1
|
Varshney A, Jia Z, Howe MD, Keiler KC, Baughn AD. A trans-Translation Inhibitor is Potentiated by Zinc and Kills Mycobacterium tuberculosis and Nontuberculous Mycobacteria. ACS Infect Dis 2025; 11:1140-1152. [PMID: 40202906 DOI: 10.1021/acsinfecdis.4c00963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Mycobacterium tuberculosis poses a serious challenge for human health, and new antibiotics with novel targets are needed. Here we demonstrate that an acylaminooxadiazole, MBX-4132, specifically inhibits the trans-translation ribosome rescue pathway to kill M. tuberculosis. Our data demonstrate that MBX-4132 is bactericidal against multiple pathogenic mycobacterial species and kills M. tuberculosis in macrophages. We also show that acylaminooxadiazole activity is antagonized by iron but is potentiated by zinc. Our transcriptomic data reveal dysregulation of multiple metal homeostasis pathways after exposure to MBX-4132. Furthermore, we see differential expression of genes related to zinc sensing and efflux when trans-translation is inhibited. Taken together, these data suggest that there is a link between disturbing intracellular metal levels and acylaminooxadiazole-mediated inhibition of trans-translation. These findings provide an important proof-of-concept that trans-translation is a promising antitubercular drug target.
Collapse
Affiliation(s)
- Akanksha Varshney
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Michael D Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| | - Kenneth C Keiler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Anthony D Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
2
|
Butler RE, Schuller M, Jaiswal R, Mukhopadhyay J, Barber J, Hingley-Wilson S, Wasson E, Couto Alves A, Ahel I, Stewart GR. Control of replication and gene expression by ADP-ribosylation of DNA in Mycobacterium tuberculosis. EMBO J 2025:10.1038/s44318-025-00451-y. [PMID: 40341764 DOI: 10.1038/s44318-025-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/10/2025] [Accepted: 04/22/2025] [Indexed: 05/11/2025] Open
Abstract
Mycobacterium tuberculosis maintains long-term infections characterised by the need to regulate growth and adapt to contrasting in vivo environments. Here we show that M. tuberculosis complex bacteria utilise reversible ADP-ribosylation of single-stranded DNA as a mechanism to coordinate stationary phase growth with transcriptional adaptation. The DNA modification is controlled by DarT, an ADP-ribosyltransferase, which adds ADP-ribose to thymidine, and DarG, which enzymatically removes this base modification. Using darG-knockdown M. bovis BCG, we map the first DNA ADP-ribosylome from any organism. We show that inhibition of replication by DarT is reversible and accompanied by extensive ADP-ribosylation at the origin of replication (OriC). In addition, we observe ADP-ribosylation across the genome and demonstrate that ADP-ribose-thymidine alters the transcriptional activity of M. tuberculosis RNA polymerase. Furthermore, we demonstrate that during stationary phase, DarT-dependent ADP-ribosylation of M. tuberculosis DNA is required to optimally induce expression of the Zur regulon, including the ESX-3 secretion system and multiple alternative ribosome proteins. Thus, ADP-ribosylation of DNA can provide a mechanistic link through every aspect of DNA biology from replication to transcription to translation.
Collapse
Affiliation(s)
- Rachel E Butler
- Section of Bacteriology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Ritu Jaiswal
- Department of Chemical Science, Bose Institute, EN80 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Jayanta Mukhopadhyay
- Department of Chemical Science, Bose Institute, EN80 Sector V, Salt Lake, Kolkata, West Bengal, 700091, India
| | - Jim Barber
- Section of Bacteriology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Suzie Hingley-Wilson
- Section of Bacteriology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Emily Wasson
- Section of Bacteriology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Alex Couto Alves
- Section of Bacteriology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| | - Graham R Stewart
- Section of Bacteriology, School of Biosciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| |
Collapse
|
3
|
Marcantonio E, Burger AD, Chang KH, Hoffmann FW, Fu Y, Khadka VS, Smagghe BJ, Deng Y, Hoffmann PR, Prisic S. Zinc-limited Mycobacterium tuberculosis stimulate distinct responses in macrophages compared with standard zinc-replete bacteria. Infect Immun 2025; 93:e0057824. [PMID: 39903447 PMCID: PMC11895486 DOI: 10.1128/iai.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025] Open
Abstract
Tuberculosis (TB) is notoriously difficult to treat, likely due to the complex host-pathogen interactions driven by pathogen heterogeneity. An understudied area of TB pathogenesis is host responses to Mycobacterium tuberculosis bacteria (Mtb) that are limited in zinc ions. This distinct population resides in necrotic granulomas and sputum and could be the key player in tuberculosis pathogenicity. In this study, we tested the hypothesis that macrophages differentiate between Mtb grown under zinc limitation or in the standard zinc-replete medium. Using several macrophage infection models, such as murine RAW 264.7 and murine bone marrow-derived macrophages (BMDMs), as well as human THP-1-derived macrophages, we show that macrophages infected with zinc-limited Mtb have increased bacterial burden compared with macrophages infected with zinc-replete Mtb. We further demonstrate that macrophage infection with zinc-limited Mtb trigger higher production of reactive oxygen species (ROS) and cause more macrophage death. Furthermore, the increased ROS production is linked to the increased phagocytosis of zinc-limited Mtb, whereas cell death is not. Finally, transcriptional analysis of RAW 264.7 macrophages demonstrates that macrophages have more robust pro-inflammatory responses when infected with zinc-limited Mtb than zinc-replete Mtb. Together, our findings suggest that Mtb's access to zinc affects their interaction with macrophages and that zinc-limited Mtb may be influencing TB progression. Therefore, zinc availability in bacterial growth medium should be considered in TB drug and vaccine developments.
Collapse
Affiliation(s)
- Endrei Marcantonio
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Allexa D. Burger
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Kelly H. Chang
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Fukun W. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Yuanyuan Fu
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Vedbar S. Khadka
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Benoit J. Smagghe
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Youping Deng
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Peter R. Hoffmann
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai'i at Mānoa, Honolulu, Hawaii, USA
| |
Collapse
|
4
|
Wynn EA, Dide-Agossou C, Al Mubarak R, Rossmassler K, Ektnitphong V, Bauman AA, Massoudi LM, Voskuil MI, Robertson GT, Moore CM, Walter ND. Emergence of antibiotic-specific Mycobacterium tuberculosis phenotypes during prolonged treatment of mice. Antimicrob Agents Chemother 2025; 69:e0131024. [PMID: 39818957 PMCID: PMC11823617 DOI: 10.1128/aac.01310-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025] Open
Abstract
A major challenge in tuberculosis (TB) therapeutics is that antibiotic exposure leads to changes in the physiology of M. tuberculosis (Mtb), which may enable the pathogen to withstand treatment. While antibiotic-treated Mtb has been evaluated in in vitro experiments, it is unclear if and how long-term in vivo treatment with diverse antibiotics with varying treatment-shortening activity (sterilizing activity) affects Mtb physiologic processes differently. Here, we used SEARCH-TB, a pathogen-targeted RNA-sequencing platform, to characterize the Mtb transcriptome in the BALB/c high-dose aerosol infection mouse model following 4 weeks of treatment with three sterilizing and three non-sterilizing antibiotics. Certain transcriptional changes were shared among most antibiotics, including decreased expression of genes associated with protein synthesis and metabolism and the induction of certain genes associated with stress responses. However, the magnitude of this shared response differed between antibiotics. Sterilizing antibiotics rifampin, pyrazinamide, and bedaquiline generated a more quiescent Mtb state than did non-sterilizing antibiotics isoniazid, ethambutol, and streptomycin, as indicated by the decreased expression of genes associated with translation, transcription, secretion of immunogenic proteins, metabolism, and cell wall synthesis. Additionally, we identified distinguishing transcriptional effects specific to each antibiotic, indicating that different mechanisms of action induce distinct patterns in response to cellular injury. In addition to elucidating the Mtb physiologic changes associated with antibiotic stress, this study demonstrates the value of SEARCH-TB as a highly granular pharmacodynamic assay that reveals antibiotic effects that are not apparent based on culture alone.
Collapse
Affiliation(s)
- Elizabeth A. Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Victoria Ektnitphong
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Allison A. Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M. Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Martin I. Voskuil
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T. Robertson
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
| | - Camille M. Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Nicholas D. Walter
- Rocky Mountain Regional VA Medical Center, Aurora, Colorado, USA
- Consortium for Applied Microbial Metrics, Aurora, Colorado, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Boß L, Stehling O, Elsässer HP, Lill R. Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome. J Biol Chem 2025; 301:108087. [PMID: 39675708 PMCID: PMC11791143 DOI: 10.1016/j.jbc.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits. Each of these clusters is coordinated in a bridging fashion by cysteine residues from two different mitoribosomal proteins. Here, we investigated the cell biological and biochemical roles of all three iron-sulfur clusters in mitochondrial function and assembly. First, we found a requirement of both early and late factors of the mitochondrial iron-sulfur cluster assembly machinery for protein translation indicating that not only the mitoribosome [2Fe-2S] clusters but also the [4Fe-4S] cluster of the mitoribosome assembly factor METTL17 are required for mitochondrial translation. Second, siRNA-mediated depletion of the cluster-coordinating ribosomal proteins bS18m, mS25, or mL66 and complementation with either the respective WT or cysteine-exchange proteins unveiled the importance of the clusters for assembly, stability, and function of the human mitoribosome. As a consequence, the lack of cluster binding to mitoribosomes impaired the activity of the mitochondrial respiratory chain complexes and led to altered mitochondrial morphology with a loss of cristae membranes. Finally, in silico investigation of the phylogenetic distribution of the cluster-coordinating cysteine motifs indicated their presence in most metazoan mitoribosomes, with exception of ray-finned fish. Collectively, our study highlights the functional need of mitochondrial iron-sulfur protein biogenesis for both protein translation and respiratory energy supply in most metazoan mitochondria.
