1
|
Anaganti N, Ujaoney AK, Padwal MK, Basu B. Biochemical characterization and functional insights into DNA substrate-specific activities of a unique radiation-inducible DR1143 protein from Deinococcus radiodurans. Int J Biol Macromol 2025; 310:143214. [PMID: 40250669 DOI: 10.1016/j.ijbiomac.2025.143214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 04/20/2025]
Abstract
The highly radiation-resistant bacterium Deinococcus radiodurans R1 employs various pathways to respond to radiation and other genotoxic stresses, involving the upregulation of several genes. Despite decades of study, the functions of many D. radiodurans genes remain unknown. Among them, the DR1143 gene has been reported transiently induced during the early phase of post-irradiation recovery. The DR1143 protein has been detected in the interactomes of key DNA repair proteins, including Ssb, RecA, and DdrB, suggesting its involvement in DNA repair processes. Our study revealed that DR1143 exhibits structural similarity to structural maintenance proteins (SMC) and exists as a hexamer in its soluble form. The protein showed a preference for binding longer DNA molecules (≥2 kb) and interacted differentially with various DNA forms. It bound single-stranded DNA (ssDNA) with high affinity, compacted, and protected it, indicating a potential role in safeguarding ssDNA during repair. DR1143 also created a single-strand nick in circular double-stranded DNA (dsDNA) while simply binding to linear dsDNA. Its nickase activity likely facilitates DNA end resection and relaxation, a critical step in repair processes. Localization studies using GFP-tagged DR1143 showed its accumulation at cell poles in both Escherichia coli and D. radiodurans, hinting at a functional role in specific subcellular compartments.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
2
|
Wang L, Tan YS, Chen K, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Global regulator IrrE on stress tolerance: a review. Crit Rev Biotechnol 2024; 44:1439-1459. [PMID: 38246753 DOI: 10.1080/07388551.2023.2299766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 01/23/2024]
Abstract
Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.
Collapse
Affiliation(s)
- Li Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Kai Chen
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| |
Collapse
|
3
|
Hernández MA, Ledesma AE, Moncalián G, Alvarez HM. MLDSR, the transcriptional regulator of the major lipid droplets protein MLDS, is controlled by long-chain fatty acids and contributes to the lipid-accumulating phenotype in oleaginous Rhodococcus strains. FEBS J 2024; 291:1457-1482. [PMID: 38135896 DOI: 10.1111/febs.17043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Microorganism lipid droplet small regulator (MLDSR) is a transcriptional regulator of the major lipid droplet (LD)-associated protein MLDS in Rhodococcus jostii RHA1 and Rhodococcus opacus PD630. In this study, we investigated the role of MLDSR on lipid metabolism and triacylglycerol (TAG) accumulation in R. jostii RHA1 at physiological and molecular levels. MLDSR gene deletion promoted a significant decrease of TAG accumulation, whereas inhibition of de novo fatty acid biosynthesis by the addition of cerulenin significantly repressed the expression of the mldsr-mlds cluster under nitrogen-limiting conditions. In vitro and in vivo approaches revealed that MLDSR-DNA binding is inhibited by fatty acids and acyl-CoA residues through changes in the oligomeric or conformational state of the protein. RNAseq analysis indicated that MLDSR not only controls the expression of its own gene cluster but also of several genes involved in central, lipid, and redox metabolism, among others. We also identified putative MLDSR-binding sites on the upstream regions of genes coding for lipid catabolic enzymes and validated them by EMSA assays. Overexpression of mldsr gene under nitrogen-rich conditions promoted an increase of TAG accumulation, and further cell lysis with TAG release to the culture medium. Our results suggested that MLDSR is a fatty acid-responsive regulator that plays a dual role in cells by repression or activation of several metabolic genes in R. jostii RHA1. MLDSR seems to play an important role in the fine-tuning regulation of TAG accumulation, LD formation, and cellular lipid homeostasis, contributing to the oleaginous phenotype of R. jostii RHA1 and R. opacus PD630.
Collapse
Affiliation(s)
- Martín A Hernández
- INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| | - Ana E Ledesma
- CIBAAL (Centro de Investigación en Biofísica Aplicada y Alimentos), Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Santiago del Estero, Argentina
| | - Gabriel Moncalián
- Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, Santander, Spain
| | - Héctor M Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia), Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, Comodoro Rivadavia, Argentina
| |
Collapse
|
4
|
Misra HS, Rajpurohit YS. DNA damage response and cell cycle regulation in bacteria: a twist around the paradigm. Front Microbiol 2024; 15:1389074. [PMID: 38605710 PMCID: PMC11007091 DOI: 10.3389/fmicb.2024.1389074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024] Open
Abstract
The co-protease activity in the RecA-ssDNA complex cleaves the autorepressor LexA, resulting in the derepression of a large number of genes under LexA control. This process is called the SOS response, and genes that are expressed in response to DNA damage are called SOS genes. The proteins encoded by the SOS genes are involved in both DNA repair and maintaining the functions of crucial cell division proteins (e.g., FtsZ) under check until the damaged DNA is presumably repaired. This mechanism of SOS response is the only known mechanism of DNA damage response and cell cycle regulation in bacteria. However, there are bacteria that do not obey this rule of DNA damage response and cell cycle regulation, yet they respond to DNA damage, repair it, and survive. That means such bacteria would have some alternate mechanism(s) of DNA damage response and cell cycle regulation beyond the canonical pathway of the SOS response. In this study, we present the perspectives that bacteria may have other mechanisms of DNA damage response and cell cycle regulation mediated by bacterial eukaryotic type Ser/Thr protein kinases as an alternate to the canonical SOS response and herewith elaborate on them with a well-studied example in the radioresistant bacterium Deinococcus radiodurans.
Collapse
Affiliation(s)
- Hari Sharan Misra
- School of Sciences, Gandhi Institute of Technology and Management (GITAM), Visakhapatnam, India
| | - Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute (DAE Deemed to be University), Mumbai, India
| |
Collapse
|
5
|
Lu H, Chen Z, Xie T, Zhong S, Suo S, Song S, Wang L, Xu H, Tian B, Zhao Y, Zhou R, Hua Y. The Deinococcus protease PprI senses DNA damage by directly interacting with single-stranded DNA. Nat Commun 2024; 15:1892. [PMID: 38424107 PMCID: PMC10904395 DOI: 10.1038/s41467-024-46208-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Bacteria have evolved various response systems to adapt to environmental stress. A protease-based derepression mechanism in response to DNA damage was characterized in Deinococcus, which is controlled by the specific cleavage of repressor DdrO by metallopeptidase PprI (also called IrrE). Despite the efforts to document the biochemical, physiological, and downstream regulation of PprI-DdrO, the upstream regulatory signal activating this system remains unclear. Here, we show that single-stranded DNA physically interacts with PprI protease, which enhances the PprI-DdrO interactions as well as the DdrO cleavage in a length-dependent manner both in vivo and in vitro. Structures of PprI, in its apo and complexed forms with single-stranded DNA, reveal two DNA-binding interfaces shaping the cleavage site. Moreover, we show that the dynamic monomer-dimer equilibrium of PprI is also important for its cleavage activity. Our data provide evidence that single-stranded DNA could serve as the signal for DNA damage sensing in the metalloprotease/repressor system in bacteria. These results also shed light on the survival and acquired drug resistance of certain bacteria under antimicrobial stress through a SOS-independent pathway.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijing Chen
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Teng Xie
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China
| | - Shitong Zhong
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shasha Suo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shuang Song
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Ruhong Zhou
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Shanghai Institute for Advanced Study, Zhejiang University, Shanghai, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Misra CS, Pandey N, Appukuttan D, Rath D. Effective gene silencing using type I-E CRISPR system in the multiploid, radiation-resistant bacterium Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0520422. [PMID: 37671884 PMCID: PMC10581213 DOI: 10.1128/spectrum.05204-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/09/2023] [Indexed: 09/07/2023] Open
Abstract
The extremely radiation-resistant bacterium, Deinococcus radiodurans, is a microbe of importance, both, for studying stress tolerance mechanisms and as a chassis for industrial biotechnology. However, the molecular tools available for use in this organism continue to be limiting, with its multiploid genome presenting an additional challenge. In view of this, the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas tools provide a large repertoire of applications for gene manipulation. We show the utility of the type I-E Cascade system for knocking down gene expression in this organism. A single-vector system was designed for the expression of the Cascade components as well as the crRNA. The type I-E Cascade system was better tolerated than the type II-A dCas9 system in D. radiodurans. An assayable acid phosphatase gene, phoN integrated into the genome of this organism could be knocked down to 10% of its activity using the Cascade system. Cascade-based knockdown of ssb, a gene important for radiation resistance resulted in poor recovery post-irradiation. Targeting the Radiation and Desiccation Response Motif (RDRM), upstream of the ssb, prevented de-repression of its expression upon radiation exposure. In addition to this, multi-locus targeting was demonstrated on the deinococcal genome, by knocking down both phoN and ssb expression simultaneously. The programmable CRISPR interference tool developed in this study will facilitate the study of essential genes, hypothetical genes, and cis-elements involved in radiation response as well as enable metabolic engineering in this organism. Further, the tool can be extended for implementing high-throughput approaches in such studies. IMPORTANCE Deinococcus radiodurans is a microbe that exhibits a very high degree of radiation resistance. In addition, it is also identified as an organism of industrial importance. We report the development of a gene-knockdown system in this organism by engineering a type I-E clustered regularly interspaced short palindromic repeat (CRISPR)-Cascade system. We used this system to silence an assayable acid phosphatase gene, phoN to 10% of its activity. The study further shows the application of the Cascade system to target an essential gene ssb, that caused poor recovery from radiation. We demonstrate the utility of CRISPR-Cascade to study the role of a regulatory cis-element in radiation response as well as for multi-gene silencing. This easy-to-implement CRISPR interference system would provide an effective tool for better understanding of complex phenomena such as radiation response in D. radiodurans and may also enhance the potential of this microbe for industrial application.
