1
|
Early AM, Pelleau S, Musset L, Neafsey DE. Temporal Patterns of Haplotypic and Allelic Diversity Reflect the Changing Selection Landscape of the Malaria Parasite Plasmodium falciparum. Mol Biol Evol 2025; 42:msaf075. [PMID: 40164958 PMCID: PMC12004115 DOI: 10.1093/molbev/msaf075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025] Open
Abstract
The malaria parasite Plasmodium falciparum regularly confronts orchestrated changes in frontline drug treatment that drastically alter its selection landscape. When this has occurred, the parasite has successfully adapted to new drugs through novel resistance mutations. These novel mutations, however, emerge in a genetic background already shaped by prior drug selection. In some instances, selection imposed by different drugs targets the same loci in either synergistic or antagonistic ways, which may leave genomic signatures that are hard to attribute to a specific agent. Here, we use two approaches for detecting sequential bouts of drug adaptation: haplotype-based selection testing and temporal changes in allele frequencies. Using a set of longitudinal samples from French Guiana, we determine that since the official introduction of artemisinin combination therapy in 2007 there have been rapid hard selective sweeps at both known and novel loci. At four high-profile genes with demonstrated involvement in drug resistance (pfcrt, pfmdr1, pfaat1, and pfgch1), we see selection signals both before and after drug regime change; however, selection favored different haplotypes in the two time periods. Similarly, allele frequency analysis identified coding variants whose frequency trajectory changed signs under the new drug pressure. These selected alleles were enriched for genes implicated in artemisinin or partner-drug resistance in other global populations. Overall, these results suggest that drug resistance in P. falciparum is governed by known alleles of large effect along with a polygenic architecture of potentially more subtle variants, any of which can experience fitness reversals under distinct drug regimes.
Collapse
Affiliation(s)
- Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
| | - Stéphane Pelleau
- Infectious Diseases Epidemiology and Analytics Unit, Department of Global Health, lnstitut Pasteur, Université Paris Cité, Paris 75015, France
- Centre National de Référence du Paludisme, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, lnstitut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Lise Musset
- Centre National de Référence du Paludisme, World Health Organization Collaborating Center for Surveillance of Antimalarial Drug Resistance, lnstitut Pasteur de la Guyane, Cayenne 97300, French Guiana
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Segovia X, Srivastava B, Serrato-Arroyo S, Guerrero A, Huijben S. Assessing fitness costs in malaria parasites: a comprehensive review and implications for drug resistance management. Malar J 2025; 24:65. [PMID: 40025552 PMCID: PMC11871665 DOI: 10.1186/s12936-025-05286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 02/10/2025] [Indexed: 03/04/2025] Open
Abstract
Artemisinin-based combination therapy (ACT) remains a broadly effective anti-malarial drug combination, but the emergence of resistance is threatening its effectiveness. Limiting the spread of these drug-resistant parasites and delaying the emergence of resistance in new areas are of high priority. Understanding the evolution of resistance relies on discerning the fitness costs and benefits associated with resistance mutations. If the cost associated with resistance in an untreated host is sufficiently large relative to the benefit of resistance in a treated host, then the spread of resistance can be mitigated by ensuring sufficient hosts free from that active pharmaceutical ingredient. There is no straightforward way to measure these fitness costs, and each approach that has been used has its limitations. Here, the evidence of fitness costs as measured using field data, animal models, and in vitro models is reviewed for three of the main current or past first-line treatments for malaria: chloroquine (CQ), sulfadoxine-pyrimethamine (SP), and artemisinin derivatives (ART). Despite the difficulties of assessing fitness costs, there is a good amount of evidence of fitness costs in drug-resistant Plasmodium falciparum parasites. The most persuasive evidence comes from resistance reversal observed following the cessation of the use of chloroquine. Comparable evidence cannot be obtained for SP- and ART-resistant parasites, due to the absence of complete cessation of these drugs in the field. Data from in vitro and animal models are variable. While fitness costs are often observed, their presence is not universal across all resistant strains. The extent and nature of these fitness costs can vary greatly depending on the specific genetic factors involved and the ecological context in which the parasites evolve. As a result, it is essential to avoid making broad generalizations about the prevalence or impact of fitness costs in drug-resistant malaria parasites. Focusing on fitness costs as a vulnerability in resistant parasites can guide their evolutionary trajectory towards minimizing their fitness. By accurately predicting these costs, efforts to extend the effectiveness of anti-malarials can be enhanced, limiting resistance evolution and advancing malaria control and elimination goals.