Collapse
Affiliation(s)
- Linda Boß
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Hans-Peter Elsässer
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
6
|
Varshney A, Jia Z, Howe MD, Keiler KC, Baughn AD. A trans-translation inhibitor is potentiated by zinc and kills Mycobacterium tuberculosis and non-tuberculous mycobacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.02.621434. [PMID: 39554143 PMCID: PMC11566007 DOI: 10.1101/2024.11.02.621434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis poses a serious challenge for human health, and new antibiotics with novel targets are needed. Here we demonstrate that an acylaminooxadiazole, MBX-4132, specifically inhibits the trans-translation ribosome rescue pathway to kill M. tuberculosis. Our data demonstrate that MBX-4132 is bactericidal against multiple pathogenic mycobacterial species and kills M. tuberculosis in macrophages. We also show that acylaminooxadiazole activity is antagonized by iron but is potentiated by zinc. Our transcriptomic data reveals dysregulation of multiple metal homeostasis pathways after exposure to MBX-4132. Furthermore, we see differential expression of genes related to zinc sensing and efflux when trans-translation is inhibited. Taken together, these data suggest that there is a link between disturbing intracellular metal levels and acylaminooxadiazole-mediated inhibition of trans-translation. These findings provide an important proof-of-concept that trans-translation is a promising antitubercular drug target.
Collapse
Affiliation(s)
- Akanksha Varshney
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
- These authors contributed equally
| | - Ziyi Jia
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
- These authors contributed equally
| | - Michael D. Howe
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| | - Kenneth C. Keiler
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712 USA
| | - Anthony D. Baughn
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455 USA
| |
Collapse
|
7
|
Wynn EA, Dide-Agossou C, Mubarak RA, Rossmassler K, Ektnitphong V, Bauman AA, Massoudi LM, Voskuil MI, Robertson GT, Moore CM, Walter ND. Emergence of antibiotic-specific Mycobacterium tuberculosis phenotypes during prolonged treatment of mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.607990. [PMID: 39229030 PMCID: PMC11370397 DOI: 10.1101/2024.08.20.607990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A major challenge in tuberculosis (TB) therapeutics is that antibiotic exposure leads to changes in the physiologic state of M. tuberculosis (Mtb) which may enable the pathogen to withstand treatment. While antibiotic-treated Mtb have been evaluated in short-term in vitro experiments, it is unclear if and how long-term in vivo treatment with diverse antibiotics with varying treatment-shortening activity (sterilizing activity) affect Mtb physiologic states differently. Here, we used SEARCH-TB, a pathogen-targeted RNA-sequencing platform, to characterize the Mtb transcriptome in the BALB/c high-dose aerosol infection mouse model following 4-week treatment with three sterilizing and three non-sterilizing antibiotics. Certain transcriptional changes were concordant among most antibiotics, including decreased expression of genes associated with protein synthesis and metabolism, and the induction of certain genes associated with stress responses. However, the magnitude of this concordant response differed between antibiotics. Sterilizing antibiotics rifampin, pyrazinamide, and bedaquiline generated a more quiescent Mtb state than did non-sterilizing antibiotics isoniazid, ethambutol, and streptomycin, as indicated by decreased expression of genes associated with translation, transcription, secretion of immunogenic proteins, metabolism, and cell wall synthesis. Additionally, we identified distinguishing transcriptional effects specific to each antibiotic, indicating that different mechanisms of action induce distinct patterns of cellular injury. In addition to elucidating Mtb physiologic changes associated with antibiotic stress, this study demonstrates the value of SEARCH-TB as a highly granular pharmacodynamic assay that reveals antibiotic effects that are not apparent based on culture alone.
Collapse
Affiliation(s)
- Elizabeth A Wynn
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
| | - Christian Dide-Agossou
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Reem Al Mubarak
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Karen Rossmassler
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Linda Crnic Institute for Down syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Victoria Ektnitphong
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Allison A Bauman
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Lisa M Massoudi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Martin I Voskuil
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory T Robertson
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camille M Moore
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholas D Walter
- Rocky Mountain Regional VA Medical Center, Aurora, CO, USA
- Consortium for Applied Microbial Metrics, Aurora, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
8
|
Zhong H, Barrientos A. The zinc finger motif in the mitochondrial large ribosomal subunit protein bL36m is essential for optimal yeast mitoribosome assembly and function. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119707. [PMID: 38493895 PMCID: PMC11009049 DOI: 10.1016/j.bbamcr.2024.119707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 03/19/2024]
Abstract
Ribosomes across species contain subsets of zinc finger proteins that play structural roles by binding to rRNA. While the majority of these zinc fingers belong to the C2-C2 type, the large subunit protein L36 in bacteria and mitochondria exhibits an atypical C2-CH motif. To comprehend the contribution of each coordinating residue in S. cerevisiae bL36m to mitoribosome assembly and function, we engineered and characterized strains carrying single and double mutations in the zinc coordinating residues. Our findings reveal that although all four residues markedly influence protein stability, C to A mutations in C66 and/or C69 have a more pronounced effect compared to those at C82 and H88. Importantly, protein stability directly correlates with the assembly and function of the mitoribosome and the growth rate of yeast in respiratory conditions. Mass spectrometry analysis of large subunit particles indicates that strains deleted for bL36m or expressing mutant variants have defective assembly of the L7/L12 stalk base, limiting their functional competence. Furthermore, we employed a synthetic bL36m protein collection, including both wild-type and mutant proteins, to elucidate their ability to bind zinc. Our data indicate that mutations in C82 and, particularly, H88 allow for some zinc binding albeit inefficient or unstable, explaining the residual accumulation and activity in mitochondria of bL36m variants carrying mutations in these residues. In conclusion, stable zinc binding by bL36m is essential for optimal mitoribosome assembly and function. MS data are available via ProteomeXchange with identifierPXD046465.
Collapse
Affiliation(s)
- Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA.
| | - Antoni Barrientos
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA; Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA; The Miami Veterans Affairs (VA) Medical System, 1201 NW 16th St, Miami, FL 33125, USA.
| |
Collapse
|
9
|
van den Elzen A, Helena-Bueno K, Brown CR, Chan LI, Melnikov S. Ribosomal proteins can hold a more accurate record of bacterial thermal adaptation compared to rRNA. Nucleic Acids Res 2023; 51:8048-8059. [PMID: 37395434 PMCID: PMC10450194 DOI: 10.1093/nar/gkad560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/29/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023] Open
Abstract
Ribosomal genes are widely used as 'molecular clocks' to infer evolutionary relationships between species. However, their utility as 'molecular thermometers' for estimating optimal growth temperature of microorganisms remains uncertain. Previously, some estimations were made using the nucleotide composition of ribosomal RNA (rRNA), but the universal application of this approach was hindered by numerous outliers. In this study, we aimed to address this problem by identifying additional indicators of thermal adaptation within the sequences of ribosomal proteins. By comparing sequences from 2021 bacteria with known optimal growth temperature, we identified novel indicators among the metal-binding residues of ribosomal proteins. We found that these residues serve as conserved adaptive features for bacteria thriving above 40°C, but not at lower temperatures. Furthermore, the presence of these metal-binding residues exhibited a stronger correlation with the optimal growth temperature of bacteria compared to the commonly used correlation with the 16S rRNA GC content. And an even more accurate correlation was observed between the optimal growth temperature and the YVIWREL amino acid content within ribosomal proteins. Overall, our work suggests that ribosomal proteins contain a more accurate record of bacterial thermal adaptation compared to rRNA. This finding may simplify the analysis of unculturable and extinct species.
Collapse
Affiliation(s)
| | - Karla Helena-Bueno
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Charlotte R Brown
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
10
|
Li Y, Majumdar S, Treen R, Sharma MR, Corro J, Gamper HB, Manjari SR, Prusa J, Banavali NK, Stallings CL, Hou YM, Agrawal RK, Ojha AK. Starvation sensing by mycobacterial RelA/SpoT homologue through constitutive surveillance of translation. Proc Natl Acad Sci U S A 2023; 120:e2302006120. [PMID: 37216503 PMCID: PMC10235957 DOI: 10.1073/pnas.2302006120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/24/2023] Open
Abstract
The stringent response, which leads to persistence of nutrient-starved mycobacteria, is induced by activation of the RelA/SpoT homolog (Rsh) upon entry of a deacylated-tRNA in a translating ribosome. However, the mechanism by which Rsh identifies such ribosomes in vivo remains unclear. Here, we show that conditions inducing ribosome hibernation result in loss of intracellular Rsh in a Clp protease-dependent manner. This loss is also observed in nonstarved cells using mutations in Rsh that block its interaction with the ribosome, indicating that Rsh association with the ribosome is important for Rsh stability. The cryo-EM structure of the Rsh-bound 70S ribosome in a translation initiation complex reveals unknown interactions between the ACT domain of Rsh and components of the ribosomal L7/L12 stalk base, suggesting that the aminoacylation status of A-site tRNA is surveilled during the first cycle of elongation. Altogether, we propose a surveillance model of Rsh activation that originates from its constitutive interaction with the ribosomes entering the translation cycle.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
| | - Soneya Majumdar
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Ryan Treen
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| | - Manjuli R. Sharma
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Jamie Corro
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| | - Howard B. Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Swati R. Manjari
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Nilesh K. Banavali
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
| | - Christina L. Stallings
- Department of Molecular Microbiology, Washington University in St. Louis School of Medicine, St. Louis, MO63110
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA19107
| | - Rajendra K. Agrawal
- Division of Translational Medicine, New York State Department of Health, Wadsworth Center, Albany, NY12237
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| | - Anil K. Ojha
- Division of Genetics, New York State Department of Health, Wadsworth Center, Albany, NY12208
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY12208
| |
Collapse
|
11
|
Greenstein T, Aldridge BB. Tools to develop antibiotic combinations that target drug tolerance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2023; 12:1085946. [PMID: 36733851 PMCID: PMC9888313 DOI: 10.3389/fcimb.2022.1085946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/20/2022] [Indexed: 01/08/2023] Open
Abstract
Combination therapy is necessary to treat tuberculosis to decrease the rate of disease relapse and prevent the acquisition of drug resistance, and shorter regimens are urgently needed. The adaptation of Mycobacterium tuberculosis to various lesion microenvironments in infection induces various states of slow replication and non-replication and subsequent antibiotic tolerance. This non-heritable tolerance to treatment necessitates lengthy combination therapy. Therefore, it is critical to develop combination therapies that specifically target the different types of drug-tolerant cells in infection. As new tools to study drug combinations earlier in the drug development pipeline are being actively developed, we must consider how to best model the drug-tolerant cells to use these tools to design the best antibiotic combinations that target those cells and shorten tuberculosis therapy. In this review, we discuss the factors underlying types of drug tolerance, how combination therapy targets these populations of bacteria, and how drug tolerance is currently modeled for the development of tuberculosis multidrug therapy. We highlight areas for future studies to develop new tools that better model drug tolerance in tuberculosis infection specifically for combination therapy testing to bring the best drug regimens forward to the clinic.