Collapse
Affiliation(s)
- Chitra S. Misra
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Neha Pandey
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Life Sciences, Mumbai University, Mumbai, Maharashtra, India
| | - Deepti Appukuttan
- Chemical Engineering Department, IIT Bombay, Mumbai, Maharashtra, India
| | - Devashish Rath
- Applied Genomics Section, Bio-Science Group, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
8
|
Chaudhary R, Kota S, Misra HS. DivIVA Phosphorylation Affects Its Dynamics and Cell Cycle in Radioresistant Deinococcus radiodurans. Microbiol Spectr 2023; 11:e0314122. [PMID: 36744915 PMCID: PMC10100863 DOI: 10.1128/spectrum.03141-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 01/06/2023] [Indexed: 02/07/2023] Open
Abstract
DivIVA is a member of the Min family of proteins that spatially regulates septum formation at the midcell position and cell pole determination in Bacillus subtilis. Deinococcus radiodurans, a Gram-positive coccus-shaped bacterium, is characterized by its extreme resistance to DNA-damaging agents, including radiation. D. radiodurans cells exposed to gamma radiation undergo cell division arrest by as-yet-uncharacterized mechanisms. divIVA is shown to be an essential cell division gene in this bacterium, and DivIVA of D. radiodurans (drDivIVA) interacts with genome segregation proteins through its N-terminal region. Earlier, RqkA, a gamma radiation-responsive Ser/Thr quinoprotein kinase, was characterized for its role in radioresistance in D. radiodurans. Here, we showed that RqkA phosphorylates drDivIVA at the threonine 19 (T19) residue. The phospho-mimetic mutant with a mutation of T19 to E19 in DivIVA (DivIVAT19E) is found to be functionally different from the phospho-ablative mutant (DivIVAT19A) or the wild-type drDivIVA. A DivIVAT19E-red fluorescent protein (RFP) fusion expressed in the wild-type background showed the arrest in the typical dynamics of drDivIVA and the loss of its interaction with the genome segregation protein ParA2. The allelic replacement of divIVA with divIVAT19E-rfp was not tolerated unless drDivIVA was expressed episomally, while there was no phenotypic change when the wild-type allele was replaced with either divIVAT19A-rfp or divIVA-rfp. These results suggested that the phosphorylation of T19 in drDivIVA by RqkA affected its in vivo functions, which may contribute to the cell cycle arrest in this bacterium. IMPORTANCE Deinococcus radiodurans, a radioresistant bacterium, lacks LexA/RecA-mediated DNA damage response and cell cycle regulation as known in other bacteria. However, it adjusts its transcriptome and proteome upon DNA damage. In eukaryotes, the DNA damage response and cell cycle are regulated by Ser/Thr protein kinases. In D. radiodurans, we characterized a gamma radiation-responsive Ser/Thr quinoprotein kinase (RqkA) that phosphorylated DNA repair and cell division proteins in this bacterium. In previous work, the effect of S/T phosphorylation by RqkA on activity improvement of the DNA repair proteins has been demonstrated. This study reports that Ser phosphorylation by RqkA attenuates the function of a cell polarity and plane of cell division-determining protein, DivIVA, and its cellular dynamics in response to DNA damage, which might help to understand the mechanism of cell cycle regulation in this bacterium.
Collapse
Affiliation(s)
- Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Hari S. Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- School of Science, GITAM, Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
9
|
Probing the sORF-Encoded Peptides of Deinococcus radiodurans in Response to Extreme Stress. Mol Cell Proteomics 2022; 21:100423. [PMID: 36210010 PMCID: PMC9650054 DOI: 10.1016/j.mcpro.2022.100423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/09/2022] Open
Abstract
Organisms have developed different mechanisms to respond to stresses. However, the roles of small ORF-encoded peptides (SEPs) in these regulatory systems remain elusive, which is partially because of the lack of comprehensive knowledge regarding these biomolecules. We chose the extremophile Deinococcus radiodurans R1 as a model species and conducted large-scale profiling of the SEPs related to the stress response. The integrated workflow consisting of multiple omics approaches for SEP identification was streamlined, and an SEPome of D. radiodurans containing 109 novel and high-confidence SEPs was drafted. Forty-four percent of these SEPs were predicted to function as antimicrobial peptides. Quantitative peptidomics analysis indicated that the expression of SEP068184 was upregulated upon oxidative treatment and gamma irradiation of the bacteria. SEP068184 was conserved in Deinococcus and exhibited negative regulation of oxidative stress resistance in a comparative phenotypic assay of its mutants. Further quantitative and interactive proteomics analyses suggested that SEP068184 might function through metabolic pathways and interact with cytoplasmic proteins. Collectively, our findings demonstrate that SEPs are involved in the regulation of oxidative resistance, and the SEPome dataset provides a rich resource for research on the molecular mechanisms of the response to extreme stress in organisms.
Collapse
|
10
|
King S, Quick A, King K, Walker AR, Shields RC. Activation of TnSmu1, an integrative and conjugative element, by an ImmR-like transcriptional regulator in Streptococcus mutans. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36201342 DOI: 10.1099/mic.0.001254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Integrative and conjugative elements (ICEs) are chromosomally encoded mobile genetic elements that can transfer DNA between bacterial strains. Recently, as part of efforts to determine hypothetical gene functions, we have discovered an important regulatory module encoded on an ICE known as TnSmu1 on the Streptococcus mutans chromosome. The regulatory module consists of a cI-like repressor with a helix-turn-helix DNA binding domain immR Smu (immunity repressor) and a metalloprotease immA Smu (anti-repressor). It is not possible to create an in-frame deletion mutant of immR Smu and repression of immR Smu with CRISPRi (CRISPR interference) causes substantial cell defects. We used a bypass of essentiality (BoE) screen to discover genes that allow deletion of the regulatory module. This revealed that conjugation genes, located within TnSmu1, can restore the viability of an immR Smu mutant. Deletion of immR Smu also leads to production of a circular intermediate form of TnSmu1, which is also inducible by the genotoxic agent mitomycin C. To gain further insights into potential regulation of TnSmu1 by ImmRSmu and broader effects on S. mutans UA159 physiology, we used CRISPRi and RNA-seq. Strongly induced genes included all the TnSmu1 mobile element, genes involved in amino acid metabolism, transport systems and a type I-C CRISPR-Cas system. Lastly, bioinformatic analysis shows that the TnSmu1 mobile element and its associated genes are well distributed across S. mutans isolates. Taken together, our results show that activation of TnSmu1 is controlled by the immRA Smu module, and that activation is deleterious to S. mutans, highlighting the complex interplay between mobile elements and their host.
Collapse
Affiliation(s)
- Shawn King
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Allison Quick
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | - Kalee King
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| | | | - Robert C Shields
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR, USA
| |
Collapse
|
11
|
Banneville AS, Bouthier de la Tour C, De Bonis S, Hognon C, Colletier JP, Teulon JM, Le Roy A, Pellequer JL, Monari A, Dehez F, Confalonieri F, Servant P, Timmins J. Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction. Nucleic Acids Res 2022; 50:7680-7696. [PMID: 35801857 PMCID: PMC9303277 DOI: 10.1093/nar/gkac563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 01/19/2023] Open
Abstract
Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Å and further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.
