA was involved in Cu detoxification through activation of FgCrpA. △FgAceA was more sensitive to copper toxicity than △FgCrpA and overexpression of FgCrpA restored copper tolerance in △FgAceA. FgAceA negatively regulated aurofusarin production and its biosynthetic gene expression. △FgCrpA and △FgAceA were reduced in virulence in flowering wheat heads and synthesized decreased amounts of the mycotoxin deoxynivalenol when challenged with excess Cu. Taken together, these results suggest that mediation of Cu tolerance in F. graminearum mainly relies on the Cu efflux pump and that FgAceA governs Cu detoxification through activation of FgCrpA.
Collapse
Affiliation(s)
- Xin Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yichen Jiang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,College of Food Science, Tibet Agriculture and Animal Husbandry University, Nyingchi, China
| | - Dan He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Fang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States.,Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology/Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs/Key Laboratory for Agro-product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs/Collaborative Innovation Center for Modern Grain Circulation and Safety/Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
31
|
Iron Metabolism, Pseudohypha Production, and Biofilm Formation through a Multicopper Oxidase in the Human-Pathogenic Fungus Candida parapsilosis. mSphere 2020; 5:5/3/e00227-20. [PMID: 32404511 PMCID: PMC7227767 DOI: 10.1128/msphere.00227-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
C. parapsilosis is the second or third most common opportunistic human-pathogenic Candida species, being responsible for severe fungal infections among immunocompromised patients, especially low-birth-weight infants (0 to 2 years of age). Among the major virulence factors that pathogenic fungi possess is the ability to compete with the host for essential micronutrients, including iron. Accessible iron is required for the maintenance of several metabolic processes. In order to obtain accessible iron from the host, pathogenic fungi have developed several iron acquisition and metabolic mechanisms. Although C. parapsilosis is a frequent cause of invasive candidiasis, little is known about what iron metabolic processes this fungus possesses that could contribute to the species’ virulent behavior. In this study, we identified the multicopper oxidase FET3 gene that regulates iron homeostasis maintenance and also plays important roles in the morphology of the fungus as well as in biofilm formation, two additional factors in fungal virulence. Among all the essential micronutrients, iron plays an important role in mammalian biology. It is also essential for pathogens infecting mammalian hosts, including bacteria, fungi, and protozoans. As the availability of accessible iron is limited within the mammalian host, several human-pathogenic fungal pathogens, such as Candida albicans, Cryptococcus neoformans, Candida glabrata, and Aspergillus fumigatus, have developed various iron uptake mechanisms. Although Candida parapsilosis is the second or third most common non-albicans Candida species associated with systemic and superficial Candida infections in immunocompromised patients, the mechanisms of iron uptake and homoeostasis remain unknown in this fungus. In the current report, we show that a homologue of the multicopper oxidase gene FET3 is present in the genome of C. parapsilosis (CPAR2_603600) and plays a significant role in iron acquisition. We found that homozygous deletion mutants of CPAR2_603600 showed defects under low-iron conditions and were also sensitive to various stressors. Our results also revealed that the levels of pseudohypha formation and biofilm formation were reduced in the null mutants compared to the wild type. This phenotypic defect could be partially rescued by supplementation with excess iron in the growth medium. The expression levels of the orthologues of various iron metabolism-related genes were also altered in the mutants compared to the parental strain. In conclusion, our report describes the role of CPAR2_603600 in iron homoeostasis maintenance as well as morphology and biofilm formation regulation in this pathogenic fungus. IMPORTANCEC. parapsilosis is the second or third most common opportunistic human-pathogenic Candida species, being responsible for severe fungal infections among immunocompromised patients, especially low-birth-weight infants (0 to 2 years of age). Among the major virulence factors that pathogenic fungi possess is the ability to compete with the host for essential micronutrients, including iron. Accessible iron is required for the maintenance of several metabolic processes. In order to obtain accessible iron from the host, pathogenic fungi have developed several iron acquisition and metabolic mechanisms. Although C. parapsilosis is a frequent cause of invasive candidiasis, little is known about what iron metabolic processes this fungus possesses that could contribute to the species’ virulent behavior. In this study, we identified the multicopper oxidase FET3 gene that regulates iron homeostasis maintenance and also plays important roles in the morphology of the fungus as well as in biofilm formation, two additional factors in fungal virulence.