Collapse
Affiliation(s)
- Talia Greenstein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, United States
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Boston, MA, United States
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA, United States
| |
Collapse
|
12
|
Sawyer EB, Cortes T. Ribosome profiling enhances understanding of mycobacterial translation. Front Microbiol 2022; 13:976550. [PMID: 35992675 PMCID: PMC9386245 DOI: 10.3389/fmicb.2022.976550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
A recent addition to the -omics toolkit, ribosome profiling, enables researchers to gain insight into the process and regulation of translation by mapping fragments of mRNA protected from nuclease digestion by ribosome binding. In this review, we discuss how ribosome profiling applied to mycobacteria has led to discoveries about translational regulation. Using case studies, we show that the traditional view of “canonical” translation mechanisms needs expanding to encompass features of mycobacterial translation that are more widespread than previously recognized. We also discuss the limitations of the method and potential future developments that could yield further insight into the fundamental biology of this important human pathogen.
Collapse
Affiliation(s)
- Elizabeth B. Sawyer
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Elizabeth B. Sawyer,
| | - Teresa Cortes
- Pathogen Gene Regulation Unit, Instituto de Biomedicina de Valencia (IBV), CSIC, Valencia, Spain
- Teresa Cortes,
| |
Collapse
|
13
|
Chen L, Liu C, Liang T, Ye Z, Huang S, Chen J, Sun X, Yi M, Zhou C, Jiang J, Chen T, Li H, Chen W, Guo H, Chen W, Yao Y, Liao S, Yu C, Wu S, Fan B, Gan Z, Zhan X. Mechanism of COVID-19-Related Proteins in Spinal Tuberculosis: Immune Dysregulation. Front Immunol 2022; 13:882651. [PMID: 35720320 PMCID: PMC9202521 DOI: 10.3389/fimmu.2022.882651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/27/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose The purpose of this article was to investigate the mechanism of immune dysregulation of COVID-19-related proteins in spinal tuberculosis (STB). Methods Clinical data were collected to construct a nomogram model. C-index, calibration curve, ROC curve, and DCA curve were used to assess the predictive ability and accuracy of the model. Additionally, 10 intervertebral disc samples were collected for protein identification. Bioinformatics was used to analyze differentially expressed proteins (DEPs), including immune cells analysis, Gene Ontology (GO) and KEGG pathway enrichment analysis, and protein-protein interaction networks (PPI). Results The nomogram predicted risk of STB ranging from 0.01 to 0.994. The C-index and AUC in the training set were 0.872 and 0.862, respectively. The results in the external validation set were consistent with the training set. Immune cells scores indicated that B cells naive in STB tissues were significantly lower than non-TB spinal tissues. Hub proteins were calculated by Degree, Closeness, and MCC methods. The main KEGG pathway included Coronavirus disease-COVID-19. There were 9 key proteins in the intersection of COVID-19-related proteins and hub proteins. There was a negative correlation between B cells naive and RPL19. COVID-19-related proteins were associated with immune genes. Conclusion Lymphocytes were predictive factors for the diagnosis of STB. Immune cells showed low expression in STB. Nine COVID-19-related proteins were involved in STB mechanisms. These nine key proteins may suppress the immune mechanism of STB by regulating the expression of immune genes.
Collapse
Affiliation(s)
- Liyi Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chong Liu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Tuo Liang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Zhen Ye
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shengsheng Huang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jiarui Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Xuhua Sun
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Ming Yi
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chenxing Zhou
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Jie Jiang
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Tianyou Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Hao Li
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Wuhua Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Hao Guo
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Wenkang Chen
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Yuanlin Yao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shian Liao
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Chaojie Yu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Shaofeng Wu
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Binguang Fan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Zhaoping Gan
- Department of Hematology, Guangxi Medical University First Affiliated Hospital, Nanning, China
| | - Xinli Zhan
- Spine and Osteopathy Ward, Guangxi Medical University First Affiliated Hospital, Nanning, China
| |
Collapse
|
14
|
Zinc-Responsive Regulator Zur Regulates Zinc Homeostasis, Secondary Metabolism, and Morphological Differentiation in Streptomyces avermitilis. Appl Environ Microbiol 2022; 88:e0027822. [PMID: 35323024 DOI: 10.1128/aem.00278-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Zinc is an essential cofactor for many metal enzymes and transcription regulators. Zn2+ availability has long been known to affect antibiotic production and morphological differentiation of Streptomyces species. However, the molecular mechanism whereby zinc regulates these processes remains unclear. We investigated the regulatory roles of the zinc-sensing regulator Zur in Streptomyces avermitilis. Our findings demonstrate that Zur plays an essential role in maintaining zinc homeostasis by repressing the expression of the zinc uptake system ZnuACB and alternative non-zinc-binding ribosomal proteins and promoting the expression of zinc exporter ZitB. Deletion of the zur gene resulted in decreased production of avermectin and oligomycin and delayed morphological differentiation, and these parameters were restored close to wild-type levels in a zur-complemented strain. Zur bound specifically to Zur box in the promoter regions of avermectin pathway-specific activator gene aveR, oligomycin polyketide synthase gene olmA1, and filipin biosynthetic pathway-specific regulatory genes pteR and pteF. Analyses by reverse transcription quantitative PCR and luciferase reporter systems indicated that Zur directly activates the transcription of these genes, i.e., that Zur directly activates biosynthesis of avermectin and oligomycin. Zur positively regulated morphological development by repressing the transcription of differentiation-related genes ssgB and minD2. Our findings, taken together, demonstrate that Zur in S. avermitilis directly controls zinc homeostasis, biosynthesis of avermectin and oligomycin, and morphological differentiation. IMPORTANCE Biosynthesis of secondary metabolites and morphological differentiation in bacteria are affected by environmental signals. The molecular mechanisms whereby zinc availability affects secondary metabolism and morphological differentiation remain poorly understood. We identified several new target genes of the zinc response regulator Zur in Streptomyces avermitilis, the industrial producer of avermectin. Zur was found to directly and positively control avermectin production, oligomycin production, and morphological differentiation in response to extracellular Zn2+ levels. Our findings clarify the regulatory functions of Zur in Streptomyces, which involve linking environmental Zn2+ status with control of antibiotic biosynthetic pathways and morphological differentiation.
Collapse
|
15
|
Dow A, Burger A, Marcantonio E, Prisic S. Multi-Omics Profiling Specifies Involvement of Alternative Ribosomal Proteins in Response to Zinc Limitation in Mycobacterium smegmatis. Front Microbiol 2022; 13:811774. [PMID: 35222334 PMCID: PMC8866557 DOI: 10.3389/fmicb.2022.811774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/04/2022] [Indexed: 12/13/2022] Open
Abstract
Zinc ion (Zn2+) is an essential micronutrient and a potent antioxidant. However, Zn2+ is often limited in the environment. Upon Zn2+ limitation, Mycolicibacterium (basonym: Mycobacterium) smegmatis (Msm) undergoes a morphogenesis, which relies on alternative ribosomal proteins (AltRPs); i.e., Zn2+-independent paralogues of Zn2+-dependent ribosomal proteins. However, the underlying physiological changes triggered by Zn2+ limitation and how AltRPs contribute to these changes were not known. In this study, we expand the knowledge of mechanisms utilized by Msm to endure Zn2+ limitation, by comparing the transcriptomes and proteomes of Zn2+-limited and Zn2+-replete Msm. We further compare, corroborate and contrast our results to those reported for the pathogenic mycobacterium, M. tuberculosis, which highlighted conservation of the upregulated oxidative stress response when Zn2+ is limited in both mycobacteria. By comparing the multi-omics analysis of a knockout mutant lacking AltRPs (ΔaltRP) to the Msm wild type strain, we specify the involvement of AltRPs in the response to Zn2+ limitation. Our results show that AltRP expression in Msm does not affect the conserved oxidative stress response during Zn2+ limitation observed in mycobacteria, but AltRPs do significantly impact expression patterns of numerous genes that may be involved in morphogenesis or other adaptive responses. We conclude that AltRPs are not only important as functional replacements for their Zn2+-dependent paralogues; they are also involved in the transcriptomic response to the Zn2+-limited environment.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
| | - Sladjana Prisic
- School of Life Sciences, University of Hawai‘i at Mānoa, Honolulu, HI, United States
- *Correspondence: Sladjana Prisic,
| |
Collapse
|
16
|
Dabbah M, Lishner M, Jarchowsky-Dolberg O, Tartakover-Matalon S, Brin YS, Pasmanik-Chor M, Neumann A, Drucker L. Ribosomal proteins as distinct "passengers" of microvesicles: new semantics in myeloma and mesenchymal stem cells' communication. Transl Res 2021; 236:117-132. [PMID: 33887527 DOI: 10.1016/j.trsl.2021.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 01/10/2023]
Abstract
Aberrant mesenchymal stem cells (MSCs) in multiple myeloma (MM) bone marrows (BM) promote disease progression and drug resistance. Here, we assayed the protein cargo transported from MM-MSCs to MM cells via microvesicles (MVs) with focus on ribosomal proteins (RPs) and assessment of their influence on translation initiation and design of MM phenotype. Proteomics analysis (mass spectrometry) demonstrated increased levels and repertoire of RPs in MM-MSCs MVs compared to normal donors (ND) counterparts (n = 3-8; P = 9.96E - 08). We limited the RPs load in MM-MSCs MVs (starvation, RSK and XPO1 inhibitions), reapplied the modified MVs to MM cell lines (U266, MM1S), and demonstrated that the RPs are essential to the proliferative effect of MM-MSCs MVs on MM cells (n = 3; P < 0.05). We also observed that inhibition with KPT-185 (XPO1 inhibitor) displayed the most extensive effect on RPs delivery into the MVs (↓80%; P = 3.12E - 05). Using flow cytometry we assessed the expression of select RPs (n = 10) in BM-MSCs cell populations (ND and MM; n ≥ 6 each). This demonstrated a heterogeneous expression of RPs in MM-MSCs with distinct subgroups, a phenomenon absent from ND-MSCs samples. These findings bring to light a new mechanism in which the tumor microenvironment participates in cancer promotion. MVs-mediated horizontal transfer of RPs between niche MSCs and myeloma cells is a systemic way to bestow pro-cancer advantages. This capacity also differentiates normal MSCs from the MM-modified MSCs and may mark their reprogramming. Future studies will be aimed at assessing the clinical and therapeutic potential of the increased RPs levels in MM-MSCs MVs.