Collapse
Affiliation(s)
- Xyonane Segovia
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | | | - Sergio Serrato-Arroyo
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ashley Guerrero
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Computational and Modeling Sciences Center, Simon A. Levin Mathematical, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Hagenah LM, Yeo T, Schindler KA, Jeon JH, Bloxham TS, Small-Saunders JL, Mok S, Fidock DA. Plasmodium falciparum African PfCRT Mutant Isoforms Conducive to Piperaquine Resistance are Infrequent and Impart a Major Fitness Cost. J Infect Dis 2024:jiae617. [PMID: 39661643 DOI: 10.1093/infdis/jiae617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Piperaquine, used in combination with dihydroartemisinin, has been identified as a promising partner drug for uncomplicated treatment and chemoprevention of Plasmodium falciparum malaria in Africa. In light of the earlier spread of piperaquine resistance in Southeast Asia, mediated primarily by mutations in the drug efflux transporter PfCRT, we have explored whether PfCRT mutations would represent a probable path to piperaquine resistance becoming established in Africa. METHODS We edited PfCRT mutations known to mediate piperaquine resistance in Southeast Asia into P. falciparum asexual blood stage parasites expressing three prevalent African mutant PfCRT haplotypes. Gene-edited clones were profiled in antimalarial concentration-response and competitive fitness assays. RESULTS pfcrt-edited parasites expressing the contemporary Southeast Asian T93S or I218F mutations added to the GB4 and Cam783 haplotypes common in Africa did not mediate piperaquine resistance, with partial survival only at low drug concentrations. In contrast, parasites expressing these mutations on the rare PfCRT FCB haplotype, observed mostly in North-East Africa, acquired a moderate level of piperaquine resistance. Dd2GB4, Dd2Cam783, and Dd2FCB lines edited to express the T93S or I218F mutations showed increased susceptibility to chloroquine. Piperaquine-resistant African PfCRT isoforms conferred a substantial fitness cost, manifesting as reduced asexual blood stage parasite growth rates. CONCLUSIONS These findings suggest that piperaquine-resistant PfCRT mutations that emerged in Southeast Asia mediate resistance only in a limited subset of African PfCRT haplotypes, with fitness costs that we suspect would likely preclude dissemination in high-transmission malaria-endemic African regions.
Collapse
Affiliation(s)
- Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jin H Jeon
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Talia S Bloxham
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sachel Mok
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
4
|
Shekhar, Chowdhary S, Mosnier J, Fonta I, Pradines B, Kumar V. Design, synthesis and mechanistic insights into triclosan derived dimers as potential anti-plasmodials. RSC Med Chem 2024:d4md00494a. [PMID: 39464649 PMCID: PMC11503656 DOI: 10.1039/d4md00494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
In pursuit of novel anti-plasmodial agents, a library of triclosan-based dimers both with and without a 1H-1,2,3 triazole core were designed and synthesized in order to achieve a multitargeted approach. In vitro assessment against chloroquine-susceptible (3D7) and resistant (W2) P. falciparum strains identified that two of the synthesized dimers containing triazole were the most potent in the series. The most potent of the synthesized compounds exhibited IC50 values of 9.27 and 12.09 μM against the CQ-resistant (W2) and CQ-susceptible (3D7) strains of P. falciparum, with an RI of 0.77, suggesting little or no cross-resistance with CQ. Heme binding and molecular modelling studies revealed the most promising scaffold as a dual inhibitor for hemozoin formation and a P. falciparum chloroquine resistance transporter (PfCRT), respectively. In silico studies of the most potent compound revealed that it shows better binding affinity with PfACP and PfCRT compared to TCS. To the best of our knowledge, this is the first report of triclosan-based compounds demonstrating promising heme-inhibition behaviour, with binding values comparable to those of chloroquine (CQ).