Collapse
|
32
|
The Aspergillus fumigatus Phosphoproteome Reveals Roles of High-Osmolarity Glycerol Mitogen-Activated Protein Kinases in Promoting Cell Wall Damage and Caspofungin Tolerance. mBio 2020; 11:mBio.02962-19. [PMID: 32019798 PMCID: PMC7002344 DOI: 10.1128/mbio.02962-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aspergillus fumigatus is an opportunistic human pathogen causing allergic reactions or systemic infections, such as invasive pulmonary aspergillosis in immunocompromised patients. The mitogen-activated protein kinase (MAPK) signaling pathways are essential for fungal adaptation to the human host. Fungal cell survival, fungicide tolerance, and virulence are highly dependent on the organization, composition, and function of the cell wall. Upon cell wall stress, MAPKs phosphorylate multiple target proteins involved in the remodeling of the cell wall. Here, we investigate the global phosphoproteome of the ΔsakA and ΔmpkCA. fumigatus and high-osmolarity glycerol (HOG) pathway MAPK mutants upon cell wall damage. This showed the involvement of the HOG pathway and identified novel protein kinases and transcription factors, which were confirmed by fungal genetics to be involved in promoting tolerance of cell wall damage. Our results provide understanding of how fungal signal transduction networks modulate the cell wall. This may also lead to the discovery of new fungicide drug targets to impact fungal cell wall function, fungicide tolerance, and virulence. The filamentous fungus Aspergillus fumigatus can cause a distinct set of clinical disorders in humans. Invasive aspergillosis (IA) is the most common life-threatening fungal disease of immunocompromised humans. The mitogen-activated protein kinase (MAPK) signaling pathways are essential to the adaptation to the human host. Fungal cell survival is highly dependent on the organization, composition, and function of the cell wall. Here, an evaluation of the global A. fumigatus phosphoproteome under cell wall stress caused by the cell wall-damaging agent Congo red (CR) revealed 485 proteins potentially involved in the cell wall damage response. Comparative phosphoproteome analyses with the ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutant strains from the osmotic stress MAPK cascades identify their additional roles during the cell wall stress response. Our phosphoproteomics allowed the identification of novel kinases and transcription factors (TFs) involved in osmotic stress and in the cell wall integrity (CWI) pathway. Our global phosphoproteome network analysis showed an enrichment for protein kinases, RNA recognition motif domains, and the MAPK signaling pathway. In contrast to the wild-type strain, there is an overall decrease of differentially phosphorylated kinases and phosphatases in ΔsakA, ΔmpkC, and ΔsakA ΔmpkC mutants. We constructed phosphomutants for the phosphorylation sites of several proteins differentially phosphorylated in the wild-type and mutant strains. For all the phosphomutants, there is an increase in the sensitivity to cell wall-damaging agents and a reduction in the MpkA phosphorylation upon CR stress, suggesting these phosphosites could be important for the MpkA modulation and CWI pathway regulation.
Collapse
|
33
|
Global Transcriptomic Analysis of the Candida albicans Response to Treatment with a Novel Inhibitor of Filamentation. mSphere 2019; 4:4/5/e00620-19. [PMID: 31511371 PMCID: PMC6739497 DOI: 10.1128/msphere.00620-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections. The opportunistic pathogenic fungus Candida albicans can cause devastating infections in immunocompromised patients. Its ability to undergo a morphogenetic transition from yeast to filamentous forms allows it to penetrate tissues and damage tissues, and the expression of genes associated with a number of pathogenetic mechanisms is also coordinately regulated with the yeast-to-hypha conversion. Therefore, it is widely considered that filamentation represents one of the main virulence factors of C. albicans. We have previously identified N-[3-(allyloxy)-phenyl]-4-methoxybenzamide (compound 9029936) as the lead compound in a series of small-molecule inhibitors of C. albicans filamentation and characterized its activity both in vitro and in vivo. This compound appears to be a promising candidate for the development of alternative antivirulence strategies for the treatment of C. albicans infections. In this study, we performed RNA sequencing analysis of samples obtained from C. albicans cells grown under filament-inducing conditions in the presence or absence of this compound. Overall, treatment with compound 9029936 resulted in 618 upregulated and 702 downregulated genes. Not surprisingly, some of the most downregulated genes included well-characterized genes associated with filamentation and virulence such as SAP5, ECE1 (candidalysin), and ALS3, as well as genes that impact metal chelation and utilization. Gene ontology analysis revealed an overrepresentation of cell adhesion, iron transport, filamentation, biofilm formation, and pathogenesis processes among the genes downregulated during treatment with this leading compound. Interestingly, the top upregulated genes suggested an enhancement of vesicular transport pathways, particularly those involving SNARE interactions. IMPORTANCE These results from whole-genome transcriptional profiling provide further insights into the biological activity and mode of action of a small-molecule inhibitor of C. albicans filamentation. This information will assist in the development of novel antivirulence strategies against C. albicans infections.