Collapse
Affiliation(s)
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Cécilia Hognon
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | | | | | - Aline Le Roy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Antonio Monari
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France,Université Paris Cité, CNRS, Itodys, F-75006 Paris, France
| | - François Dehez
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Joanna Timmins
- To whom correspondence should be addressed. Tel: +33 4 57 42 86 78;
| |
Collapse
|
12
|
Eugénie N, Zivanovic Y, Lelandais G, Coste G, Bouthier de la Tour C, Bentchikou E, Servant P, Confalonieri F. Characterization of the Radiation Desiccation Response Regulon of the Radioresistant Bacterium Deinococcus radiodurans by Integrative Genomic Analyses. Cells 2021; 10:cells10102536. [PMID: 34685516 PMCID: PMC8533742 DOI: 10.3390/cells10102536] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 12/02/2022] Open
Abstract
Numerous genes are overexpressed in the radioresistant bacterium Deinococcus radiodurans after exposure to radiation or prolonged desiccation. It was shown that the DdrO and IrrE proteins play a major role in regulating the expression of approximately twenty genes. The transcriptional repressor DdrO blocks the expression of these genes under normal growth conditions. After exposure to genotoxic agents, the IrrE metalloprotease cleaves DdrO and relieves gene repression. At present, many questions remain, such as the number of genes regulated by DdrO. Here, we present the first ChIP-seq analysis performed at the genome level in Deinococcus species coupled with RNA-seq, which was achieved in the presence or not of DdrO. We also resequenced our laboratory stock strain of D. radiodurans R1 ATCC 13939 to obtain an accurate reference for read alignments and gene expression quantifications. We highlighted genes that are directly under the control of this transcriptional repressor and showed that the DdrO regulon in D. radiodurans includes numerous other genes than those previously described, including DNA and RNA metabolism proteins. These results thus pave the way to better understand the radioresistance pathways encoded by this bacterium and to compare the stress-induced responses mediated by this pair of proteins in diverse bacteria.
Collapse
|
13
|
Brady A, Felipe-Ruiz A, Gallego Del Sol F, Marina A, Quiles-Puchalt N, Penadés JR. Molecular Basis of Lysis-Lysogeny Decisions in Gram-Positive Phages. Annu Rev Microbiol 2021; 75:563-581. [PMID: 34343015 DOI: 10.1146/annurev-micro-033121-020757] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Temperate bacteriophages (phages) are viruses of bacteria. Upon infection of a susceptible host, a temperate phage can establish either a lytic cycle that kills the host or a lysogenic cycle as a stable prophage. The life cycle pursued by an infecting temperate phage can have a significant impact not only on the individual host bacterium at the cellular level but also on bacterial communities and evolution in the ecosystem. Thus, understanding the decision processes of temperate phages is crucial. This review delves into the molecular mechanisms behind lysis-lysogeny decision-making in Gram-positive phages. We discuss a variety of molecular mechanisms and the genetic organization of these well-understood systems. By elucidating the strategies used by phages to make lysis-lysogeny decisions, we can improve our understanding of phage-host interactions, which is crucial for a variety of studies including bacterial evolution, community and ecosystem diversification, and phage therapeutics. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Aisling Brady
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - Alonso Felipe-Ruiz
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Francisca Gallego Del Sol
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Alberto Marina
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 46010 Valencia, Spain;
| | - Nuria Quiles-Puchalt
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom;
| | - José R Penadés
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom; .,MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London SW7 2AZ, United Kingdom;
| |
Collapse
|
14
|
Villa JK, Han R, Tsai CH, Chen A, Sweet P, Franco G, Vaezian R, Tkavc R, Daly MJ, Contreras LM. A small RNA regulates pprM, a modulator of pleiotropic proteins promoting DNA repair, in Deinococcus radiodurans under ionizing radiation. Sci Rep 2021; 11:12949. [PMID: 34155239 PMCID: PMC8217566 DOI: 10.1038/s41598-021-91335-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Networks of transcriptional and post-transcriptional regulators are critical for bacterial survival and adaptation to environmental stressors. While transcriptional regulators provide rapid activation and/or repression of a wide-network of genes, post-transcriptional regulators, such as small RNAs (sRNAs), are also important to fine-tune gene expression. However, the mechanisms of sRNAs remain poorly understood, especially in less-studied bacteria. Deinococcus radiodurans is a gram-positive bacterium resistant to extreme levels of ionizing radiation (IR). Although multiple unique regulatory systems (e.g., the Radiation and Desiccation Response (RDR)) have been identified in this organism, the role of post-transcriptional regulators has not been characterized within the IR response. In this study, we have characterized an sRNA, PprS (formerly Dsr2), as a post-transcriptional coordinator of IR recovery in D. radiodurans. PprS showed differential expression specifically under IR and knockdown of PprS resulted in reduced survival and growth under IR, suggesting its importance in regulating post-radiation recovery. We determined a number of potential RNA targets involved in several pathways including translation and DNA repair. Specifically, we confirmed that PprS binds within the coding region to stabilize the pprM (DR_0907) transcript, a RDR modulator. Overall, these results are the first to present an additional layer of sRNA-based control in DNA repair pathways associated with bacterial radioresistance.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Runhua Han
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip Sweet
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Gabriela Franco
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Respina Vaezian
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rok Tkavc
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lydia M Contreras
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
15
|
de la Tour CB, Mathieu M, Servant P, Coste G, Norais C, Confalonieri F. Characterization of the DdrD protein from the extremely radioresistant bacterium Deinococcus radiodurans. Extremophiles 2021; 25:343-355. [PMID: 34052926 PMCID: PMC8254717 DOI: 10.1007/s00792-021-01233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/16/2021] [Indexed: 10/25/2022]
Abstract
Here, we report the in vitro and in vivo characterization of the DdrD protein from the extraordinary stress-resistant bacterium, D. radiodurans. DdrD is one of the most highly induced proteins following cellular irradiation or desiccation. We confirm that DdrD belongs to the Radiation Desiccation Response (RDR) regulon protein family whose expression is regulated by the IrrE/DdrO proteins after DNA damage. We show that DdrD is a DNA binding protein that binds to single-stranded DNA In vitro, but not to duplex DNA unless it has a 5' single-stranded extension. In vivo, we observed no significant effect of the absence of DdrD on the survival of D. radiodurans cells after exposure to γ-rays or UV irradiation in different genetic contexts. However, genome reassembly is affected in a ∆ddrD mutant when cells recover from irradiation in the absence of nutrients. Thus, DdrD likely contributes to genome reconstitution after irradiation, but only under starvation conditions. Lastly, we show that the absence of the DdrD protein partially restores the frequency of plasmid transformation of a ∆ddrB mutant, suggesting that DdrD could also be involved in biological processes other than the response to DNA damage.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France.
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Geneviève Coste
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Cédric Norais
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.,SAT Lyon, Promega France, 24 Chemin des Verrieres, 69260, Charbonnières les Bains, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| |
Collapse
|
16
|
Rajpurohit YS, Sharma DK, Misra HS. PprA Protein Inhibits DNA Strand Exchange and ATP Hydrolysis of Deinococcus RecA and Regulates the Recombination in Gamma-Irradiated Cells. Front Cell Dev Biol 2021; 9:636178. [PMID: 33959605 PMCID: PMC8093518 DOI: 10.3389/fcell.2021.636178] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/23/2021] [Indexed: 11/14/2022] Open
Abstract
DrRecA and PprA proteins function are crucial for the extraordinary resistance to γ-radiation and DNA strand break repair in Deinococcus radiodurans. DrRecA mediated homologous recombination help in DNA strand break repair and cell survival, while the PprA protein confers radio-resistance via its roles in DNA repair, genome maintenance, and cell division. Genetically recA and pprA genes interact and constitute an epistatic group however, the mechanism underlying their functional interaction is not clear. Here, we showed the physical and functional interaction of DrRecA and PprA protein both in solution and inside the cells. The absence of the pprA gene increases the recombination frequency in gamma-irradiated D. radiodurans cells and genomic instability in cells growing under normal conditions. PprA negatively regulates the DrRecA functions by inhibiting DrRecA mediated DNA strand exchange and ATPase function in vitro. Furthermore, it is shown that the inhibitory effect of PprA on DrRecA catalyzed DNA strand exchange was not due to sequestration of homologous dsDNA and was dependent on PprA oligomerization and DNA binding property. Together, results suggest that PprA is a new member of recombination mediator proteins (RMPs), and able to regulate the DrRecA function in γ-irradiated cells by protecting the D. radiodurans genome from hyper-recombination and associated negative effects.