Collapse
Affiliation(s)
- Shekhar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Shefali Chowdhary
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| | - Joel Mosnier
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Isabelle Fonta
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Bruno Pradines
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées Marseille 13005 France
- Aix Marseille Univ, SSA, AP-HM, RITMES Marseille 13005 France
- IHU Méditerranée Infection Marseille 13005 France
- Centre National de Référence du Paludisme Marseille 13005 France
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University Amritsar 143005 Punjab India
| |
Collapse
|
5
|
Hagenah LM, Dhingra SK, Small-Saunders JL, Qahash T, Willems A, Schindler KA, Rangel GW, Gil-Iturbe E, Kim J, Akhundova E, Yeo T, Okombo J, Mancia F, Quick M, Roepe PD, Llinás M, Fidock DA. Additional PfCRT mutations driven by selective pressure for improved fitness can result in the loss of piperaquine resistance and altered Plasmodium falciparum physiology. mBio 2024; 15:e0183223. [PMID: 38059639 PMCID: PMC10790694 DOI: 10.1128/mbio.01832-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023] Open
Abstract
IMPORTANCE Our study leverages gene editing techniques in Plasmodium falciparum asexual blood stage parasites to profile novel mutations in mutant PfCRT, an important mediator of piperaquine resistance, which developed in Southeast Asian field isolates or in parasites cultured for long periods of time. We provide evidence that increased parasite fitness of these lines is the primary driver for the emergence of these PfCRT variants. These mutations differentially impact parasite susceptibility to piperaquine and chloroquine, highlighting the multifaceted effects of single point mutations in this transporter. Molecular features of drug resistance and parasite physiology were examined in depth using proteoliposome-based drug uptake studies and peptidomics, respectively. Energy minimization calculations, showing how these novel mutations might impact the PfCRT structure, suggested a small but significant effect on drug interactions. This study reveals the subtle interplay between antimalarial resistance, parasite fitness, PfCRT structure, and intracellular peptide availability in PfCRT-mediated parasite responses to changing drug selective pressures.
Collapse
Affiliation(s)
- Laura M. Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L. Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Tarrick Qahash
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andreas Willems
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Kyra A. Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Gabriel W. Rangel
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Emiliya Akhundova
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York, USA
- Area Neuroscience - Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, USA
| | - Paul D. Roepe
- Department of Chemistry, Georgetown University, Washington, DC, USA
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, USA
| | - Manuel Llinás
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology and Huck Center for Malaria Research, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
6
|
Carrasquilla M, Drammeh NF, Rawat M, Sanderson T, Zenonos Z, Rayner JC, Lee MCS. Barcoding Genetically Distinct Plasmodium falciparum Strains for Comparative Assessment of Fitness and Antimalarial Drug Resistance. mBio 2022; 13:e0093722. [PMID: 35972144 PMCID: PMC9600763 DOI: 10.1128/mbio.00937-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/27/2022] [Indexed: 11/20/2022] Open
Abstract
The repeated emergence of antimalarial drug resistance in Plasmodium falciparum, including to the current frontline antimalarial artemisinin, is a perennial problem for malaria control. Next-generation sequencing has greatly accelerated the identification of polymorphisms in resistance-associated genes but has also highlighted the need for more sensitive and accurate laboratory tools to profile current and future antimalarials and to quantify the impact of drug resistance acquisition on parasite fitness. The interplay of fitness and drug response is of fundamental importance in understanding why particular genetic backgrounds are better at driving the evolution of drug resistance in natural populations, but the impact of parasite fitness landscapes on the epidemiology of drug resistance has typically been laborious to accurately quantify in the lab, with assays being limited in accuracy and throughput. Here we present a scalable method to profile fitness and drug response of genetically distinct P. falciparum strains with well-described sensitivities to several antimalarials. We leverage CRISPR/Cas9 genome-editing and barcode sequencing to track unique barcodes integrated into a nonessential gene (pfrh3). We validate this approach in multiplex competitive growth assays of three strains with distinct geographical origins. Furthermore, we demonstrate that this method can be a powerful approach for tracking artemisinin response as it can identify an artemisinin resistant strain within a mix of multiple parasite lines, suggesting an approach for scaling the laborious ring-stage survival assay across libraries of barcoded parasite lines. Overall, we present a novel high-throughput method for multiplexed competitive growth assays to evaluate parasite fitness and drug response. IMPORTANCE The complex interplay between antimalarial resistance and parasite fitness has important implications for understanding the development and spread of drug resistance alleles and the impact of genetic background on transmission. One limitation with current methodologies to measure parasite fitness is the ability to scale this beyond simple head-to-head competition experiments between a wildtype control line and test line, with a need for a scalable approach that allows tracking of parasite growth in complex mixtures. In our study, we have used CRISPR editing to insert unique DNA barcodes into a safe-harbor genomic locus to tag multiple parasite strains and use next-generation sequencing to read out strain dynamics. We observe inherent fitness differences between the strains, as well as sensitive modulation of responses to challenge with clinically relevant antimalarials, including artemisinin.