Collapse
|
34
|
Du W, Li H, Tian B, Sai S, Gao Y, Lan T, Meng Y, Ding C. Development of nose-to-brain delivery of ketoconazole by nanostructured lipid carriers against cryptococcal meningoencephalitis in mice. Colloids Surf B Biointerfaces 2019; 183:110446. [PMID: 31465938 DOI: 10.1016/j.colsurfb.2019.110446] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/25/2019] [Accepted: 08/18/2019] [Indexed: 11/26/2022]
Abstract
Cryptococcus neoformans-mediated meningoencephalitis is a critical infectious disorder of the human central nervous system. However, efficient treatment for the disease is limited due to the poor penetration across the blood brain barrier (BBB). Here, we develop a nose-to-brain drug delivery system utilizing nanostructured lipid carriers (NLCs). We demonstrated that fluorescent-dye-loaded NLCs efficiently uptake into the cytoplasm of encapsulated C. neoformans cells. In comparison with current antifungal drugs, the ketoconazole (keto)-NLCs show significantly increased antifungal activity against C. neoformans in vivo under various growth conditions. The NLCs show enhanced tissue colonization properties. Importantly, using animal imaging analyses, NLCs are able to enter brain tissues via the olfactory bulb region by intranasal administration, bypassing the BBB. In addition, NLCs maintain prolonged residence in tissues. In mouse brain tissue, keto-NLCs showed significantly enhanced antifungal activity when administered intranasally, drastically dampening the C. neoformans burden. Taken together, NLCs not only improve the ketoconazole penetration efficiency against capsulated C. neoformans cells, but also boost the efficacy of antifungal drugs. Most importantly, keto-NLCs significantly contribute to the treatment of cryptococcal meningoencephalitis in mice by bypassing the BBB via the olfactory system.
Collapse
Affiliation(s)
- Wei Du
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Hailong Li
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Baocheng Tian
- School of Medicine, Binzhou Medical University, Yantai, China
| | - Sixiang Sai
- School of Medicine, Binzhou Medical University, Yantai, China
| | - Yiru Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Tian Lan
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Yang Meng
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China
| | - Chen Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110015, China.
| |
Collapse
|
35
|
Simm C, May RC. Zinc and Iron Homeostasis: Target-Based Drug Screening as New Route for Antifungal Drug Development. Front Cell Infect Microbiol 2019; 9:181. [PMID: 31192169 PMCID: PMC6548825 DOI: 10.3389/fcimb.2019.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The incidence of fungal diseases is on the rise and the number of fatalities is still unacceptably high. While advances into antifungal drug development have been made there remains an urgent need to develop novel antifungal agents targeting as-yet unexploited pathways, such as metal ion homeostasis. Here we report such an approach by developing a metal sensor screen in the opportunistic human fungal pathogen Candida albicans. Using this reporter strain, we screened a library of 1,200 compounds and discovered several active compounds not previously described as chemical entities with antifungal properties. Two of these, artemisinin and pyrvinium pamoate, have been further characterized and their interference with metal homeostasis and potential as novel antifungal compounds validated. Lastly, we demonstrate that the same strain can be used to report on intracellular conditions within host phagocytes, paving the way toward the development of novel screening platforms that could identify compounds with the potential to perturb ion homeostasis of the pathogen specifically within host cells.
Collapse
Affiliation(s)
- Claudia Simm
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom.,Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| | - Robin C May
- School of Biosciences, Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
36
|
Antsotegi-Uskola M, Markina-Iñarrairaegui A, Ugalde U. New insights into copper homeostasis in filamentous fungi. Int Microbiol 2019; 23:65-73. [PMID: 31093811 PMCID: PMC6981102 DOI: 10.1007/s10123-019-00081-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 01/06/2023]
Abstract
Copper is a metal ion that is required as a micronutrient for growth and proliferation. However, copper accumulation generates toxicity by multiple mechanisms, potentially leading to cell death. Due to its toxic nature at high concentrations, different chemical variants of copper have been extensively used as antifungal agents in agriculture and medicine. Most studies on copper homeostasis have been carried out in bacteria, yeast, and mammalian organisms. However, knowledge on filamentous fungi is less well documented. This review summarizes the knowledge gathered in the last few years about copper homeostasis in the filamentous fungi Aspergillus fumigatus and Aspergillus nidulans: The mechanism of action of copper, the uptake and detoxification systems, their regulation at the transcriptional level, and the role of copper homeostasis in fungal pathogenicity are presented.
Collapse
Affiliation(s)
- Martzel Antsotegi-Uskola
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| | - Ane Markina-Iñarrairaegui
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| | - Unai Ugalde
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain.
| |
Collapse
|
37
|
Connecting iron regulation and mitochondrial function in Cryptococcus neoformans. Curr Opin Microbiol 2019; 52:7-13. [PMID: 31085406 DOI: 10.1016/j.mib.2019.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/05/2019] [Indexed: 12/13/2022]
Abstract
Iron acquisition is essential for the proliferation of microorganisms, and human pathogens such as the fungus Cryptococcus neoformans must use sophisticated uptake mechanisms to overcome host iron sequestration. Iron is of particular interest for C. neoformans because its availability is an important cue for the elaboration of virulence factors. In fungi, extracellular iron is taken up through high affinity, low affinity, siderophore-mediated, and heme uptake pathways, and the details of these mechanisms are under active investigation in C. neoformans. Following uptake, iron is transported to intracellular organelles including mitochondria where it is used in heme biosynthesis and the synthesis of iron-sulfur (Fe-S) cluster precursors. One Fe-S cluster binding protein of note is the monothiol glutaredoxin Grx4 which has emerged as a master regulator of iron sensing in C. neoformans and other fungi through its influence on the expression of proteins for iron uptake or use. The activity of Grx4 likely occurs through interactions with Fe-S clusters and transcription factors known to control expression of the iron-related functions. Although the extent to which Grx4 controls the iron regulatory network is still being investigated in C. neoformans, it is remarkable that it also influences the expression of many genes encoding mitochondrial functions. Coupled with recent studies linking mitochondrial morphology and electron transport to virulence factor elaboration, there is an emerging appreciation of mitochondria as central players in cryptococcal disease.