Collapse
Affiliation(s)
- Mahmoud Dabbah
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Lishner
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel; Resaerch Institute, Meir Medical Center, Kfar saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Osnat Jarchowsky-Dolberg
- Hematology Unit, Meir Medical Center, Kfar saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shelly Tartakover-Matalon
- Autoimmunity laboratory, Meir Medical Center, Kfar saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaron S Brin
- Orthopedics Department, Meir Medical Center, Kfar Saba, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, G.S.W. Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Avivit Neumann
- Oncology Department, Rambam Medical Center, Haifa, Israel
| | - Liat Drucker
- Oncogenetic Laboratory, Meir Medical Center, Kfar Saba, Israel; Sackler faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Grabowska AD, Andreu N, Cortes T. Translation of a Leaderless Reporter Is Robust During Exponential Growth and Well Sustained During Stress Conditions in Mycobacterium tuberculosis. Front Microbiol 2021; 12:746320. [PMID: 34603273 PMCID: PMC8485053 DOI: 10.3389/fmicb.2021.746320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium tuberculosis expresses a large number of leaderless mRNA transcripts; these lack the 5' leader region, which usually contains the Shine-Dalgarno sequence required for translation initiation in bacteria. In M. tuberculosis, transcripts encoding proteins like toxin-antitoxin systems are predominantly leaderless and the overall ratio of leaderless to Shine-Dalgarno transcripts significantly increases during growth arrest, suggesting that leaderless translation might be important during persistence in the host. However, whether these two types of transcripts are translated with differing efficiencies during optimal growth conditions and during stress conditions that induce growth arrest, is unclear. Here, we have used the desA1 (Rv0824c) and desA2 (Rv1094) gene pair as representative for Shine-Dalgarno and leaderless transcripts in M. tuberculosis respectively; and used them to construct bioluminescent reporter strains. We detect robust leaderless translation during exponential in vitro growth, and we show that leaderless translation is more stable than Shine-Dalgarno translation during adaptation to stress conditions. These changes are independent from transcription, as transcription levels did not significantly change following quantitative real-time PCR analysis. Upon entrance into nutrient starvation and after nitric oxide exposure, leaderless translation is significantly less affected by the stress than Shine-Dalgarno translation. Similarly, during the early stages of infection of macrophages, the levels of leaderless translation are transiently more stable than those of Shine-Dalgarno translation. These results suggest that leaderless translation may offer an advantage in the physiology of M. tuberculosis. Identification of the molecular mechanisms underlying this translational regulation may provide insights into persistent infection.
Collapse
Affiliation(s)
| | | | - Teresa Cortes
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
18
|
Li Y, Sharma MR, Koripella RK, Banavali NK, Agrawal RK, Ojha AK. Ribosome hibernation: a new molecular framework for targeting nonreplicating persisters of mycobacteria. MICROBIOLOGY-SGM 2021; 167. [PMID: 33555244 DOI: 10.1099/mic.0.001035] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Treatment of tuberculosis requires a multi-drug regimen administered for at least 6 months. The long-term chemotherapy is attributed in part to a minor subpopulation of nonreplicating Mycobacterium tuberculosis cells that exhibit phenotypic tolerance to antibiotics. The origins of these cells in infected hosts remain unclear. Here we discuss some recent evidence supporting the hypothesis that hibernation of ribosomes in M. tuberculosis, induced by zinc starvation, could be one of the primary mechanisms driving the development of nonreplicating persisters in hosts. We further analyse inconsistencies in previously reported studies to clarify the molecular principles underlying mycobacterial ribosome hibernation.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Nilesh K Banavali
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.,Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA.,Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| |
Collapse
|
19
|
Kumar N, Sharma S, Kaushal PS. Protein synthesis in Mycobacterium tuberculosis as a potential target for therapeutic interventions. Mol Aspects Med 2021; 81:101002. [PMID: 34344520 DOI: 10.1016/j.mam.2021.101002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium tuberculosis (Mtb) causes one of humankind's deadliest diseases, tuberculosis. Mtb protein synthesis machinery possesses several unique species-specific features, including its ribosome that carries two mycobacterial specific ribosomal proteins, bL37 and bS22, and ribosomal RNA segments. Since the protein synthesis is a vital cellular process that occurs on the ribosome, a detailed knowledge of the structure and function of mycobacterial ribosomes is essential to understand the cell's proteome by translation regulation. Like in many bacterial species such as Bacillus subtilis and Streptomyces coelicolor, two distinct populations of ribosomes have been identified in Mtb. Under low-zinc conditions, Mtb ribosomal proteins S14, S18, L28, and L33 are replaced with their non-zinc binding paralogues. Depending upon the nature of physiological stress, species-specific modulation of translation by stress factors and toxins that interact with the ribosome have been reported. In addition, about one-fourth of messenger RNAs in mycobacteria have been reported to be leaderless, i.e., without 5' UTR regions. However, the mechanism by which they are recruited to the Mtb ribosome is not understood. In this review, we highlight the mycobacteria-specific features of the translation apparatus and propose exploiting these features to improve the efficacy and specificity of existing antibiotics used to treat tuberculosis.
Collapse
Affiliation(s)
- Niraj Kumar
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Shivani Sharma
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India
| | - Prem S Kaushal
- Structural Biology & Translation Regulation Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, 121 001, India.
| |
Collapse
|
20
|
Dow A, Sule P, O’Donnell TJ, Burger A, Mattila JT, Antonio B, Vergara K, Marcantonio E, Adams LG, James N, Williams PG, Cirillo JD, Prisic S. Zinc limitation triggers anticipatory adaptations in Mycobacterium tuberculosis. PLoS Pathog 2021; 17:e1009570. [PMID: 33989345 PMCID: PMC8121289 DOI: 10.1371/journal.ppat.1009570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/19/2021] [Indexed: 01/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) has complex and dynamic interactions with the human host, and subpopulations of Mtb that emerge during infection can influence disease outcomes. This study implicates zinc ion (Zn2+) availability as a likely driver of bacterial phenotypic heterogeneity in vivo. Zn2+ sequestration is part of "nutritional immunity", where the immune system limits micronutrients to control pathogen growth, but this defense mechanism seems to be ineffective in controlling Mtb infection. Nonetheless, Zn2+-limitation is an environmental cue sensed by Mtb, as calprotectin triggers the zinc uptake regulator (Zur) regulon response in vitro and co-localizes with Zn2+-limited Mtb in vivo. Prolonged Zn2+ limitation leads to numerous physiological changes in vitro, including differential expression of certain antigens, alterations in lipid metabolism and distinct cell surface morphology. Furthermore, Mtb enduring limited Zn2+ employ defensive measures to fight oxidative stress, by increasing expression of proteins involved in DNA repair and antioxidant activity, including well described virulence factors KatG and AhpC, along with altered utilization of redox cofactors. Here, we propose a model in which prolonged Zn2+ limitation defines a population of Mtb with anticipatory adaptations against impending immune attack, based on the evidence that Zn2+-limited Mtb are more resistant to oxidative stress and exhibit increased survival and induce more severe pulmonary granulomas in mice. Considering that extracellular Mtb may transit through the Zn2+-limited caseum before infecting naïve immune cells or upon host-to-host transmission, the resulting phenotypic heterogeneity driven by varied Zn2+ availability likely plays a key role during early interactions with host cells.