Collapse
Affiliation(s)
- Yogendra Singh Rajpurohit
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Dhirendra Kumar Sharma
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, India.,Homi Bhabha National Institute (DAE- Deemed University), Mumbai, India
| |
Collapse
|
17
|
Coexistence of SOS-Dependent and SOS-Independent Regulation of DNA Repair Genes in Radiation-Resistant Deinococcus Bacteria. Cells 2021; 10:cells10040924. [PMID: 33923690 PMCID: PMC8072749 DOI: 10.3390/cells10040924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 11/28/2022] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and able to repair a shattered genome in an essentially error-free manner after exposure to high doses of radiation or prolonged desiccation. An efficient, SOS-independent response mechanism to induce various DNA repair genes such as recA is essential for radiation resistance. This pathway, called radiation/desiccation response, is controlled by metallopeptidase IrrE and repressor DdrO that are highly conserved in Deinococcus. Among various Deinococcus species, Deinococcus radiodurans has been studied most extensively. Its genome encodes classical DNA repair proteins for error-free repair but no error-prone translesion DNA polymerases, which may suggest that absence of mutagenic lesion bypass is crucial for error-free repair of massive DNA damage. However, many other radiation-resistant Deinococcus species do possess translesion polymerases, and radiation-induced mutagenesis has been demonstrated. At least dozens of Deinococcus species contain a mutagenesis cassette, and some even two cassettes, encoding error-prone translesion polymerase DnaE2 and two other proteins, ImuY and ImuB-C, that are probable accessory factors required for DnaE2 activity. Expression of this mutagenesis cassette is under control of the SOS regulators RecA and LexA. In this paper, we review both the RecA/LexA-controlled mutagenesis and the IrrE/DdrO-controlled radiation/desiccation response in Deinococcus.
Collapse
|
18
|
Redox signaling through zinc activates the radiation response in Deinococcus bacteria. Sci Rep 2021; 11:4528. [PMID: 33633226 PMCID: PMC7907104 DOI: 10.1038/s41598-021-84026-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/11/2021] [Indexed: 02/06/2023] Open
Abstract
Deinococcus bacteria are extremely resistant to radiation and other DNA damage- and oxidative stress-generating conditions. An efficient SOS-independent response mechanism inducing expression of several DNA repair genes is essential for this resistance, and is controlled by metalloprotease IrrE that cleaves and inactivates transcriptional repressor DdrO. Here, we identify the molecular signaling mechanism that triggers DdrO cleavage. We show that reactive oxygen species (ROS) stimulate the zinc-dependent metalloprotease activity of IrrE in Deinococcus. Sudden exposure of Deinococcus to zinc excess also rapidly induces DdrO cleavage, but is not accompanied by ROS production and DNA damage. Further, oxidative treatment leads to an increase of intracellular free zinc, indicating that IrrE activity is very likely stimulated directly by elevated levels of available zinc ions. We conclude that radiation and oxidative stress induce changes in redox homeostasis that result in IrrE activation by zinc in Deinococcus. We propose that a part of the zinc pool coordinated with cysteine thiolates is released due to their oxidation. Predicted regulation systems involving IrrE- and DdrO-like proteins are present in many bacteria, including pathogens, suggesting that such a redox signaling pathway including zinc as a second messenger is widespread and participates in various stress responses.
Collapse
|
19
|
Narasimha A, Basu B. New insights into the activation of Radiation Desiccation Response regulon in Deinococcus radiodurans. J Biosci 2021. [DOI: 10.1007/s12038-020-00123-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Lu H, Hua Y. PprI: The Key Protein in Response to DNA Damage in Deinococcus. Front Cell Dev Biol 2021; 8:609714. [PMID: 33537302 PMCID: PMC7848106 DOI: 10.3389/fcell.2020.609714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/17/2020] [Indexed: 11/17/2022] Open
Abstract
Deoxyribonucleic acid (DNA) damage response (DDR) pathways are essential for maintaining the integrity of the genome when destabilized by various damaging events, such as ionizing radiation, ultraviolet light, chemical or oxidative stress, and DNA replication errors. The PprI–DdrO system is a newly identified pathway responsible for the DNA damage response in Deinococcus, in which PprI (also called IrrE) acts as a crucial component mediating the extreme resistance of these bacteria. This review describes studies about PprI sequence conservation, regulatory function, structural characteristics, biochemical activity, and hypothetical activation mechanisms as well as potential applications.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis and Protection, Institute of Biophysics, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Joshi S, Ujaoney AK, Ghosh P, Deobagkar DD, Basu B. N6-methyladenine and epigenetic immunity of Deinococcus radiodurans. Res Microbiol 2020; 172:103789. [PMID: 33188877 DOI: 10.1016/j.resmic.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
DNA methylation is ubiquitously found in all three domains of life. This epigenetic modification on adenine or cytosine residues serves to regulate gene expression or to defend against invading DNA in bacteria. Here, we report the significance of N6-methyladenine (6mA) to epigenetic immunity in Deinococcus radiodurans. Putative protein encoded by DR_2267 ORF (Dam2DR) contributed 35% of genomic 6mA in D. radiodurans but did not influence gene expression or radiation resistance. Dam2DR was characterized to be a functional S-adenosyl methionine (SAM)-dependent N6-adenine DNA methyltransferase (MTase) but with no endonuclease activity. Adenine methylation from Dam2DR or Dam1DR (N6-adenine MTase encoded by DR_0643) improved DNA uptake during natural transformation. To the contrary, methylation from Escherichia coli N6-adenine MTase (DamEC that methylates adenine in GATC sequence) on donor plasmid drastically reduced DNA uptake in D. radiodurans, even in presence of Dam2DR or Dam1DR methylated adenines. With these results, we conclude that self-type N6-adenine methylation on donor DNA had a protective effect in absence of additional foreign methylation, a separate methylation-dependent Restriction Modification (R-M) system effectively identifies and limits uptake of G6mATC sequence containing donor DNA. This is the first report demonstrating presence of epigenetic immunity in D. radiodurans.
Collapse
Affiliation(s)
- Suraj Joshi
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Molecular Biology Research Laboratory, Department of Zoology, SPPU, Pune 411007, India; Bioinformatics Centre, SPPU, Pune 411007, India.
| | - Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | - Payel Ghosh
- Bioinformatics Centre, SPPU, Pune 411007, India.
| | - Deepti D Deobagkar
- Molecular Biology Research Laboratory, Department of Zoology, SPPU, Pune 411007, India.
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
22
|
Park C, Shin B, Kim W, Cheong H, Park S, Park W. Comparative genomics of wild-type and laboratory-evolved biofilm-overproducing Deinococcus metallilatus strains. Microb Genom 2020; 6. [PMID: 33147125 PMCID: PMC8116681 DOI: 10.1099/mgen.0.000464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Deinococcus metallilatus MA1002 was exposed to ultraviolet radiation to generate mutants with enhanced biofilm production. Two strains (nos 5 and 6) were then selected based on their high biofilm formation, as well as their possession of higher concentrations of extracellular matrix components (eDNA, protein and saccharides) than the wild-type (WT). Genomic sequencing revealed the presence of large genome deletions in a secondary chromosome in the mutants. Expression analyses of the WT and mutant strains indicated the upregulation of genes associated with exopolysaccharide synthesis and stress response. The mutant strains showed high mortality in glucose-supplemented (TYG) medium; however, cell death and biofilm formation were not increased in mutant cells grown under acetate- or glyoxylate-added media, suggesting that metabolic toxicity during glucose metabolism induced a high rate of cell death but improved biofilm formation in mutant strains. In damaged cells, eDNAs contributed to the enhanced biofilm formation of D. metallilatus.
Collapse
Affiliation(s)
- Chulwoo Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Hoon Cheong
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Soyoon Park
- EMBIOME, Seoho-ro, Gwonseon-gu, Suwon, Gyeonggi 16614, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
- *Correspondence: Woojun Park,
| |
Collapse
|
23
|
de Groot A, Siponen MI, Magerand R, Eugénie N, Martin-Arevalillo R, Doloy J, Lemaire D, Brandelet G, Parcy F, Dumas R, Roche P, Servant P, Confalonieri F, Arnoux P, Pignol D, Blanchard L. Crystal structure of the transcriptional repressor DdrO: insight into the metalloprotease/repressor-controlled radiation response in Deinococcus. Nucleic Acids Res 2020; 47:11403-11417. [PMID: 31598697 PMCID: PMC6868357 DOI: 10.1093/nar/gkz883] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 09/25/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Exposure to harmful conditions such as radiation and desiccation induce oxidative stress and DNA damage. In radiation-resistant Deinococcus bacteria, the radiation/desiccation response is controlled by two proteins: the XRE family transcriptional repressor DdrO and the COG2856 metalloprotease IrrE. The latter cleaves and inactivates DdrO. Here, we report the biochemical characterization and crystal structure of DdrO, which is the first structure of a XRE protein targeted by a COG2856 protein. DdrO is composed of two domains that fold independently and are separated by a flexible linker. The N-terminal domain corresponds to the DNA-binding domain. The C-terminal domain, containing three alpha helices arranged in a novel fold, is required for DdrO dimerization. Cleavage by IrrE occurs in the loop between the last two helices of DdrO and abolishes dimerization and DNA binding. The cleavage site is hidden in the DdrO dimer structure, indicating that IrrE cleaves DdrO monomers or that the interaction with IrrE induces a structural change rendering accessible the cleavage site. Predicted COG2856/XRE regulatory protein pairs are found in many bacteria, and available data suggest two different molecular mechanisms for stress-induced gene expression: COG2856 protein-mediated cleavage or inhibition of oligomerization without cleavage of the XRE repressor.