Collapse
|
38
|
Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. Int J Mol Sci 2019; 20:ijms20081980. [PMID: 31018527 PMCID: PMC6514546 DOI: 10.3390/ijms20081980] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
Copper is an essential micronutrient for the opportunistic human pathogen, Aspergillus fumigatus. Maintaining copper homeostasis is critical for survival and pathogenesis. Copper-responsive transcription factors, AceA and MacA, coordinate a complex network responsible for responding to copper in the environment and determining which response is necessary to maintain homeostasis. For example, A. fumigatus uses copper exporters to mitigate the toxic effects of copper while simultaneously encoding copper importers and small molecules to ensure proper supply of the metal for copper-dependent processes such a nitrogen acquisition and respiration. Small molecules called isocyanides recently found to be produced by A. fumigatus may bind copper and partake in copper homeostasis similarly to isocyanide copper chelators in bacteria. Considering that the host uses copper as a microbial toxin and copper availability fluctuates in various environmental niches, understanding how A. fumigatus maintains copper homeostasis will give insights into mechanisms that facilitate the development of invasive aspergillosis and its survival in nature.
Collapse
|
39
|
Huang J, Ma Z, Zhong G, Sheppard DC, Lu L, Zhang S. The mitochondrial thiamine pyrophosphate transporter TptA promotes adaptation to low iron conditions and virulence in fungal pathogen Aspergillus fumigatus. Virulence 2019; 10:234-247. [PMID: 30880633 PMCID: PMC6527022 DOI: 10.1080/21505594.2019.1596505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Aspergillus fumigatus is the most prevalent airborne fungal pathogen that causes invasive fungal infections in immunosuppressed individuals. Adaptation to iron limited conditions is crucial for A. fumigatus virulence. To identify novel genes that play roles in adaptation to low iron conditions we performed an insertional mutagenesis screen in A. fumigatus. Using this approach, we identified the tptA gene in A. fumigatus, which shares homology with the Saccharomyces cerevisiae thiamine pyrophosphate (ThPP) transporter encoding gene tpc1. Heterologous expression of tpc1 in the tptA deletion mutant completely restored the ThPP auxotrophy phenotype, suggesting that Tpc1 and TptA are functional orthologues. Importantly, TptA was required for adaptation to low iron conditions in A. fumigatus. The ΔtptA mutant had decreased resistance to the iron chelator bathophenanthroline disulfonate (BPS) with severe growth defects. Moreover, loss of tptA decreased the expression of hapX, which is a major transcription factor indispensable for adaptation to iron starvation in A. fumigatus. Overexpression of hapX in the ΔtptA strain greatly rescued the growth defect and siderophore production by A. fumigatus in iron-depleted conditions. Mutagenesis experiments demonstrated that the conserved residues related to ThPP uptake in TptA were also required for low iron adaptation. Furthermore, TptA-mediated adaptation to low iron conditions was found to be dependent on carbon sources. Finally, loss of tptA resulted in the attenuation of virulence in a murine model of aspergillosis. Taken together, this study demonstrated that the mitochondrial ThPP transporter TptA promotes low iron adaptation and virulence in A. fumigatus.