Collapse
Affiliation(s)
- Allexa Dow
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Preeti Sule
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Timothy J. O’Donnell
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Andrew Burger
- School of Ocean and Earth Science and Technology, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Joshua T. Mattila
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Brandi Antonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Kevin Vergara
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Endrei Marcantonio
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - L. Garry Adams
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, United States of America
| | - Nicholas James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Philip G. Williams
- Department of Chemistry, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| | - Jeffrey D. Cirillo
- Microbial Pathogenesis and Immunology, Texas A&M University Health, Bryan, Texas, United States of America
| | - Sladjana Prisic
- School of Life Sciences, University of Hawaiʻi at Mānoa, Honolulu, Hawaii, United States of America
| |
Collapse
|
21
|
Li Y, Koripella RK, Sharma MR, Lee RE, Agrawal RK, Ojha AK. Replacement of S14 Protein in Ribosomes of Zinc-Starved Mycobacteria Reduces Spectinamide Sensitivity. Antimicrob Agents Chemother 2021; 65:e01833-20. [PMID: 33361293 PMCID: PMC8092523 DOI: 10.1128/aac.01833-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/13/2020] [Indexed: 11/20/2022] Open
Abstract
Zinc is an essential micronutrient for mycobacteria, and its depletion induces multiple adaptive changes in cellular physiology, the most remarkable of which are remodeling and hibernation of ribosomes. Ribosome remodeling, induced upon relatively moderate depletion of zinc, involves replacement of multiple ribosomal proteins containing the zinc-binding CXXC motif (called C+ r proteins) by their motif-free C- paralogs. Severe zinc depletion induces binding of mycobacterial protein Y (Mpy) to the 70S C- ribosome, thereby stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. Because the Mpy binding region on the ribosome is proximal to the binding pocket of spectinamides (Spa), the preclinical drug candidates for tuberculosis, we addressed the impact of remodeling and hibernation of ribosomes on Spa sensitivity. We report here that while Mpy binding has no significant effect on Spa sensitivity to the ribosome, replacement of S14C+ with its C- counterpart reduces the binding affinity of the drug by ∼2-fold, causing increased Spa tolerance in Mycobacterium smegmatis and Mycobacterium tuberculosis cells harboring the C- ribosome. The altered interaction between Spa and ribosomes likely results from new contact points for D67 and R83 residues of S14C- with U1138 and C1184 of 16S rRNA helix 34, respectively. Given that M. tuberculosis induces ribosome remodeling during progression from the acute to chronic phase of lung infection, our findings highlight new considerations in the development of Spa as effective drugs against tuberculosis.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Manjuli R Sharma
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
22
|
Li Y, Keshavan P, Corro JH, Koripella RK, Agrawal RK, Ojha AK. Purification of Hibernating and Active C- Ribosomes from Zinc-Starved Mycobacteria. Methods Mol Biol 2021; 2314:151-166. [PMID: 34235651 DOI: 10.1007/978-1-0716-1460-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Zinc starvation in Mycobacterium smegmatis and Mycobacterium tuberculosis induces ribosome remodeling and hibernation. Remodeling involves replacement of C+ ribosomal (r-) proteins containing the zinc-binding CXXC motif with their C- paralogues without the motif. Hibernation is characterized by binding of mycobacterial-specific protein Y (Mpy) to 70S C- ribosomes, stabilizing the ribosome in an inactive state that is also resistant to kanamycin and streptomycin. We observed that ribosome remodeling and hibernation occur at two different concentrations of cellular zinc. Here, we describe the methods to purify hibernating and active forms of C- ribosomes from zinc-starved mycobacteria, along with purification of C+ ribosomes from zinc-rich mycobacterial cells. In vitro analysis of these distinct types of ribosomes will facilitate screening of small molecule inhibitors of ribosome hibernation for improved therapeutics against mycobacterial infections.
Collapse
Affiliation(s)
- Yunlong Li
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Pooja Keshavan
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Jamie H Corro
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Ravi K Koripella
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Rajendra K Agrawal
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, NY, USA
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA
| | - Anil K Ojha
- Division of Genetics, Wadsworth Center, New York State Department of Health, Albany, NY, USA.
- Department of Biomedical Sciences, University at Albany, Albany, NY, USA.
| |
Collapse
|
23
|
Abstract
Many organisms, including bacteria, code for multiple paralogues of some ribosomal protein subunits. The relative contribution of these alternative subunits to ribosome function and protein synthesis is unknown and controversial. Many studies on alternative ribosomes have been confounded by isolation of alternative and canonical ribosomes from different strains or growth conditions, potentially confounding results. Here, we show that one form of alternative ribosome from Mycobacterium smegmatis has a distinct translational profile compared with canonical ribosomes purified from an identical cellular context. We also identify a role for alternative ribosomes in iron homeostasis. Given the prevalence of alternative ribosomal genes in diverse organisms, our study suggests that alternative ribosomes may represent a further layer of regulation of gene translation. Alternative ribosome subunit proteins are prevalent in the genomes of diverse bacterial species, but their functional significance is controversial. Attempts to study microbial ribosomal heterogeneity have mostly relied on comparing wild-type strains with mutants in which subunits have been deleted, but this approach does not allow direct comparison of alternate ribosome isoforms isolated from identical cellular contexts. Here, by simultaneously purifying canonical and alternative RpsR ribosomes from Mycobacterium smegmatis, we show that alternative ribosomes have distinct translational features compared with their canonical counterparts. Both alternative and canonical ribosomes actively take part in protein synthesis, although they translate a subset of genes with differential efficiency as measured by ribosome profiling. We also show that alternative ribosomes have a relative defect in initiation complex formation. Furthermore, a strain of M. smegmatis in which the alternative ribosome protein operon is deleted grows poorly in iron-depleted medium, uncovering a role for alternative ribosomes in iron homeostasis. Our work confirms the distinct and nonredundant contribution of alternative bacterial ribosomes for adaptation to hostile environments.
Collapse
|
24
|
Progression from remodeling to hibernation of ribosomes in zinc-starved mycobacteria. Proc Natl Acad Sci U S A 2020; 117:19528-19537. [PMID: 32723821 PMCID: PMC7431043 DOI: 10.1073/pnas.2013409117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We previously reported that hibernation of 70S ribosomes in mycobacteria is induced as a response to zinc starvation. Because zinc limitation also induces ribosome remodeling, our findings raise questions about the conditions for ribosome remodeling and hibernation. Here, we show that the two processes are induced at different concentrations of zinc and that the caseinolytic protease system plays a crucial role in zinc-dependent inhibition of hibernation during remodeling. The findings offer insights into the molecular pathway underlying the transition from remodeling of ribosomes to hibernation in response to progressive zinc depletion in mycobacteria. This study is also a demonstration of reactivation of hibernating ribosomes by zinc. Finally, this study correlates ribosome hibernation with streptomycin tolerance in Mycobacterium tuberculosis during infection. Zinc starvation in mycobacteria leads to remodeling of ribosomes, in which multiple ribosomal (r-) proteins containing the zinc-binding CXXC motif are replaced by their motif-free paralogues, collectively called C− r-proteins. We previously reported that the 70S C− ribosome is exclusively targeted for hibernation by mycobacterial-specific protein Y (Mpy), which binds to the decoding center and stabilizes the ribosome in an inactive and drug-resistant state. In this study, we delineate the conditions for ribosome remodeling and hibernation and provide further insight into how zinc depletion induces Mpy recruitment to C− ribosomes. Specifically, we show that ribosome hibernation in a batch culture is induced at an approximately two-fold lower cellular zinc concentration than remodeling. We further identify a growth phase in which the C− ribosome remains active, while its hibernation is inhibited by the caseinolytic protease (Clp) system in a zinc-dependent manner. The Clp protease system destabilizes a zinc-bound form of Mpy recruitment factor (Mrf), which is stabilized upon further depletion of zinc, presumably in a zinc-free form. Stabilized Mrf binds to the 30S subunit and recruits Mpy to the ribosome. Replenishment of zinc to cells harboring hibernating ribosomes restores Mrf instability and dissociates Mpy from the ribosome. Finally, we demonstrate zinc-responsive binding of Mpy to ribosomes in Mycobacterium tuberculosis (Mtb) and show Mpy-dependent antibiotic tolerance of Mtb in mouse lungs. Together, we propose that ribosome hibernation is a specific and conserved response to zinc depletion in both environmental and pathogenic mycobacteria.
Collapse
|
25
|
Ammendola S, Ciavardelli D, Consalvo A, Battistoni A. Cobalt can fully recover the phenotypes related to zinc deficiency in Salmonella Typhimurium. Metallomics 2020; 12:2021-2031. [PMID: 33165471 DOI: 10.1039/d0mt00145g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cobalt is an essential element for living systems, which, however, make very limited use of this metal, using it mainly in cobalamin-containing enzymes. The reduced use of cobalt compared to other transition metals is generally attributed to the potential toxicity of this element. In this work, we demonstrate that cobalt not only does not have an obvious toxic effect on Salmonella Typhimurium, but that it can efficiently compensate for zinc deficiency in a znuABC deleted strain. In fact, cobalt, but not cobalamin supplementation, rescued all major phenotypic defects of the znuABC strain, including the reduced ability to grow and swim in zinc-deficient media and the high susceptibility to hydrogen peroxide stress. Growth in a cobalt-supplemented defined medium led to the accumulation of large amounts of cobalt both in the wild type and in the znuABC strain. These data suggest that atoms of cobalt may be incorporated in bacterial proteins in place of zinc, ensuring their functionality. In support of this hypothesis we have shown that, in vivo, cobalt can accumulate in ribosomes and replace zinc in a periplasmic Cu,Zn superoxide dismutase (SodCII). Finally, we provide evidence of the ability of cobalt to modulate the intracellular concentration of zinc-regulated proteins (ZnuA, ZinT, and SodCII). Although some observations suggest that in some proteins the replacement of zinc with cobalt can lead to subtle structural changes, the data reported in this study indicate that Salmonella has the ability to use cobalt instead of zinc, without evident harmful effects for cell physiology.
Collapse
Affiliation(s)
- Serena Ammendola
- Department of Biology, University of Rome ''Tor Vergata'', Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | |
Collapse
|
26
|
Muñoz-Dorado J, Moraleda-Muñoz A, Marcos-Torres FJ, Contreras-Moreno FJ, Martin-Cuadrado AB, Schrader JM, Higgs PI, Pérez J. Transcriptome dynamics of the Myxococcus xanthus multicellular developmental program. eLife 2019; 8:e50374. [PMID: 31609203 PMCID: PMC6791715 DOI: 10.7554/elife.50374] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 10/04/2019] [Indexed: 01/09/2023] Open
Abstract
The bacterium Myxococcus xanthus exhibits a complex multicellular life cycle. In the presence of nutrients, cells prey cooperatively. Upon starvation, they enter a developmental cycle wherein cells aggregate to produce macroscopic fruiting bodies filled with resistant myxospores. We used RNA-Seq technology to examine the transcriptome of the 96 hr developmental program. These data revealed that 1415 genes were sequentially expressed in 10 discrete modules, with expression peaking during aggregation, in the transition from aggregation to sporulation, or during sporulation. Analysis of genes expressed at each specific time point provided insights as to how starving cells obtain energy and precursors necessary for assembly of fruiting bodies and into developmental production of secondary metabolites. This study offers the first global view of developmental transcriptional profiles and provides important tools and resources for future studies.