Collapse
Affiliation(s)
- Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - Marina I Siponen
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - Romaric Magerand
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - Nicolas Eugénie
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| | | | - Jade Doloy
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - David Lemaire
- Aix Marseille Univ, CEA, CNRS, BIAM, Interaction Protein Metal Team, Saint Paul-Lez-Durance, F-13108, France
| | - Géraldine Brandelet
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - François Parcy
- Univ. Grenoble Alpes, CNRS, CEA, INRA, IRIG-DBSCI-LPCV, Grenoble, F-38000, France
| | - Renaud Dumas
- Univ. Grenoble Alpes, CNRS, CEA, INRA, IRIG-DBSCI-LPCV, Grenoble, F-38000, France
| | - Philippe Roche
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli Calmettes, CRCM, Marseille CEDEX 09, F-13273, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay, Gif-sur-Yvette cedex, F-91198, France
| | - Pascal Arnoux
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - David Pignol
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| | - Laurence Blanchard
- Aix Marseille Univ, CEA, CNRS, BIAM, Molecular and Environmental Microbiology Team, Saint Paul-Lez-Durance, F-13108, France
| |
Collapse
|
24
|
ArdC, a ssDNA-binding protein with a metalloprotease domain, overpasses the recipient hsdRMS restriction system broadening conjugation host range. PLoS Genet 2020; 16:e1008750. [PMID: 32348296 PMCID: PMC7213743 DOI: 10.1371/journal.pgen.1008750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/11/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
Plasmids, when transferred by conjugation in natural environments, must overpass restriction-modification systems of the recipient cell. We demonstrate that protein ArdC, encoded by broad host range plasmid R388, was required for conjugation from Escherichia coli to Pseudomonas putida. Expression of ardC was required in the recipient cells, but not in the donor cells. Besides, ardC was not required for conjugation if the hsdRMS system was deleted in P. putida recipient cells. ardC was also required if the hsdRMS system was present in E. coli recipient cells. Thus, ArdC has antirestriction activity against the HsdRMS system and consequently broadens R388 plasmid host range. The crystal structure of ArdC was solved both in the absence and presence of Mn2+. ArdC is composed of a non-specific ssDNA binding N-terminal domain and a C-terminal metalloprotease domain, although the metalloprotease activity was not needed for the antirestriction function. We also observed by RNA-seq that ArdC-dependent conjugation triggered an SOS response in the P. putida recipient cells. Our findings give new insights, and open new questions, into the antirestriction strategies developed by plasmids to counteract bacterial restriction strategies and settle into new hosts. Horizontal gene transfer is the main mechanism by which bacteria acquire and disseminate new traits, such as antibiotic resistance genes, that allow adaptation and evolution. Here we identified a gene, ardC, that enables a plasmid to increase its conjugative host range, and thus positively contributes to plasmid fitness. The crystal structure of the antirestriction protein ArdC revealed a fold different from other antirestriction proteins. Our results have wide implications for understanding how a gene enlarges the environments a plasmid can colonize and point to new targets to harness the bacterial DNA uptake control.
Collapse
|
25
|
Lu H, Wang L, Li S, Pan C, Cheng K, Luo Y, Xu H, Tian B, Zhao Y, Hua Y. Structure and DNA damage-dependent derepression mechanism for the XRE family member DG-DdrO. Nucleic Acids Res 2019; 47:9925-9933. [PMID: 31410466 PMCID: PMC6765133 DOI: 10.1093/nar/gkz720] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022] Open
Abstract
DdrO is an XRE family transcription repressor that, in coordination with the metalloprotease PprI, is critical in the DNA damage response of Deinococcus species. Here, we report the crystal structure of Deinococcus geothermalis DdrO. Biochemical and structural studies revealed the conserved recognizing α-helix and extended dimeric interaction of the DdrO protein, which are essential for promoter DNA binding. Two conserved oppositely charged residues in the HTH motif of XRE family proteins form salt bridge interactions that are essential for promoter DNA binding. Notably, the C-terminal domain is stabilized by hydrophobic interactions of leucine/isoleucine-rich helices, which is critical for DdrO dimerization. Our findings suggest that DdrO is a novel XRE family transcriptional regulator that forms a distinctive dimer. The structure also provides insight into the mechanism of DdrO-PprI-mediated DNA damage response in Deinococcus.
Collapse
Affiliation(s)
- Huizhi Lu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Liangyan Wang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Shengjie Li
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Chaoming Pan
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Kaiying Cheng
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Yuxia Luo
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Hong Xu
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Bing Tian
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Ye Zhao
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| | - Yuejin Hua
- MOE Key Laboratory of Biosystems Homeostasis & Protection, Zhejiang University, China
| |
Collapse
|
26
|
sRNA OsiA Stabilizes Catalase mRNA during Oxidative Stress Response of Deincoccus radiodurans R1. Microorganisms 2019; 7:microorganisms7100422. [PMID: 31597319 PMCID: PMC6843392 DOI: 10.3390/microorganisms7100422] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 01/04/2023] Open
Abstract
Deinococcus radiodurans adapts to challenging environments by modulating gene expression in response to oxidative stress. Recently, bacterial small noncoding RNAs (sRNAs) have been presumed to participate in the transcriptional or translational regulation of stress-responsive genes. We found 24 sRNAs that may be involved in the oxidative stress response of D. radiodurans by deep RNA sequencing. Moreover, a typical stress-inducible sRNA, IGR_3053, named OsiA, was predicted to bind to the mRNA of katA, katE, and sodC by the bioinformatics method. An osiA knockout of D. radiodurans displayed increased sensitivity to H2O2 and the decreased catalase activity and total antioxidant activity, suggesting that OsiA probably serves as a regulator in the adaptation to oxidative environments. Further microscale thermophoresis results demonstrated that OsiA can directly bind to the mRNA of katA, sodC, and katE. The stability test result of katA mRNA showed that its half-life was 2 min in the osiA mutant compared with 5 min in the wildtype(wt) strain. Our results indicated that OsiA can enhance the stability of katA mRNA and the activity of KatA and consequently the oxidation resistance of D.radiodurans. We are the first one to explore the super-strong oxidative stress resistance of D.radiodurans at the level of post-transcriptional regulation, and found a new pathway that provides a new explanation for the long-term adaptability of D.radiodurans in extreme environments.
Collapse
|
27
|
Wang W, Ma Y, He J, Qi H, Xiao F, He S. Gene regulation for the extreme resistance to ionizing radiation of Deinococcus radiodurans. Gene 2019; 715:144008. [DOI: 10.1016/j.gene.2019.144008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 01/05/2023]
|
28
|
Zhou C, Dai J, Lu H, Chen Z, Guo M, He Y, Gao K, Ge T, Jin J, Wang L, Tian B, Hua Y, Zhao Y. Succinylome Analysis Reveals the Involvement of Lysine Succinylation in the Extreme Resistance of Deinococcus radiodurans. Proteomics 2019; 19:e1900158. [PMID: 31487437 DOI: 10.1002/pmic.201900158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/17/2019] [Indexed: 01/18/2023]
Abstract
Increasing evidence shows that the succinylation of lysine residues mainly regulates enzymes involved in the carbon metabolism pathway, in both prokaryotic and eukaryotic cells. Deinococcus radiodurans is one of the most radioresistant organisms on earth and is famous for its robust resistance. A major goal in the current study of protein succinylation is to explore its function in D. radiodurans. High-resolution LC-MS/MS is used for qualitative proteomics to perform a global succinylation analysis of D. radiodurans and 492 succinylation sites in 270 proteins are identified. These proteins are involved in a variety of biological processes and pathways. It is found that the enzymes involved in nucleic acid binding/processing are enriched in D. radiodurans compared with their previously reported levels in other bacteria. The mutagenesis studies confirm that succinylation regulates the enzymatic activities of species-specific proteins PprI and DdrB, which belong to the radiation-desiccation response regulon. Together, these results provide insight into the role of lysine succinylation in the extreme resistance of D. radiodurans.