Collapse
Affiliation(s)
- Jingjing Huang
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Zhihua Ma
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Guowei Zhong
- b Department of Hygiene Analysis and Detection, School of Public Health , Nanjing Medical University , Nanjing , China
| | - Donald C Sheppard
- c Departments of Medicine, Microbiology & Immunology , McGill University , Montréal , QC , Canada.,d Infectious Diseases and Immunity in Global Health Program , Research Institute of the McGill University Health Centre , Montreal , QC , Canada
| | - Ling Lu
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| | - Shizhu Zhang
- a Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences , Nanjing Normal University , Nanjing , China
| |
Collapse
|
40
|
Yang K, Shadkchan Y, Tannous J, Landero Figueroa JA, Wiemann P, Osherov N, Wang S, Keller NP. Contribution of ATPase copper transporters in animal but not plant virulence of the crossover pathogen Aspergillus flavus. Virulence 2019; 9:1273-1286. [PMID: 30027796 PMCID: PMC6177249 DOI: 10.1080/21505594.2018.1496774] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The ubiquitous fungus Aspergillus flavus is notorious for contaminating many important crops and food-stuffs with the carcinogenic mycotoxin, aflatoxin. This fungus is also the second most frequent Aspergillus pathogen after A. fumigatus infecting immunosuppressed patients. In many human fungal pathogens including A. fumigatus, the ability to defend from toxic levels of copper (Cu) is essential in pathogenesis. In A. fumigatus, the Cu-fist DNA binding protein, AceA, and the Cu ATPase transporter, CrpA, play critical roles in Cu defense. Here, we show that A. flavus tolerates higher concentrations of Cu than A. fumigatus and other Aspergillus spp. associated with the presence of two homologs of A. fumigatus CrpA termed CrpA and CrpB. Both crpA and crpB are transcriptionally induced by increasing Cu concentrations via AceA activity. Deletion of crpA or crpB alone did not alter high Cu tolerance, suggesting they are redundant. Deletion of both genes resulted in extreme Cu sensitivity that was greater than that following deletion of the regulatory transcription factor aceA. The ΔcrpAΔcrpB and ΔaceA strains were also sensitive to ROI stress. Compared to wild type, these mutants were impaired in the ability to colonize maize seed treated with Cu fungicide but showed no difference in virulence on non-treated seed. A mouse model of invasive aspergillosis showed ΔcrpAΔcrpB and to a lesser degree ΔaceA to be significantly reduced in virulence, following the greater sensitivity of ΔcrpAΔcrpB to Cu than ΔaceA.
Collapse
Affiliation(s)
- Kunlong Yang
- a Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , China.,b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| | - Yana Shadkchan
- c Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Joanna Tannous
- b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| | - Julio A Landero Figueroa
- d Agilent Metallomics Center, College of Arts & Science, Chemistry Department , University of Cincinnati , Cincinnati , OH , USA
| | - Philipp Wiemann
- b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| | - Nir Osherov
- c Aspergillus and Antifungal Research Laboratory, Department of Clinical Microbiology and Immunology, Sackler School of Medicine , Tel Aviv University , Tel Aviv , Israel
| | - Shihua Wang
- a Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences , Fujian Agriculture and Forestry University , Fuzhou , China
| | - Nancy P Keller
- b Department of Medical Microbiology and Immunology , University of Wisconsin , Madison , WI , USA
| |
Collapse
|
41
|
Molecular Characteristics of the Conserved Aspergillus nidulans Transcription Factor Mac1 and Its Functions in Response to Copper Starvation. mSphere 2019; 4:4/1/e00670-18. [PMID: 30700512 PMCID: PMC6354809 DOI: 10.1128/msphere.00670-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Copper is an essential cofactor of enzymes during a variety of biochemical processes. Therefore, Cu acquisition plays critical roles in cell survival and proliferation, especially during Cu starvation. Knowledge of the key motif(s) by which the low-Cu-responsive transcription factor Mac1 senses Cu is important for understanding how Cu uptake is controlled. Findings in this study demonstrated that the Cu fist motif, but not Cys-rich motifs, is essential for Mac1-mediated Cu uptake in Aspergillus. In addition, Cu transporters CtrA2 and CtrC are both required for Mac1-mediated Cu uptake during Cu starvation in A. nidulans, indicating that species-specific machinery exists for Cu acquisition in Aspergillus. Copper (Cu) is an essential trace element in all organisms, and Cu acquisition during periods of starvation is important for cell survival and proliferation. Although the Cu starvation-responsive transcription factor Mac1 as well as its targeted Cu transporters have been identified in Aspergillus fumigatus, the molecular mechanisms of Mac1-mediated Cu acquisition have not yet been investigated in Aspergillus. We demonstrated that Mac1 and its regulated Cu transporters are required for growth and conidiophore development during Cu starvation in Aspergillus nidulans. Moreover, A. nidulans Mac1 (AnMac1) showed highly functional conservation with the A. fumigatus homolog but not with homologs in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Molecular characterization of Mac1 in A. nidulans demonstrated that the “Cu fist” motif (i.e., residues 1 through 40) harboring Cys, RGHR, and GRP residues is required for the Mac1-mediated low-Cu response but not the Cys-rich motifs REP-I and REP-II. Notably, overexpression of either the CtrA2 Cu transporter or the CtrC Cu transporter individually was unable to functionally rescue the defects in the AnMac1 deletion strain, implying that Cu uptake might require both CtrA2 and CtrC during Cu starvation, which is different from results seen with A. fumigatus. Findings in this study further suggest that the conserved Mac1-mediated Cu uptake machinery in A. fumigatus and A. nidulans is also species specific. IMPORTANCE Copper is an essential cofactor of enzymes during a variety of biochemical processes. Therefore, Cu acquisition plays critical roles in cell survival and proliferation, especially during Cu starvation. Knowledge of the key motif(s) by which the low-Cu-responsive transcription factor Mac1 senses Cu is important for understanding how Cu uptake is controlled. Findings in this study demonstrated that the Cu fist motif, but not Cys-rich motifs, is essential for Mac1-mediated Cu uptake in Aspergillus. In addition, Cu transporters CtrA2 and CtrC are both required for Mac1-mediated Cu uptake during Cu starvation in A. nidulans, indicating that species-specific machinery exists for Cu acquisition in Aspergillus.