Collapse
Affiliation(s)
- José Muñoz-Dorado
- Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| | | | | | | | | | - Jared M Schrader
- Department of Biological SciencesWayne State UniversityDetroitUnited States
| | - Penelope I Higgs
- Department of Biological SciencesWayne State UniversityDetroitUnited States
| | - Juana Pérez
- Departamento de Microbiología, Facultad de CienciasUniversidad de GranadaGranadaSpain
| |
Collapse
|
27
|
Alqaseer K, Turapov O, Barthe P, Jagatia H, De Visch A, Roumestand C, Wegrzyn M, Bartek IL, Voskuil MI, O'Hare HM, Ajuh P, Bottrill AR, Witney AA, Cohen-Gonsaud M, Waddell SJ, Mukamolova GV. Protein kinase B controls Mycobacterium tuberculosis growth via phosphorylation of the transcriptional regulator Lsr2 at threonine 112. Mol Microbiol 2019; 112:1847-1862. [PMID: 31562654 PMCID: PMC6906086 DOI: 10.1111/mmi.14398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2019] [Indexed: 01/23/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is able to persist in the body through months of multi‐drug therapy. Mycobacteria possess a wide range of regulatory proteins, including the protein kinase B (PknB) which controls peptidoglycan biosynthesis during growth. Here, we observed that depletion of PknB resulted in specific transcriptional changes that are likely caused by reduced phosphorylation of the H‐NS‐like regulator Lsr2 at threonine 112. The activity of PknB towards this phosphosite was confirmed with purified proteins, and this site was required for adaptation of Mtb to hypoxic conditions, and growth on solid media. Like H‐NS, Lsr2 binds DNA in sequence‐dependent and non‐specific modes. PknB phosphorylation of Lsr2 reduced DNA binding, measured by fluorescence anisotropy and electrophoretic mobility shift assays, and our NMR structure of phosphomimetic T112D Lsr2 suggests that this may be due to increased dynamics of the DNA‐binding domain. Conversely, the phosphoablative T112A Lsr2 had increased binding to certain DNA sites in ChIP‐sequencing, and Mtb containing this variant showed transcriptional changes that correspond with the change in DNA binding. In summary, PknB controls Mtb growth and adaptations to the changing host environment by phosphorylating the global transcriptional regulator Lsr2.
Collapse
Affiliation(s)
- Kawther Alqaseer
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK.,Department of Basic Science, Faculty of Nursing, University of Kufa, Najaf Governorate, P.O. Box 21, Kufa, Najaf, Iraq
| | - Obolbek Turapov
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK
| | - Philippe Barthe
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Heena Jagatia
- Wellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Angélique De Visch
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Christian Roumestand
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Malgorzata Wegrzyn
- Core Biotechnology Services, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Iona L Bartek
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Martin I Voskuil
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Helen M O'Hare
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK.,LISCB, Department of Molecular and Cell Biology, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Paul Ajuh
- Gemini Biosciences Ltd, Liverpool Science Park, Liverpool, L7 8TX, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, LE1 7RH, UK
| | - Adam A Witney
- Institute for Infection and Immunity, St George's University of London, London, SW17 0RE, UK
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, CNRS, INSERM, University of Montpellier, 34090, Montpellier, France
| | - Simon J Waddell
- Wellcome Trust Brighton and Sussex Centre for Global Health Research, Brighton and Sussex Medical School, University of Sussex, Brighton, BN1 9PX, UK
| | - Galina V Mukamolova
- Leicester Tuberculosis Research Group, Department of Respiratory Sciences, University of Leicester, Leicester, LE2 9HN, UK
| |
Collapse
|
28
|
Sawyer EB, Grabowska AD, Cortes T. Translational regulation in mycobacteria and its implications for pathogenicity. Nucleic Acids Res 2019; 46:6950-6961. [PMID: 29947784 PMCID: PMC6101614 DOI: 10.1093/nar/gky574] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/14/2018] [Indexed: 01/13/2023] Open
Abstract
Protein synthesis is a fundamental requirement of all cells for survival and replication. To date, vast numbers of genetic and biochemical studies have been performed to address the mechanisms of translation and its regulation in Escherichia coli, but only a limited number of studies have investigated these processes in other bacteria, particularly in slow growing bacteria like Mycobacterium tuberculosis, the causative agent of human tuberculosis. In this Review, we highlight important differences in the translational machinery of M. tuberculosis compared with E. coli, specifically the presence of two additional proteins and subunit stabilizing elements such as the B9 bridge. We also consider the role of leaderless translation in the ability of M. tuberculosis to establish latent infection and look at the experimental evidence that translational regulatory mechanisms operate in mycobacteria during stress adaptation, particularly focussing on differences in toxin-antitoxin systems between E. coli and M. tuberculosis and on the role of tuneable translational fidelity in conferring phenotypic antibiotic resistance. Finally, we consider the implications of these differences in the context of the biological adaptation of M. tuberculosis and discuss how these regulatory mechanisms could aid in the development of novel therapeutics for tuberculosis.
Collapse
Affiliation(s)
- Elizabeth B Sawyer
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Anna D Grabowska
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Teresa Cortes
- Pathogen Molecular Biology Department, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.,TB Centre, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
29
|
Rockwood N, Lai RP, Seldon R, Young DB, Wilkinson RJ. Variation in pre-therapy levels of selected Mycobacterium tuberculosis transcripts in sputum and their relationship with 2-month culture conversion. Wellcome Open Res 2019. [DOI: 10.12688/wellcomeopenres.15332.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background:The abundance of transcripts arising fromMycobacterium tuberculosis(MTB) in sputum pre-chemotherapy may enhance our understanding of factors influencing treatment response. We hypothesized that differences in the prevalence of pre-existing slowly metabolizing MTB in sputum may be partially responsible for differences in the rate of sputum clearance during treatment.Methods:Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used to characterize a selected limited transcription profile of MTB in sputum pre-chemotherapy and assess inter-individual variation. The difference in cycle threshold (Ct) per gene, normalized to 16S, between exponential/stationary phase culture and sputum was calculated and stratified by 2-month culture converter status.Results:HIV-1 uninfected patients with rifampicin-susceptible tuberculosis provided sputum pre-chemotherapy; 11 patients were negative for MTB culture after two months of therapy and 8 remained culture-positive.Increasedicl1andprpDandrpsN2:rpsN1in sputum relative to culture suggested cholesterol utilization and a low-zinc environment respectively. IncreasedhspXand decreasedatpAandnuoGrelative to exponential culture suggested a slowly metabolizing subpopulation of MTB. While the thehspXhiatpAlonuoGlosignal varied, we did not observe statistically significant enrichment of this phenotype in the non-converter population nor an association with MTB-lineage.Conclusion:Differential abundance of selected informative transcripts suggested a metabolically less-active subpopulation with a prevalence that varied between individual untreated patients.
Collapse
|
30
|
Behra PRK, Das S, Pettersson BMF, Shirreff L, DuCote T, Jacobsson KG, Ennis DG, Kirsebom LA. Extended insight into the Mycobacterium chelonae-abscessus complex through whole genome sequencing of Mycobacterium salmoniphilum outbreak and Mycobacterium salmoniphilum-like strains. Sci Rep 2019; 9:4603. [PMID: 30872669 PMCID: PMC6418233 DOI: 10.1038/s41598-019-40922-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Members of the Mycobacterium chelonae-abscessus complex (MCAC) are close to the mycobacterial ancestor and includes both human, animal and fish pathogens. We present the genomes of 14 members of this complex: the complete genomes of Mycobacterium salmoniphilum and Mycobacterium chelonae type strains, seven M. salmoniphilum isolates, and five M. salmoniphilum-like strains including strains isolated during an outbreak in an animal facility at Uppsala University. Average nucleotide identity (ANI) analysis and core gene phylogeny revealed that the M. salmoniphilum-like strains are variants of the human pathogen Mycobacterium franklinii and phylogenetically close to Mycobacterium abscessus. Our data further suggested that M. salmoniphilum separates into three branches named group I, II and III with the M. salmoniphilum type strain belonging to group II. Among predicted virulence factors, the presence of phospholipase C (plcC), which is a major virulence factor that makes M. abscessus highly cytotoxic to mouse macrophages, and that M. franklinii originally was isolated from infected humans make it plausible that the outbreak in the animal facility was caused by a M. salmoniphilum-like strain. Interestingly, M. salmoniphilum-like was isolated from tap water suggesting that it can be present in the environment. Moreover, we predicted the presence of mutational hotspots in the M. salmoniphilum isolates and 26% of these hotspots overlap with genes categorized as having roles in virulence, disease and defense. We also provide data about key genes involved in transcription and translation such as sigma factor, ribosomal protein and tRNA genes.
Collapse
Affiliation(s)
- Phani Rama Krishna Behra
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Sarbashis Das
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - B M Fredrik Pettersson
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden
| | - Lisa Shirreff
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Tanner DuCote
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | | | - Don G Ennis
- Department of Biology, University of Louisiana, Lafayette, Louisiana, USA
| | - Leif A Kirsebom
- Department of Cell and Molecular Biology, Box 596, Biomedical Centre, SE-751 24, Uppsala, Sweden.
| |
Collapse
|
31
|
Zinc depletion does not necessarily induce ribosome hibernation in mycobacteria. Proc Natl Acad Sci U S A 2019; 116:2395-2397. [PMID: 30683730 DOI: 10.1073/pnas.1817490116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
32
|
Bacterial ribosome heterogeneity: Changes in ribosomal protein composition during transition into stationary growth phase. Biochimie 2019; 156:169-180. [DOI: 10.1016/j.biochi.2018.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
33
|
Identification of Mycobacterial Ribosomal Proteins as Targets for CD4 + T Cells That Enhance Protective Immunity in Tuberculosis. Infect Immun 2018; 86:IAI.00009-18. [PMID: 29891545 DOI: 10.1128/iai.00009-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/08/2018] [Indexed: 12/25/2022] Open
Abstract
Mycobacterium tuberculosis remains a threat to global health, and a more efficacious vaccine is needed to prevent disease caused by M. tuberculosis We previously reported that the mycobacterial ribosome is a major target of CD4+ T cells in mice immunized with a genetically modified Mycobacterium smegmatis strain (IKEPLUS) but not in mice immunized with Mycobacterium bovis BCG. Two specific ribosomal proteins, RplJ and RpsA, were identified as cross-reactive targets of M. tuberculosis, but the breadth of the CD4+ T cell response to M. tuberculosis ribosomes was not determined. In the present study, a library of M. tuberculosis ribosomal proteins and in silico-predicted peptide libraries were used to screen CD4+ T cell responses in IKEPLUS-immunized mice. This identified 24 out of 57 M. tuberculosis ribosomal proteins distributed over both large and small ribosome subunits as specific CD4+ T cell targets. Although BCG did not induce detectable responses against ribosomal proteins or peptide epitopes, the M. tuberculosis ribosomal protein RplJ produced a robust and multifunctional Th1-like CD4+ T cell population when administered as a booster vaccine to previously BCG-primed mice. Boosting of BCG-primed immunity with the M. tuberculosis RplJ protein led to significantly reduced lung pathology compared to that in BCG-immunized animals and reductions in the bacterial burdens in the mediastinal lymph node compared to those in naive and standard BCG-vaccinated mice. These results identify the mycobacterial ribosome as a potential source of cryptic or subdominant antigenic targets of protective CD4+ T cell responses and suggest that supplementing BCG with ribosomal antigens may enhance protective vaccination against M. tuberculosis.