Collapse
Affiliation(s)
- Congli Zhou
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Jingli Dai
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Huizhi Lu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Zijing Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Miao Guo
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Yuan He
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Kaixuan Gao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Tong Ge
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Jiayu Jin
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| |
Collapse
|
29
|
Guanine Quadruplex DNA Regulates Gamma Radiation Response of Genome Functions in the Radioresistant Bacterium Deinococcus radiodurans. J Bacteriol 2019; 201:JB.00154-19. [PMID: 31235513 DOI: 10.1128/jb.00154-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/07/2019] [Indexed: 12/31/2022] Open
Abstract
Guanine quadruplex (G4) DNA/RNA are secondary structures that regulate the various cellular processes in both eukaryotes and bacteria. Deinococcus radiodurans, a Gram-positive bacterium known for its extraordinary radioresistance, shows a genomewide occurrence of putative G4 DNA-forming motifs in its GC-rich genome. N-Methyl mesoporphyrin (NMM), a G4 DNA structure-stabilizing drug, did not affect bacterial growth under normal conditions but inhibited the postirradiation recovery of gamma-irradiated cells. Transcriptome sequencing analysis of cells treated with both radiation and NMM showed repression of gamma radiation-responsive gene expression, which was observed in the absence of NMM. Notably, this effect of NMM on the expression of housekeeping genes involved in other cellular processes was not observed. Stabilization of G4 DNA structures mapped at the upstream of recA and in the encoding region of DR_2199 had negatively affected promoter activity in vivo, DNA synthesis in vitro and protein translation in Escherichia coli host. These results suggested that G4 DNA plays an important role in DNA damage response and in the regulation of expression of the DNA repair proteins required for radioresistance in D. radiodurans IMPORTANCE Deinococcus radiodurans can recover from extensive DNA damage caused by many genotoxic agents. It lacks LexA/RecA-mediated canonical SOS response. Therefore, the molecular mechanisms underlying the regulation of DNA damage response would be worth investigating in this bacterium. D. radiodurans genome is GC-rich and contains numerous islands of putative guanine quadruplex (G4) DNA structure-forming motifs. Here, we showed that in vivo stabilization of G4 DNA structures can impair DNA damage response processes in D. radiodurans Essential cellular processes such as transcription, DNA synthesis, and protein translation, which are also an integral part of the double-strand DNA break repair pathway, are affected by the arrest of G4 DNA structure dynamics. Thus, the role of DNA secondary structures in DNA damage response and radioresistance is demonstrated.
Collapse
|
30
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
31
|
Adachi M, Shimizu R, Shibazaki C, Satoh K, Fujiwara S, Arai S, Narumi I, Kuroki R. Extended structure of pleiotropic DNA repair‐promoting protein PprA from
Deinococcus radiodurans. FASEB J 2018; 33:3647-3658. [DOI: 10.1096/fj.201801506r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Motoyasu Adachi
- Tokai Quantum Beam Science CenterNational Institutes for QuantumRadiological Science and Technology Tokai Japan
| | - Rumi Shimizu
- Tokai Quantum Beam Science CenterNational Institutes for QuantumRadiological Science and Technology Tokai Japan
| | - Chie Shibazaki
- Tokai Quantum Beam Science CenterNational Institutes for QuantumRadiological Science and Technology Tokai Japan
| | - Katsuya Satoh
- Department of Radiation–Applied BiologyNational Institutes for Quantum and Radiological Science and Technology Takasaki Japan
| | - Satoru Fujiwara
- Tokai Quantum Beam Science CenterNational Institutes for QuantumRadiological Science and Technology Tokai Japan
| | - Shigeki Arai
- Tokai Quantum Beam Science CenterNational Institutes for QuantumRadiological Science and Technology Tokai Japan
| | | | | |
Collapse
|
32
|
DdrI, a cAMP Receptor Protein Family Member, Acts as a Major Regulator for Adaptation of Deinococcus radiodurans to Various Stresses. J Bacteriol 2018; 200:JB.00129-18. [PMID: 29686138 DOI: 10.1128/jb.00129-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/16/2018] [Indexed: 12/11/2022] Open
Abstract
The DNA damage response ddrI gene encodes a transcription regulator belonging to the cAMP receptor protein (CRP) family. Cells devoid of the DdrI protein exhibit a pleiotropic phenotype, including growth defects and sensitivity to DNA-damaging agents and to oxidative stress. Here, we show that the absence of the DdrI protein also confers sensitivity to heat shock treatment, and several genes involved in heat shock response were shown to be upregulated in a DdrI-dependent manner. Interestingly, expression of the Escherichia coli CRP partially compensates for the absence of the DdrI protein. Microscopic observations of ΔddrI mutant cells revealed an increased proportion of two-tetrad and anucleated cells in the population compared to the wild-type strain, indicating that DdrI is crucial for the completion of cell division and/or chromosome segregation. We show that DdrI is also involved in the megaplasmid MP1 stability and in efficient plasmid transformation by facilitating the maintenance of the incoming plasmid in the cell. The in silico prediction of putative DdrI binding sites in the D. radiodurans genome suggests that hundreds of genes, belonging to several functional groups, may be regulated by DdrI. In addition, the DdrI protein absolutely requires cAMP for in vitro binding to specific target sequences, and it acts as a dimer. All these data underline the major role of DdrI in D. radiodurans physiology under normal and stress conditions by regulating, both directly and indirectly, a cohort of genes involved in various cellular processes, including central metabolism and specific responses to diverse harmful environments.IMPORTANCEDeinococcus radiodurans has been extensively studied to elucidate the molecular mechanisms responsible for its exceptional ability to withstand lethal effects of various DNA-damaging agents. A complex network, including efficient DNA repair, protein protection against oxidation, and diverse metabolic pathways, plays a crucial role for its radioresistance. The regulatory networks orchestrating these various pathways are still missing. Our data provide new insights into the crucial contribution of the transcription factor DdrI for the D. radiodurans ability to withstand harmful conditions, including UV radiation, mitomycin C treatment, heat shock, and oxidative stress. Finally, we highlight that DdrI is also required for accurate cell division, for maintenance of plasmid replicons, and for central metabolism processes responsible for the overall cell physiology.
Collapse
|
33
|
Matrosova VY, Gaidamakova EK, Makarova KS, Grichenko O, Klimenkova P, Volpe RP, Tkavc R, Ertem G, Conze IH, Brambilla E, Huntemann M, Clum A, Pillay M, Palaniappan K, Varghese N, Mikhailova N, Stamatis D, Reddy TBK, Daum C, Shapiro N, Ivanova N, Kyrpides N, Woyke T, Daligault H, Davenport K, Erkkila T, Goodwin LA, Gu W, Munk C, Teshima H, Xu Y, Chain P, Woolbert M, Gunde-Cimerman N, Wolf YI, Grebenc T, Gostinčar C, Daly MJ. High-quality genome sequence of the radioresistant bacterium Deinococcus ficus KS 0460. Stand Genomic Sci 2017; 12:46. [PMID: 28775794 PMCID: PMC5534035 DOI: 10.1186/s40793-017-0258-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/20/2017] [Indexed: 11/24/2022] Open
Abstract
The genetic platforms of Deinococcus species remain the only systems in which massive ionizing radiation (IR)-induced genome damage can be investigated in vivo at exposures commensurate with cellular survival. We report the whole genome sequence of the extremely IR-resistant rod-shaped bacterium Deinococcus ficus KS 0460 and its phenotypic characterization. Deinococcus ficus KS 0460 has been studied since 1987, first under the name Deinobacter grandis, then Deinococcus grandis. The D. ficus KS 0460 genome consists of a 4.019 Mbp sequence (69.7% GC content and 3894 predicted genes) divided into six genome partitions, five of which are confirmed to be circular. Circularity was determined manually by mate pair linkage. Approximately 76% of the predicted proteins contained identifiable Pfam domains and 72% were assigned to COGs. Of all D. ficus KS 0460 proteins, 79% and 70% had homologues in Deinococcus radiodurans ATCC BAA-816 and Deinococcus geothermalis DSM 11300, respectively. The most striking differences between D. ficus KS 0460 and D. radiodurans BAA-816 identified by the comparison of the KEGG pathways were as follows: (i) D. ficus lacks nine enzymes of purine degradation present in D. radiodurans, and (ii) D. ficus contains eight enzymes involved in nitrogen metabolism, including nitrate and nitrite reductases, that D. radiodurans lacks. Moreover, genes previously considered to be important to IR resistance are missing in D. ficus KS 0460, namely, for the Mn-transporter nramp, and proteins DdrF, DdrJ and DdrK, all of which are also missing in Deinococcus deserti. Otherwise, D. ficus KS 0460 exemplifies the Deinococcus lineage.