Collapse
Affiliation(s)
- Manuela Carrasquilla
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Ndey F. Drammeh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Mukul Rawat
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- The Francis Crick Institute, London, United Kingdom
| | - Zenon Zenonos
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Biologics Engineering, Early Oncology, AstraZeneca, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| |
Collapse
|
7
|
Sanchez CP, Manson EDT, Moliner Cubel S, Mandel L, Weidt SK, Barrett MP, Lanzer M. The Knock-Down of the Chloroquine Resistance Transporter PfCRT Is Linked to Oligopeptide Handling in Plasmodium falciparum. Microbiol Spectr 2022; 10:e0110122. [PMID: 35867395 PMCID: PMC9431119 DOI: 10.1128/spectrum.01101-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/27/2022] [Indexed: 11/20/2022] Open
Abstract
The chloroquine resistance transporter, PfCRT, is an essential factor during intraerythrocytic development of the human malaria parasite Plasmodium falciparum. PfCRT resides at the digestive vacuole of the parasite, where hemoglobin taken up by the parasite from its host cell is degraded. PfCRT can acquire several mutations that render PfCRT a drug transporting system expelling compounds targeting hemoglobin degradation from the digestive vacuole. The non-drug related function of PfCRT is less clear, although a recent study has suggested a role in oligopeptide transport based on studies conducted in a heterologous expression system. The uncertainty about the natural function of PfCRT is partly due to a lack of a null mutant and a dearth of functional assays in the parasite. Here, we report on the generation of a conditional PfCRT knock-down mutant in P. falciparum. The mutant accumulated oligopeptides 2 to at least 8 residues in length under knock-down conditions, as shown by comparative global metabolomics. The accumulated oligopeptides were structurally diverse, had an isoelectric point between 4.0 and 5.4 and were electrically neutral or carried a single charge at the digestive vacuolar pH of 5.2. Fluorescently labeled dipeptides and live cell imaging identified the digestive vacuole as the compartment where oligopeptides accumulated. Our findings suggest a function of PfCRT in oligopeptide transport across the digestive vacuolar membrane in P. falciparum and associated with it a role in nutrient acquisition and the maintenance of the colloid osmotic balance. IMPORTANCE The chloroquine resistance transporter, PfCRT, is important for the survival of the human malaria parasite Plasmodium falciparum. It increases the tolerance to many antimalarial drugs, and it is essential for the development of the parasite within red blood cells. While we understand the role of PfCRT in drug resistance in ever increasing detail, the non-drug resistance functions are still debated. Identifying the natural substrate of PfCRT has been hampered by a paucity of functional assays to test putative substrates in the parasite system and the absence of a parasite mutant deficient for the PfCRT encoding gene. By generating a conditional PfCRT knock-down mutant, together with comparative metabolomics and uptake studies using fluorescently labeled oligopeptides, we could show that PfCRT is an oligopeptide transporter. The oligopeptides were structurally diverse and were electrically neutral or carried a single charge. Our data support a function of PfCRT in oligopeptide transport.
Collapse
Affiliation(s)
- Cecilia P. Sanchez
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| | | | - Stefan K. Weidt
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
| | - Michael P. Barrett
- Glasgow Polyomics, University of Glasgow, Wolfson Wohl Cancer Research Centre, Glasgow, United Kingdom
- The Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Universitätsklinikum Heidelberg, Heidelberg, Germany
| |
Collapse
|
8
|
Small-Saunders JL, Hagenah LM, Wicht KJ, Dhingra SK, Deni I, Kim J, Vendome J, Gil-Iturbe E, Roepe PD, Mehta M, Mancia F, Quick M, Eppstein MJ, Fidock DA. Evidence for the early emergence of piperaquine-resistant Plasmodium falciparum malaria and modeling strategies to mitigate resistance. PLoS Pathog 2022; 18:e1010278. [PMID: 35130315 PMCID: PMC8853508 DOI: 10.1371/journal.ppat.1010278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/17/2022] [Accepted: 01/13/2022] [Indexed: 11/19/2022] Open
Abstract
Multidrug-resistant Plasmodium falciparum parasites have emerged in Cambodia and neighboring countries in Southeast Asia, compromising the efficacy of first-line antimalarial combinations. Dihydroartemisinin + piperaquine (PPQ) treatment failure rates have risen to as high as 50% in some areas in this region. For PPQ, resistance is driven primarily by a series of mutant alleles of the P. falciparum chloroquine resistance transporter (PfCRT). PPQ resistance was reported in China three decades earlier, but the molecular driver remained unknown. Herein, we identify a PPQ-resistant pfcrt allele (China C) from Yunnan Province, China, whose genotypic lineage is distinct from the PPQ-resistant pfcrt alleles currently observed in Cambodia. Combining gene editing and competitive growth assays, we report that PfCRT China C confers moderate PPQ resistance while re-sensitizing parasites to chloroquine (CQ) and incurring a fitness cost that manifests as a reduced rate of parasite growth. PPQ transport assays using purified PfCRT isoforms, combined with molecular dynamics simulations, highlight differences in drug transport kinetics and in this transporter’s central cavity conformation between China C and the current Southeast Asian