Collapse
|
34
|
Abstract
Mycobacteria as well as other bacteria remodel their ribosomes in response to zinc depletion by replacing zinc-binding ribosomal proteins with zinc-free paralogues, releasing zinc for other metabolic processes. In this study, we show that the remodeled ribosome acquires a structurally stable but functionally inactive and aminoglycoside-resistant state in zinc-starved Mycobacterium smegmatis. Conversely, M. smegmatis cells that are growth arrested in zinc-rich conditions have unstable ribosomes and reduced survival. We further provide evidence for ribosome remodeling in Mycobacterium tuberculosis in host tissues, suggesting that ribosome hibernation occurs during TB infections. Our findings could offer insights into mechanisms of persistence and antibiotic tolerance of mycobacterial infections. Bacteria respond to zinc starvation by replacing ribosomal proteins that have the zinc-binding CXXC motif (C+) with their zinc-free (C−) paralogues. Consequences of this process beyond zinc homeostasis are unknown. Here, we show that the C− ribosome in Mycobacterium smegmatis is the exclusive target of a bacterial protein Y homolog, referred to as mycobacterial-specific protein Y (MPY), which binds to the decoding region of the 30S subunit, thereby inactivating the ribosome. MPY binding is dependent on another mycobacterial protein, MPY recruitment factor (MRF), which is induced on zinc depletion, and interacts with C− ribosomes. MPY binding confers structural stability to C− ribosomes, promoting survival of growth-arrested cells under zinc-limiting conditions. Binding of MPY also has direct influence on the dynamics of aminoglycoside-binding pockets of the C− ribosome to inhibit binding of these antibiotics. Together, our data suggest that zinc limitation leads to ribosome hibernation and aminoglycoside resistance in mycobacteria. Furthermore, our observation of the expression of the proteins of C− ribosomes in Mycobacterium tuberculosis in a mouse model of infection suggests that ribosome hibernation could be relevant in our understanding of persistence and drug tolerance of the pathogen encountered during chemotherapy of TB.
Collapse
|
35
|
Dow A, Prisic S. Alternative ribosomal proteins are required for growth and morphogenesis of Mycobacterium smegmatis under zinc limiting conditions. PLoS One 2018; 13:e0196300. [PMID: 29684089 PMCID: PMC5912738 DOI: 10.1371/journal.pone.0196300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/10/2018] [Indexed: 01/19/2023] Open
Abstract
Zinc is an essential micronutrient required for proper structure and function of many proteins. Bacteria regularly encounter zinc depletion and have evolved diverse mechanisms to continue growth when zinc is limited, including the expression of zinc-independent paralogs of zinc-binding proteins. Mycobacteria have a conserved operon encoding four zinc-independent alternative ribosomal proteins (AltRPs) that are expressed when zinc is depleted. It is unknown if mycobacterial AltRPs replace their primary paralogs in the ribosome and maintain protein synthesis under zinc-limited conditions, and if such replacements contribute to their physiology. This study shows that AltRPs from Mycobacterium smegmatis are essential for growth when zinc ion is scarce. Specifically, the deletion mutant of this operon (ΔaltRP) is unable to grow in media containing a high-affinity zinc chelator, while growth of the wild type strain is unaffected under the same conditions. However, when zinc is gradually depleted during growth in zinc-limited medium, the ΔaltRP mutant maintains the same growth rate as seen for the wild type strain. In contrast to M. smegmatis grown with sufficient zinc supplementation that forms shorter cells when transitioning from logarithmic to stationary phase, M. smegmatis deficient for zinc elongates after the expression of AltRPs in late logarithmic phase. These zinc-depleted bacteria also exhibit a remarkable morphology characterized by a condensed chromosome, increased number of polyphosphate granules, and distinct appearance of lipid bodies and the cell wall compared to the zinc-replete cells. However, the ΔaltRP cells fail to elongate and transition into the zinc-limited morphotype, resembling the wild type zinc-replete bacteria instead. Therefore, the altRP operon in M. smegmatis has a vital role in continuation of growth when zinc is scarce and in triggering specific morphogenesis during the adaptation to zinc limitation, suggesting that AltRPs can functionally replace their zinc-dependent paralogs, but also contribute to mycobacterial physiology in a unique way.
Collapse
Affiliation(s)
- Allexa Dow
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
| | - Sladjana Prisic
- Department of Microbiology, University of Hawai‛i at Mānoa, Honolulu, Hawai‛i, United States of America
- * E-mail:
| |
Collapse
|
36
|
Hentschel J, Burnside C, Mignot I, Leibundgut M, Boehringer D, Ban N. The Complete Structure of the Mycobacterium smegmatis 70S Ribosome. Cell Rep 2018; 20:149-160. [PMID: 28683309 DOI: 10.1016/j.celrep.2017.06.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/03/2017] [Accepted: 06/10/2017] [Indexed: 11/24/2022] Open
Abstract
The ribosome carries out the synthesis of proteins in every living cell. It consequently represents a frontline target in anti-microbial therapy. Tuberculosis ranks among the leading causes of death worldwide, due in large part to the combination of difficult-to-treat latency and antibiotic resistance. Here, we present the 3.3-Å cryo-EM structure of the 70S ribosome of Mycobacterium smegmatis, a close relative to the human pathogen Mycobacterium tuberculosis. The structure reveals two additional ribosomal proteins and localizes them to the vicinity of drug-target sites in both the catalytic center and the decoding site of the ribosome. Furthermore, we visualized actinobacterium-specific rRNA and protein expansions that extensively remodel the ribosomal surface with implications for polysome organization. Our results provide a foundation for understanding the idiosyncrasies of mycobacterial translation and reveal atomic details of the structure that will facilitate the design of anti-tubercular therapeutics.
Collapse
Affiliation(s)
- Jendrik Hentschel
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Chloe Burnside
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Ingrid Mignot
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Marc Leibundgut
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Daniel Boehringer
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland
| | - Nenad Ban
- Institute of Molecular Biology and Biophysics, Eidgenössische Technische Hochschule (ETH) Zürich, Otto-Stern-Weg 5, Zürich 8093, Switzerland.
| |
Collapse
|
37
|
Synergy among Microbiota and Their Hosts: Leveraging the Hawaiian Archipelago and Local Collaborative Networks To Address Pressing Questions in Microbiome Research. mSystems 2018; 3:mSystems00159-17. [PMID: 29556540 PMCID: PMC5850080 DOI: 10.1128/msystems.00159-17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 11/28/2017] [Indexed: 11/29/2022] Open
Abstract
Despite increasing acknowledgment that microorganisms underpin the healthy functioning of basically all multicellular life, few cross-disciplinary teams address the diversity and function of microbiota across organisms and ecosystems. Our newly formed consortium of junior faculty spanning fields such as ecology and geoscience to mathematics and molecular biology from the University of Hawai‘i at Mānoa aims to fill this gap. Despite increasing acknowledgment that microorganisms underpin the healthy functioning of basically all multicellular life, few cross-disciplinary teams address the diversity and function of microbiota across organisms and ecosystems. Our newly formed consortium of junior faculty spanning fields such as ecology and geoscience to mathematics and molecular biology from the University of Hawai‘i at Mānoa aims to fill this gap. We are united in our mutual interest in advancing a new paradigm for biology that incorporates our modern understanding of the importance of microorganisms. As our first concerted research effort, we will assess the diversity and function of microbes across an entire watershed on the island of Oahu, Hawai‘i. Due to its high ecological diversity across tractable areas of land and sea, Hawai‘i provides a model system for the study of complex microbial communities and the processes they mediate. Owing to our diverse expertise, we will leverage this study system to advance the field of biology.
Collapse
|
38
|
Rawle RA, Hamerly T, Tripet BP, Giannone RJ, Wurch L, Hettich RL, Podar M, Copié V, Bothner B. Multi-omics analysis provides insight to the Ignicoccus hospitalis-Nanoarchaeum equitans association. Biochim Biophys Acta Gen Subj 2017; 1861:2218-2227. [PMID: 28591626 DOI: 10.1016/j.bbagen.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/13/2017] [Accepted: 06/02/2017] [Indexed: 12/27/2022]
Abstract
BACKGROUND Studies of interspecies interactions are inherently difficult due to the complex mechanisms which enable these relationships. A model system for studying interspecies interactions is the marine hyperthermophiles Ignicoccus hospitalis and Nanoarchaeum equitans. Recent independently-conducted 'omics' analyses have generated insights into the molecular factors modulating this association. However, significant questions remain about the nature of the interactions between these archaea. METHODS We jointly analyzed multiple levels of omics datasets obtained from published, independent transcriptomics, proteomics, and metabolomics analyses. DAVID identified functionally-related groups enriched when I. hospitalis is grown alone or in co-culture with N. equitans. Enriched molecular pathways were subsequently visualized using interaction maps generated using STRING. RESULTS Key findings of our multi-level omics analysis indicated that I. hospitalis provides precursors to N. equitans for energy metabolism. Analysis indicated an overall reduction in diversity of metabolic precursors in the I. hospitalis-N. equitans co-culture, which has been connected to the differential use of ribosomal subunits and was previously unnoticed. We also identified differences in precursors linked to amino acid metabolism, NADH metabolism, and carbon fixation, providing new insights into the metabolic adaptions of I. hospitalis enabling the growth of N. equitans. CONCLUSIONS This multi-omics analysis builds upon previously identified cellular patterns while offering new insights into mechanisms that enable the I. hospitalis-N. equitans association. GENERAL SIGNIFICANCE Our study applies statistical and visualization techniques to a mixed-source omics dataset to yield a more global insight into a complex system, that was not readily discernable from separate omics studies.