Collapse
|
42
|
Dias M, Gomes de Lacerda JTJ, Perdigão Cota de Almeida S, de Andrade LM, Oller do Nascimento CA, Rozas EE, Mendes MA. Response mechanism of mine-isolated fungus Aspergillus niger IOC 4687 to copper stress determined by proteomics. Metallomics 2019; 11:1558-1566. [DOI: 10.1039/c9mt00137a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomic analysis of the fungus Aspergillus niger showed that its capacity to absorb metals was boosted by physiological modification under metal stress conditions.
Collapse
Affiliation(s)
- Meriellen Dias
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| | | | | | - Lidiane Maria de Andrade
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| | | | - Enrique Eduardo Rozas
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| | - Maria Anita Mendes
- Dempster MS Lab – Chemical Engineering Department of Polytechnic School of University of São Paulo
- São Paulo-SP
- Brazil
| |
Collapse
|
43
|
Rosowski EE, Knox BP, Archambault LS, Huttenlocher A, Keller NP, Wheeler RT, Davis JM. The Zebrafish as a Model Host for Invasive Fungal Infections. J Fungi (Basel) 2018; 4:jof4040136. [PMID: 30551557 PMCID: PMC6308935 DOI: 10.3390/jof4040136] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/14/2022] Open
Abstract
The zebrafish has become a widely accepted model host for studies of infectious disease, including fungal infections. The species is genetically tractable, and the larvae are transparent and amenable to prolonged in vivo imaging and small molecule screening. The aim of this review is to provide a thorough introduction into the published studies of fungal infection in the zebrafish and the specific ways in which this model has benefited the field. In doing so, we hope to provide potential new zebrafish researchers with a snapshot of the current toolbox and prior results, while illustrating how the model has been used well and where the unfulfilled potential of this model can be found.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
| | - Linda S Archambault
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53792, USA.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53716, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Robert T Wheeler
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA.
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| | - J Muse Davis
- Stead Family Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
44
|
Identification of Antifungal Targets Based on Computer Modeling. J Fungi (Basel) 2018; 4:jof4030081. [PMID: 29973534 PMCID: PMC6162656 DOI: 10.3390/jof4030081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/24/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
Aspergillus fumigatus is a saprophytic, cosmopolitan fungus that attacks patients with a weak immune system. A rational solution against fungal infection aims to manipulate fungal metabolism or to block enzymes essential for Aspergillus survival. Here we discuss and compare different bioinformatics approaches to analyze possible targeting strategies on fungal-unique pathways. For instance, phylogenetic analysis reveals fungal targets, while domain analysis allows us to spot minor differences in protein composition between the host and fungi. Moreover, protein networks between host and fungi can be systematically compared by looking at orthologs and exploiting information from host⁻pathogen interaction databases. Further data—such as knowledge of a three-dimensional structure, gene expression data, or information from calculated metabolic fluxes—refine the search and rapidly put a focus on the best targets for antimycotics. We analyzed several of the best targets for application to structure-based drug design. Finally, we discuss general advantages and limitations in identification of unique fungal pathways and protein targets when applying bioinformatics tools.
Collapse
|
45
|
Poyntner C, Mirastschijski U, Sterflinger K, Tafer H. Transcriptome Study of an Exophiala dermatitidis PKS1 Mutant on an ex Vivo Skin Model: Is Melanin Important for Infection? Front Microbiol 2018; 9:1457. [PMID: 30018609 PMCID: PMC6037837 DOI: 10.3389/fmicb.2018.01457] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
The black yeast Exophiala dermatitidis is a polyextremophilic human pathogen, especially known for growing in man-made extreme environments. Reported diseases caused by this fungus range from benign cutaneous to systemic infections with 40% fatality rate. While the number of cases steadily increases in both immunocompromised and immunocompetent people, detailed knowledge about infection mechanisms, virulence factors and host response are scarce. To understand the impact of the putative virulence factor melanin on the infection, we generated a polyketide synthase (PKS1) mutant using CRISPR/Cas9 resulting in a melanin deficient strain. The mutant and the wild-type fungus were inoculated onto skin explants using an ex vivo skin organ culture model to simulate in vivo cutaneous infection. The difference between the mutant and wild-type transcriptional landscapes, as assessed by whole RNA-sequencing, were small and were observed in pathways related to the copper homeostasis, cell wall genes and proteases. Seven days after inoculation the wild-type fungus completely colonized the stratum corneum, invaded the skin and infected keratinocytes while the mutant had only partially covered the skin and showed no invasiveness. Our results suggest that melanin dramatically improves the invasiveness and virulence of E. dermatitidis during the first days of the skin infection.