Collapse
Affiliation(s)
- Vera Y. Matrosova
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Elena K. Gaidamakova
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD USA
| | - Olga Grichenko
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Polina Klimenkova
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Robert P. Volpe
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Rok Tkavc
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Gözen Ertem
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
| | - Isabel H. Conze
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- University of Bielefeld, Bielefeld, Germany
| | - Evelyne Brambilla
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | | | - Alicia Clum
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | - Manoj Pillay
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | | | | | | | | | - TBK Reddy
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | - Chris Daum
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | | | | | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA USA
| | | | | | | | | | - Wei Gu
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | | | - Yan Xu
- Los Alamos National Laboratory, Los Alamos, NM USA
| | | | - Michael Woolbert
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD USA
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD USA
| | - Tine Grebenc
- Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Cene Gostinčar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Michael J. Daly
- Uniformed Services University of the Health Sciences, School of Medicine, Bethesda, MD USA
| |
Collapse
|
34
|
Villa JK, Amador P, Janovsky J, Bhuyan A, Saldanha R, Lamkin TJ, Contreras LM. A Genome-Wide Search for Ionizing-Radiation-Responsive Elements in Deinococcus radiodurans Reveals a Regulatory Role for the DNA Gyrase Subunit A Gene's 5' Untranslated Region in the Radiation and Desiccation Response. Appl Environ Microbiol 2017; 83:e00039-17. [PMID: 28411225 PMCID: PMC5452802 DOI: 10.1128/aem.00039-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Tight regulation of gene expression is important for the survival of Deinococcus radiodurans, a model bacterium of extreme stress resistance. Few studies have examined the use of regulatory RNAs as a possible contributing mechanism to ionizing radiation (IR) resistance, despite their proffered efficient and dynamic gene expression regulation under IR stress. This work presents a transcriptome-based approach for the identification of stress-responsive regulatory 5' untranslated region (5'-UTR) elements in D. radiodurans R1 that can be broadly applied to other bacteria. Using this platform and an in vivo fluorescence screen, we uncovered the presence of a radiation-responsive regulatory motif in the 5' UTR of the DNA gyrase subunit A gene. Additional screens under H2O2-induced oxidative stress revealed the specificity of the response of this element to IR stress. Further examination of the sequence revealed a regulatory motif of the radiation and desiccation response (RDR) in the 5' UTR that is necessary for the recovery of D. radiodurans from high doses of IR. Furthermore, we suggest that it is the preservation of predicted RNA structure, in addition to DNA sequence consensus of the motif, that permits this important regulatory ability.IMPORTANCEDeinococcus radiodurans is an extremely stress-resistant bacterium capable of tolerating up to 3,000 times more ionizing radiation than human cells. As an integral part of the stress response mechanism of this organism, we suspect that it maintains stringent control of gene expression. However, understanding of its regulatory pathways remains incomplete to date. Untranslated RNA elements have been demonstrated to play crucial roles in gene regulation throughout bacteria. In this work, we focus on searching for and characterizing responsive RNA elements under radiation stress and propose that multiple levels of gene regulation work simultaneously to enable this organism to efficiently recover from exposure to ionizing radiation. The model we propose serves as a generic template to investigate similar mechanisms of gene regulation under stress that have likely evolved in other bacterial species.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Paul Amador
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Justin Janovsky
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Arijit Bhuyan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| | | | - Thomas J Lamkin
- Air Force Research Laboratory/XPRA Wright-Patterson AFB, Ohio, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| |
Collapse
|
35
|
Anaganti N, Basu B, Mukhopadhyaya R, Apte SK. Proximity of Radiation Desiccation Response Motif to the core promoter is essential for basal repression as well as gamma radiation-induced gyrB gene expression in Deinococcus radiodurans. Gene 2017; 615:8-17. [DOI: 10.1016/j.gene.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
|
36
|
Bouthier de la Tour C, Mathieu M, Meyer L, Dupaigne P, Passot F, Servant P, Sommer S, Le Cam E, Confalonieri F. In vivo and in vitro characterization of DdrC, a DNA damage response protein in Deinococcus radiodurans bacterium. PLoS One 2017; 12:e0177751. [PMID: 28542368 PMCID: PMC5436757 DOI: 10.1371/journal.pone.0177751] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/02/2017] [Indexed: 11/19/2022] Open
Abstract
The bacterium Deinococcus radiodurans possesses a set of Deinococcus-specific genes highly induced after DNA damage. Among them, ddrC (dr0003) was recently re-annotated, found to be in the inverse orientation and called A2G07_00380. Here, we report the first in vivo and in vitro characterization of the corrected DdrC protein to better understand its function in irradiated cells. In vivo, the ΔddrC null mutant is sensitive to high doses of UV radiation and the ddrC deletion significantly increases UV-sensitivity of ΔuvrA or ΔuvsE mutant strains. We show that the expression of the DdrC protein is induced after γ-irradiation and is under the control of the regulators, DdrO and IrrE. DdrC is rapidly recruited into the nucleoid of the irradiated cells. In vitro, we show that DdrC is able to bind single- and double-stranded DNA with a preference for the single-stranded DNA but without sequence or shape specificity and protects DNA from various nuclease attacks. DdrC also condenses DNA and promotes circularization of linear DNA. Finally, we show that the purified protein exhibits a DNA strand annealing activity. Altogether, our results suggest that DdrC is a new DNA binding protein with pleiotropic activities. It might maintain the damaged DNA fragments end to end, thus limiting their dispersion and extensive degradation after exposure to ionizing radiation. DdrC might also be an accessory protein that participates in a single strand annealing pathway whose importance in DNA repair becomes apparent when DNA is heavily damaged.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
- * E-mail:
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Laura Meyer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pauline Dupaigne
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, 114 rue E. Vaillant, Villejuif, France
| | - Fanny Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| | - Eric Le Cam
- Signalisations, Noyaux et Innovations en Cancérologie, UMR 8126, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gustave Roussy, 114 rue E. Vaillant, Villejuif, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif sur Yvette cedex, France
| |
Collapse
|
37
|
Blanchard L, Guérin P, Roche D, Cruveiller S, Pignol D, Vallenet D, Armengaud J, de Groot A. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiologyopen 2017; 6. [PMID: 28397370 PMCID: PMC5552922 DOI: 10.1002/mbo3.477] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The extreme radiation resistance of Deinococcus bacteria requires the radiation‐stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation‐induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo‐IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM‐containing DNA or interaction of IrrE with DNA‐bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE‐dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation‐resistant Deinococcus species.
Collapse
Affiliation(s)
- Laurence Blanchard
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Philippe Guérin
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - David Roche
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Stéphane Cruveiller
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - David Pignol
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - David Vallenet
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Jean Armengaud
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Arjan de Groot
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| |
Collapse
|
38
|
Anaganti N, Basu B, Apte SK. In situ real-time evaluation of radiation-responsive promoters in the extremely radioresistant microbe Deinococcus radiodurans. J Biosci 2017; 41:193-203. [PMID: 27240980 DOI: 10.1007/s12038-016-9608-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A third generation promoter probe shuttle vector pKG was constructed, using the green fluorescent protein as a reporter, for in situ evaluation of Deinococcal promoter activity in Escherichia coli or Deinococcus radiodurans. The construct yielded zero background fluorescence in both the organisms, in the absence of promoter sequences. Fifteen Deinococcal promoters, either harbouring Radiation and Desiccation Response Motif (RDRM) or not, were cloned in vector pKG. Only the RDRM-promoter constructs displayed (i) gamma radiation inducible GFP expression in D. radiodurans, following gamma irradiation, (ii) DdrO-mediated repression of GFP expression in heterologous E. coli, or (iii) abolition in GFP induction following gamma irradiation, in pprI mutant of D. radiodurans. Utility of pKG vector for real-time in situ assessment of Deinococcal promoter function was, thus, successfully demonstrated.
Collapse
Affiliation(s)
- Narasimha Anaganti
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | | | | |
Collapse
|
39
|
Abstract
Binding of proteins to specific DNA sequences is essential for a variety of cellular processes such as DNA replication, transcription and responses to external stimuli. Chromatin immunoprecipitation is widely used for determining intracellular DNA fragments bound by a specific protein. However, the subsequent specific or accurate DNA-protein-binding sequence is usually determined by DNA footprinting. Here, we report an alternative method for identifying specific sites of DNA-protein-binding (designated SSDP) in vitro. This technique is mainly dependent on antibody-antigen immunity, simple and convenient, while radioactive isotope labeling and optimization of partial degradation by deoxyribonuclease (DNase) are avoided. As an example, the specific binding sequence of a target promoter by DdrO (a DNA damage response protein from Deinococcus radiodurans) in vitro was determined by the developed method. The central sequence of the binding site could be easily located using this technique.