Collapse
Affiliation(s)
- Rachel A Rawle
- Department of Microbiology, Montana State University, Bozeman, MT 59717, United States; Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Timothy Hamerly
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Brian P Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | | | - Louie Wurch
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Robert L Hettich
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States
| | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Valerie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States; Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States.
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, United States; Thermal Biology Institute, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
39
|
Sun Y, Weng Y, Zhang Y, Yan X, Guo L, Wang J, Song X, Yuan Y, Chang FY, Wang CL. Systematic expression profiling analysis mines dys-regulated modules in active tuberculosis based on re-weighted protein-protein interaction network and attract algorithm. Microb Pathog 2017; 107:48-53. [PMID: 28323150 DOI: 10.1016/j.micpath.2017.03.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/09/2017] [Accepted: 03/16/2017] [Indexed: 02/02/2023]
Abstract
About 90% of tuberculosis (TB) patients latently infected with Mycobacterium tuberculosis (Mtb) show no symptoms, yet have a 10% chance in lifetime to progress active TB. Nevertheless, current diagnosis approaches need improvement in efficiency and sensitivity. The objective of this work was to detect potential signatures for active TB to further improve the understanding of the biological roles of functional modules involved in this disease. First, targeted networks of active TB and control groups were established via re-weighting protein-protein interaction (PPI) networks using Pearson's correlation coefficient (PCC). Candidate modules were detected from the targeted networks, and the modules with Jaccard score >0.7 were defined as attractors. After that, identification of dys-regulated modules was conducted from the attractors using attract method, Subsequently, gene oncology (GO) enrichment analyses were implemented for genes in the dys-regulated modules. We obtained 33 and 65 candidate modules from the targeted networks of control and active TB groups, respectively. Overall, 13 attractors were identified. Using the cut-off criteria of false discovery rate <0.05, there were 4 dys-regulated modules (Module 1, 2, 3, and 4). Based on the GO annotation results, genes in Modules 1, 2 and 4 were only involved in translation. Most genes in Module 1, 2 and 4 were associated with ribosomes. Accordingly, these dys-regulated modules might serve as potential biomarkers of active TB, facilitating the development for a more efficient, and sensitive diagnostic assay for active TB.
Collapse
Affiliation(s)
- Ying Sun
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| | - Yan Weng
- Department of Gastroenterology, China Meitan General Hospital, Beijing 100028, China.
| | - Ying Zhang
- Central Supply Service Department, Jilin Hospital of Integrated Traditional Chinese and Western Medicine, Jilin 132400, Jilin Province, China
| | - Xiang Yan
- Department of Anesthesiology, No 65334 Hospital of PLA, Yanji 133000, Jilin Province, China
| | - Lei Guo
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| | - Jia Wang
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| | - Xin Song
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| | - Ying Yuan
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| | - Fu-Ye Chang
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| | - Chun-Ling Wang
- Department of Cadres' Ward, China Meitan General Hospital, Beijing 100028, China
| |
Collapse
|
40
|
Transcriptomes of the Extremely Thermoacidophilic Archaeon Metallosphaera sedula Exposed to Metal "Shock" Reveal Generic and Specific Metal Responses. Appl Environ Microbiol 2016; 82:4613-4627. [PMID: 27208114 DOI: 10.1128/aem.01176-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The extremely thermoacidophilic archaeon Metallosphaera sedula mobilizes metals by novel membrane-associated oxidase clusters and, consequently, requires metal resistance strategies. This issue was examined by "shocking" M. sedula with representative metals (Co(2+), Cu(2+), Ni(2+), UO2 (2+), Zn(2+)) at inhibitory and subinhibitory levels. Collectively, one-quarter of the genome (554 open reading frames [ORFs]) responded to inhibitory levels, and two-thirds (354) of the ORFs were responsive to a single metal. Cu(2+) (259 ORFs, 106 Cu(2+)-specific ORFs) and Zn(2+) (262 ORFs, 131 Zn(2+)-specific ORFs) triggered the largest responses, followed by UO2 (2+) (187 ORFs, 91 UO2 (2+)-specific ORFs), Ni(2+) (93 ORFs, 25 Ni(2+)-specific ORFs), and Co(2+) (61 ORFs, 1 Co(2+)-specific ORF). While one-third of the metal-responsive ORFs are annotated as encoding hypothetical proteins, metal challenge also impacted ORFs responsible for identifiable processes related to the cell cycle, DNA repair, and oxidative stress. Surprisingly, there were only 30 ORFs that responded to at least four metals, and 10 of these responded to all five metals. This core transcriptome indicated induction of Fe-S cluster assembly (Msed_1656-Msed_1657), tungsten/molybdenum transport (Msed_1780-Msed_1781), and decreased central metabolism. Not surprisingly, a metal-translocating P-type ATPase (Msed_0490) associated with a copper resistance system (Cop) was upregulated in response to Cu(2+) (6-fold) but also in response to UO2 (2+) (4-fold) and Zn(2+) (9-fold). Cu(2+) challenge uniquely induced assimilatory sulfur metabolism for cysteine biosynthesis, suggesting a role for this amino acid in Cu(2+) resistance or issues in sulfur metabolism. The results indicate that M. sedula employs a range of physiological and biochemical responses to metal challenge, many of which are specific to a single metal and involve proteins with yet unassigned or definitive functions. IMPORTANCE The mechanisms by which extremely thermoacidophilic archaea resist and are negatively impacted by metals encountered in their natural environments are important to understand so that technologies such as bioleaching, which leverage microbially based conversion of insoluble metal sulfides to soluble species, can be improved. Transcriptomic analysis of the cellular response to metal challenge provided both global and specific insights into how these novel microorganisms negotiate metal toxicity in natural and technological settings. As genetics tools are further developed and implemented for extreme thermoacidophiles, information about metal toxicity and resistance can be leveraged to create metabolically engineered strains with improved bioleaching characteristics.
Collapse
|
41
|
Singh AK, Carette X, Potluri LP, Sharp JD, Xu R, Prisic S, Husson RN. Investigating essential gene function in Mycobacterium tuberculosis using an efficient CRISPR interference system. Nucleic Acids Res 2016; 44:e143. [PMID: 27407107 PMCID: PMC5062980 DOI: 10.1093/nar/gkw625] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 07/02/2016] [Indexed: 12/23/2022] Open
Abstract
Despite many methodological advances that have facilitated investigation of Mycobacterium tuberculosis pathogenesis, analysis of essential gene function in this slow-growing pathogen remains difficult. Here, we describe an optimized CRISPR-based method to inhibit expression of essential genes based on the inducible expression of an enzymatically inactive Cas9 protein together with gene-specific guide RNAs (CRISPR interference). Using this system to target several essential genes of M. tuberculosis, we achieved marked inhibition of gene expression resulting in growth inhibition, changes in susceptibility to small molecule inhibitors and disruption of normal cell morphology. Analysis of expression of genes containing sequences similar to those targeted by individual guide RNAs did not reveal significant off-target effects. Advantages of this approach include the ability to compare inhibited gene expression to native levels of expression, lack of the need to alter the M. tuberculosis chromosome, the potential to titrate the extent of transcription inhibition, and the ability to avoid off-target effects. Based on the consistent inhibition of transcription and the simple cloning strategy described in this work, CRISPR interference provides an efficient approach to investigate essential gene function that may be particularly useful in characterizing genes of unknown function and potential targets for novel small molecule inhibitors.
Collapse
Affiliation(s)
- Atul K Singh
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Xavier Carette
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lakshmi-Prasad Potluri
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jared D Sharp
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ranfei Xu
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sladjana Prisic
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert N Husson
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
42
|
Dow A, Prisic S. Displacement-based ELISA: Quantifying Competition between Two Binding Partners for Interaction with a His-tagged Ligand Immobilized on a Ni2+-NTA Plate. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
43
|
Cerium regulates expression of alternative methanol dehydrogenases in Methylosinus trichosporium OB3b. Appl Environ Microbiol 2015; 81:7546-52. [PMID: 26296730 DOI: 10.1128/aem.02542-15] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 08/15/2015] [Indexed: 12/25/2022] Open
Abstract
Methanotrophs have multiple methane monooxygenases that are well known to be regulated by copper, i.e., a "copper switch." At low copper/biomass ratios the soluble methane monooxygenase (sMMO) is expressed while expression and activity of the particulate methane monooxygenase (pMMO) increases with increasing availability of copper. In many methanotrophs there are also multiple methanol dehydrogenases (MeDHs), one based on Mxa and another based on Xox. Mxa-MeDH is known to have calcium in its active site, while Xox-MeDHs have been shown to have rare earth elements in their active site. We show here that the expression levels of Mxa-MeDH and Xox-MeDH in Methylosinus trichosporium OB3b significantly decreased and increased, respectively, when grown in the presence of cerium but the absence of copper compared to the absence of both metals. Expression of sMMO and pMMO was not affected. In the presence of copper, the effect of cerium on gene expression was less significant, i.e., expression of Mxa-MeDH in the presence of copper and cerium was slightly lower than in the presence of copper alone, but Xox-MeDH was again found to increase significantly. As expected, the addition of copper caused sMMO and pMMO expression levels to significantly decrease and increase, respectively, but the simultaneous addition of cerium had no discernible effect on MMO expression. As a result, it appears Mxa-MeDH can be uncoupled from methane oxidation by sMMO in M. trichosporium OB3b but not from pMMO.
Collapse
|