Collapse
Affiliation(s)
- Caroline Poyntner
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Ursula Mirastschijski
- Wound Repair Unit, Center for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany.,Division of Plastic and Aesthetic Surgery, Rotkreuzklinikum München, Munich, Germany
| | - Katja Sterflinger
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hakim Tafer
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
46
|
Cai Z, Du W, Zhang Z, Guan L, Zeng Q, Chai Y, Dai C, Lu L. TheAspergillus fumigatustranscription factor AceA is involved not only in Cu but also in Zn detoxification through regulating transporters CrpA and ZrcA. Cell Microbiol 2018; 20:e12864. [DOI: 10.1111/cmi.12864] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 05/08/2018] [Indexed: 01/03/2023]
Affiliation(s)
- Zhendong Cai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Wenlong Du
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Zheng Zhang
- Department of Dermatology, Jinling Hospital, School of Medicine; Nanjing University; Nanjing China
| | - Luyu Guan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Qiuqiong Zeng
- Department of Dermatology, Jinling Hospital, School of Medicine; Nanjing University; Nanjing China
| | - Yanfei Chai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Chuanchao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology; College of Life Sciences; Nanjing Normal University; Nanjing China
| |
Collapse
|
47
|
Bakti F, Sasse C, Heinekamp T, Pócsi I, Braus GH. Heavy Metal-Induced Expression of PcaA Provides Cadmium Tolerance to Aspergillus fumigatus and Supports Its Virulence in the Galleria mellonella Model. Front Microbiol 2018; 9:744. [PMID: 29706948 PMCID: PMC5909057 DOI: 10.3389/fmicb.2018.00744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/29/2018] [Indexed: 11/23/2022] Open
Abstract
Most of the metal transporters in Aspergillus fumigatus are yet uncharacterized. Their role in fungal metabolism and virulence remains unclear. This paper describes the novel PIB-type cation ATPase PcaA, which links metal homeostasis and heavy metal tolerance in the opportunistic human pathogen A. fumigatus. The protein possesses conserved ATPase motif and shares 51% amino acid sequence identity with the Saccharomyces cerevisiae cadmium exporter Pca1p. A pcaA deletion, an overexpression and a gfp-pcaA complementation strain of A. fumigatus were constructed and their heavy metal susceptibilities were studied. The pcaA knock out strain showed drastically decreased cadmium tolerance, however, its growth was not affected by the exposure to high concentrations of copper, iron, zinc, or silver ions. Although the lack of PcaA had no effect on copper adaption, we demonstrated that not only cadmium but also copper ions are able to induce the transcription of pcaA in A. fumigatus wild type Af293. Similarly, cadmium and copper ions could induce the copper exporting ATPase crpA. These data imply a general response on the transcriptomic level to heavy metals in A. fumigatus through the induction of detoxification systems. Confocal microscopy of the gfp-pcaA complementation strain expressing functional GFP-PcaA supports the predicted membrane localization of PcaA. The GFP-PcaA fusion protein is located in the plasma membrane of A. fumigatus in the presence of cadmium ions. Virulence assays support a function of PcaA for virulence of A. fumigatus in the Galleria mellonella wax moth larvae model, which might be linked to the elimination of reactive oxygen species.
Collapse
Affiliation(s)
- Fruzsina Bakti
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany.,Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Christoph Sasse
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| | - Thorsten Heinekamp
- Department of Molecular and Applied Microbiology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute, Jena, Germany
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, Debrecen, Hungary
| | - Gerhard H Braus
- Institute for Microbiology and Genetics, Department of Molecular Microbiology and Genetics, Goettingen Center for Molecular Biosciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
48
|
Manfiolli AO, Dos Reis TF, de Assis LJ, de Castro PA, Silva LP, Hori JI, Walker LA, Munro CA, Rajendran R, Ramage G, Goldman GH. Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surf 2018; 1:43-56. [PMID: 32743127 PMCID: PMC7389341 DOI: 10.1016/j.tcsw.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/08/2018] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
The main characteristic of biofilm formation is extracellular matrix (ECM) production. The cells within the biofilm are surrounded by ECM which provides structural integrity and protection. During an infection, this protection is mainly against cells of the immune system and antifungal drugs. A. fumigatus forms biofilms during static growth on a solid substratum and in chronic aspergillosis infections. It is important to understand how, and which, A. fumigatus signal transduction pathways are important for the adhesion and biofilm formation in a host during infection. Here we investigated the role of MAP kinases and protein phosphatases in biofilm formation. The loss of the MAP kinases MpkA, MpkC and SakA had an impact on the cell surface and the ECM during biofilm formation and reduced the adherence of A. fumigatus to polystyrene and fibronectin-coated plates. The phosphatase null mutants ΔsitA and ΔptcB, involved in regulation of MpkA and SakA phosphorylation, influenced cell wall carbohydrate exposure. Moreover, we characterized the A. fumigatus protein phosphatase PphA. The ΔpphA strain was more sensitive to cell wall-damaging agents, had increased β-(1,3)-glucan and reduced chitin, decreased conidia phagocytosis by Dictyostelium discoideum and reduced adhesion and biofilm formation. Finally, ΔpphA strain was avirulent in a murine model of invasive pulmonary aspergillosis and increased the released of tumor necrosis factor alpha (TNF-α) from bone marrow derived macrophages (BMDMs). These results show that MAP kinases and phosphatases play an important role in signaling pathways that regulate the composition of the cell wall, extracellular matrix production as well as adhesion and biofilm formation in A. fumigatus.