Collapse
|
40
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
41
|
Thaler DS. Toward a microbial Neolithic revolution in buildings. MICROBIOME 2016; 4:14. [PMID: 27021307 PMCID: PMC4810507 DOI: 10.1186/s40168-016-0157-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/11/2016] [Indexed: 05/03/2023]
Abstract
The Neolithic revolution--the transition of our species from hunter and gatherer to cultivator--began approximately 14,000 years ago and is essentially complete for macroscopic food. Humans remain largely pre-Neolithic in our relationship with microbes but starting with the gut we continue our hundred-year project of approaching the ability to assess and cultivate benign microbiomes in our bodies. Buildings are analogous to the body and it is time to ask what it means to cultivate benign microbiomes in our built environment. A critical distinction is that we have not found, or invented, niches in buildings where healthful microbial metabolism occurs and/or could be cultivated. Key events affecting the health and healthfulness of buildings such as a hurricane leading to a flood or a burst pipe occur only rarely and unpredictably. The cause may be transient but the effects can be long lasting and, e.g., for moisture damage, cumulative. Non-invasive "building tomography" could find moisture and "sentinel microbes" could record the integral of transient growth. "Seed" microbes are metabolically inert cells able to grow when conditions allow. All microbes and their residue present actinic molecules including immunological epitopes (molecular shapes). The fascinating hygiene and microbial biodiversity hypotheses propose that a healthy immune system requires exposure to a set of microbial epitopes that is rich in diversity. A particular conjecture is that measures of the richness of diversity derived from microbiome next-generation sequencing (NGS) can be mechanistically coupled to--rather than merely correlated with some measures of--human health. These hypotheses and conjectures inspire workers and funders but an alternative is also consequent to the first Neolithic revolution: That the genetic uniformity of contemporary foods may also decrease human exposure to molecular biodiversity in a heath-relevant manner. Understanding the consequences--including the unintended consequences of the first Neolithic revolution--will inform and help us benignly implement the second--the microbial--Neolithic revolution.
Collapse
Affiliation(s)
- David S Thaler
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH - 4056, Basel, Switzerland.
| |
Collapse
|
42
|
PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria. mSphere 2016; 1:mSphere00036-15. [PMID: 27303692 PMCID: PMC4863600 DOI: 10.1128/msphere.00036-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium. PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCED. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.
Collapse
|
43
|
Ithurbide S, Bentchikou E, Coste G, Bost B, Servant P, Sommer S. Single Strand Annealing Plays a Major Role in RecA-Independent Recombination between Repeated Sequences in the Radioresistant Deinococcus radiodurans Bacterium. PLoS Genet 2015; 11:e1005636. [PMID: 26517555 PMCID: PMC4627823 DOI: 10.1371/journal.pgen.1005636] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/08/2015] [Indexed: 11/18/2022] Open
Abstract
The bacterium Deinococcus radiodurans is one of the most radioresistant organisms known. It is able to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Our work aims to highlight the genes involved in recombination between 438 bp direct repeats separated by intervening sequences of various lengths ranging from 1,479 bp to 10,500 bp to restore a functional tetA gene in the presence or absence of radiation-induced DNA double strand breaks. The frequency of spontaneous deletion events between the chromosomal direct repeats were the same in recA+ and in ΔrecA, ΔrecF, and ΔrecO bacteria, whereas recombination between chromosomal and plasmid DNA was shown to be strictly dependent on the RecA and RecF proteins. The presence of mutations in one of the repeated sequence reduced, in a MutS-dependent manner, the frequency of the deletion events. The distance between the repeats did not influence the frequencies of deletion events in recA+ as well in ΔrecA bacteria. The absence of the UvrD protein stimulated the recombination between the direct repeats whereas the absence of the DdrB protein, previously shown to be involved in DNA double strand break repair through a single strand annealing (SSA) pathway, strongly reduces the frequency of RecA- (and RecO-) independent deletions events. The absence of the DdrB protein also increased the lethal sectoring of cells devoid of RecA or RecO protein. γ-irradiation of recA+ cells increased about 10-fold the frequencies of the deletion events, but at a lesser extend in cells devoid of the DdrB protein. Altogether, our results suggest a major role of single strand annealing in DNA repeat deletion events in bacteria devoid of the RecA protein, and also in recA+ bacteria exposed to ionizing radiation. Deinococcus radiodurans is known for its exceptional ability to tolerate exposure to DNA damaging agents and, in particular, to very high doses of ionizing radiation. This exceptional radioresistance results from many features including efficient DNA double strand break repair. Here, we examine genome stability in D. radiodurans before and after exposure to ionizing radiation. Rearrangements between repeated sequences are a major source of genome instability and can be deleterious to the organism. Thus, we measured the frequency of recombination between direct repeats separated by intervening sequences of various lengths in the presence or absence of radiation-induced DNA double strand breaks. Strikingly, we showed that the frequency of deletions was as high in strains devoid of the RecA, RecF or RecO proteins as in wild type bacteria, suggesting a very efficient RecA-independent process able to generate genome rearrangements. Our results suggest that single strand annealing may play a major role in genome instability in the absence of homologous recombination.
Collapse
Affiliation(s)
- Solenne Ithurbide
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Esma Bentchikou
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Geneviève Coste
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Bruno Bost
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
44
|
Ishino Y, Narumi I. DNA repair in hyperthermophilic and hyperradioresistant microorganisms. Curr Opin Microbiol 2015; 25:103-12. [PMID: 26056771 DOI: 10.1016/j.mib.2015.05.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/22/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
Abstract
The genome of a living cell is continuously under attack by exogenous and endogenous genotoxins. Especially, life at high temperature inflicts additional stress on genomic DNA, and very high rates of potentially mutagenic DNA lesions, including deamination, depurination, and oxidation, are expected. However, the spontaneous mutation rates in hyperthermophiles are similar to that in Escherichia coli, and it is interesting to determine how the hyperthermophiles preserve their genomes under such grueling environmental conditions. In addition, organisms with extremely radioresistant phenotypes are targets for investigating special DNA repair mechanisms in extreme environments. Multiple DNA repair mechanisms have evolved in all organisms to ensure genomic stability, by preventing impediments that result in genome destabilizing lesions.
Collapse
Affiliation(s)
- Yoshizumi Ishino
- Department of Bioscience and Biotechnology, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka, Fukuoka 812-8581, Japan.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 1-1-1 Izumino, Itakura, Gunma 374-0193, Japan
| |
Collapse
|
45
|
Dulermo R, Onodera T, Coste G, Passot F, Dutertre M, Porteron M, Confalonieri F, Sommer S, Pasternak C. Identification of new genes contributing to the extreme radioresistance of Deinococcus radiodurans using a Tn5-based transposon mutant library. PLoS One 2015; 10:e0124358. [PMID: 25884619 PMCID: PMC4401554 DOI: 10.1371/journal.pone.0124358] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 01/19/2023] Open
Abstract
Here, we have developed an extremely efficient in vivo Tn5-based mutagenesis procedure to construct a Deinococcus radiodurans insertion mutant library subsequently screened for sensitivity to genotoxic agents such as γ and UV radiations or mitomycin C. The genes inactivated in radiosensitive mutants belong to various functional categories, including DNA repair functions, stress responses, signal transduction, membrane transport, several metabolic pathways, and genes of unknown function. Interestingly, preliminary characterization of previously undescribed radiosensitive mutants suggests the contribution of cyclic di-AMP signaling in the recovery of D. radiodurans cells from genotoxic stresses, probably by modulating several pathways involved in the overall cell response. Our analyses also point out a new transcriptional regulator belonging to the GntR family, encoded by DR0265, and a predicted RNase belonging to the newly described Y family, both contributing to the extreme radioresistance of D. radiodurans. Altogether, this work has revealed new cell responses involved either directly or indirectly in repair of various cell damage and confirmed that D. radiodurans extreme radiation resistance is determined by a multiplicity of pathways acting as a complex network.
Collapse
Affiliation(s)
- Rémi Dulermo
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Takefumi Onodera
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Geneviève Coste
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fanny Passot
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Murielle Dutertre
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Martine Porteron
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Fabrice Confalonieri
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Suzanne Sommer
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
| | - Cécile Pasternak
- Univ. Paris-Sud, Institute for Integrative Biology of the Cell (I2BC), Université Paris Saclay, CEA, CNRS, Orsay, France
- * E-mail:
| |
Collapse
|