Collapse
Affiliation(s)
- Adriana Oliveira Manfiolli
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Leandro José de Assis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Patrícia Alves de Castro
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Lilian Pereira Silva
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana I Hori
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Louise A Walker
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Carol A Munro
- School of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Ranjith Rajendran
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gordon Ramage
- Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, 378 Sauchiehall Street, Glasgow G2 3JZ, UK
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
49
|
Wiemann P, Perevitsky A, Lim FY, Shadkchan Y, Knox BP, Landero Figueora JA, Choera T, Niu M, Steinberger AJ, Wüthrich M, Idol RA, Klein BS, Dinauer MC, Huttenlocher A, Osherov N, Keller NP. Aspergillus fumigatus Copper Export Machinery and Reactive Oxygen Intermediate Defense Counter Host Copper-Mediated Oxidative Antimicrobial Offense. Cell Rep 2018; 19:1008-1021. [PMID: 28467895 DOI: 10.1016/j.celrep.2017.04.019] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/13/2017] [Accepted: 04/06/2017] [Indexed: 12/23/2022] Open
Abstract
The Fenton-chemistry-generating properties of copper ions are considered a potent phagolysosome defense against pathogenic microbes, yet our understanding of underlying host/microbe dynamics remains unclear. We address this issue in invasive aspergillosis and demonstrate that host and fungal responses inextricably connect copper and reactive oxygen intermediate (ROI) mechanisms. Loss of the copper-binding transcription factor AceA yields an Aspergillus fumigatus strain displaying increased sensitivity to copper and ROI in vitro, increased intracellular copper concentrations, decreased survival in challenge with murine alveolar macrophages (AMΦs), and reduced virulence in a non-neutropenic murine model. ΔaceA survival is remediated by dampening of host ROI (chemically or genetically) or enhancement of copper-exporting activity (CrpA) in A. fumigatus. Our study exposes a complex host/microbe multifactorial interplay that highlights the importance of host immune status and reveals key targetable A. fumigatus counter-defenses.
Collapse
Affiliation(s)
- Philipp Wiemann
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Adi Perevitsky
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Fang Yun Lim
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Yana Shadkchan
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Benjamin P Knox
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Julio A Landero Figueora
- University of Cincinnati/Agilent Technologies Metallomics Center of the Americas, Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Tsokyi Choera
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | - Mengyao Niu
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | | | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Rachel A Idol
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Bruce S Klein
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA; Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Mary C Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA
| | - Nir Osherov
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
50
|
Jiang P, Wu X, Wang X, Huang W, Feng Q. NEAT1 upregulates EGCG-induced CTR1 to enhance cisplatin sensitivity in lung cancer cells. Oncotarget 2017; 7:43337-43351. [PMID: 27270317 PMCID: PMC5190027 DOI: 10.18632/oncotarget.9712] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/12/2016] [Indexed: 01/17/2023] Open
Abstract
Platinum-based drugs are the firstline of treatment for non-small cell lung cancer (NSCLC), but resistance to these drugs is a major obstacle to effective chemotherapy. Our previous study revealed that the green tea polyphenol, EGCG, induced cisplatin transporter CTR1 (copper transporter 1) and enhanced cisplatin sensitivity in ovarian cancer. In this study, we found that EGCG upregulated CTR1 and increased platinum accumulation in NSCLC (A549, H460 and H1299) cells, cDDP-resistant A549 cells and a nude mouse xenograft model. Cisplatin-induced inhibition of cell growth was enhanced by EGCG treatment in vitro and in vivo. MicroRNA hsa-mir-98-5p appears to suppress CTR1 gene expression, while long non-coding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1) appears to enhance it. Bioinformatics analysis showed that hsa-mir-98-5p has specific complementary binding sites for NEAT1. In addition, hsa-mir-98-5p was predicted to be a putative CTR1 target. NEAT1 may act as a competing endogenous lncRNA to upregulate EGCG-induced CTR1 by sponging hsa-mir-98-5p in NSCLC. Our findings reveal a novel mechanism how NEAT1 upregulates EGCG-induced CTR1 and enhances cisplatin sensitivity in vitro and in vivo, and suggest EGCG could serve as an effective adjuvant chemotherapeutic in lung cancer treatment.
Collapse
Affiliation(s)
- Pan Jiang
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiaoyue Wu
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xuemin Wang
- Beijing Research Institute for Nutritional Resources, Beijing, China
| | - Wenbin Huang
- Department of Pathology, Affiliated Nanjing First Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Feng
- Department of Nutrition and Food Hygiene, Key Laboratory of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|