PPQ-resistant isoforms. We also report a novel computational model that incorporates empirically determined fitness landscapes at varying drug concentrations, combined with antimalarial susceptibility profiles, mutation rates, and drug pharmacokinetics. Our simulations with PPQ-resistant or -sensitive parasite lines predict that a three-day regimen of PPQ combined with CQ can effectively clear infections and prevent the evolution of PfCRT variants. This work suggests that including CQ in combination therapies could be effective in suppressing the evolution of PfCRT-mediated multidrug resistance in regions where PPQ has lost efficacy. The recent emergence of Plasmodium falciparum parasite resistance to the antimalarial drug piperaquine (PPQ) has contributed to frequent treatment failures across Southeast Asia, originating in Cambodia. Here, we show that earlier reports of PPQ resistance in Yunnan Province, China could be explained by the unique China C variant of the P. falciparum chloroquine resistance transporter PfCRT. Gene-edited parasites show a loss of fitness and parasite resensitization to the chemically related former first-line antimalarial chloroquine, while acquiring PPQ resistance via drug efflux. Molecular features of drug resistance were examined using biochemical assays to measure mutant PfCRT-mediated drug transport and molecular dynamics simulations with the recently solved PfCRT structure to assess changes in the central drug-binding cavity. We also describe a new computational model that incorporates parasite mutation rates, fitness costs, antimalarial susceptibilities, and drug pharmacological profiles to predict how infections with parasite strains expressing distinct PfCRT variants can evolve and be selected in response to different drug pressures and regimens. Simulations predict that a three-day regimen of PPQ plus chloroquine would be fully effective at preventing recrudescence of drug-resistant infections.
Collapse
Affiliation(s)
- Jennifer L Small-Saunders
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Laura M Hagenah
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Kathryn J Wicht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Jeremie Vendome
- Schrödinger, Inc., New York, New York, United States of America
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, Washington, DC, United States of America
- Department of Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington, DC, United States of America
| | - Monica Mehta
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, New York United States of America
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, New York, United States of America
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, New York, United States of America
- Center for Molecular Recognition, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Margaret J Eppstein
- Vermont Complex Systems Center, University of Vermont, Burlington, Vermont, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Translational Global Infectious Diseases Research Center, University of Vermont, Burlington, Vermont, United States of America
| | - David A Fidock
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
9
|
Yamauchi M, Hirai M, Tachibana SI, Mori T, Mita T. Fitness of sulfadoxine-resistant Plasmodium berghei harboring a single mutation in dihydropteroate synthase (DHPS). Acta Trop 2021; 222:106049. [PMID: 34273314 DOI: 10.1016/j.actatropica.2021.106049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/30/2021] [Accepted: 07/05/2021] [Indexed: 12/24/2022]
Abstract
Genetic changes conferring drug resistance are generally believed to impose fitness costs to pathogens in the absence of the drug. However, the fitness of resistant parasites against sulfadoxine/pyrimethamine has been inconclusive in Plasmodium falciparum. This is because resistance is conferred by the complex combination of mutations in dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr), which makes it difficult to separately assess the extent and magnitude of the costs imposed by mutations in dhps and dhfr. To assess the fitness costs imposed by sulfadoxine resistance alone, we generated a transgenic rodent malaria parasite, P. berghei clone harboring an A394G mutation in dhps (PbDHPS-A394G), corresponding to the causative mutation for sulfadoxine resistance in P. falciparum (PfDHPS-A437G). A four-day suppressive test confirmed that the PbDHPS-A394G clone was resistant to sulfadoxine. PbDHPS-A394G and wild-type clones showed similar growth rates and gametocyte production. This observation was confirmed in competitive experiments in which PbDHPS-A394G and wild-type clones were co-infected into mice to directly assess the survival competition between them. In the mosquitoes, there were no significant differences in oocyst production between PbDHPS-A394G and wild-type. These results indicate that the PbDHPS-A394G mutation alters the parasites to sulfadoxine resistance but may not impose fitness disadvantages during the blood stages in mice and oocyst formation in mosquitoes. These results partly explain the persistence of the PfDHPS-A437G mutant in the natural parasite populations.
Collapse
|
10
|
Noreen N, Ullah A, Salman SM, Mabkhot Y, Alsayari A, Badshah SL. New insights into the spread of resistance to artemisinin and its analogues. J Glob Antimicrob Resist 2021; 27:142-149. [PMID: 34517141 DOI: 10.1016/j.jgar.2021.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/19/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Plasmodium falciparum, the causative agent of malaria, has been developing resistance to several drugs worldwide for more than five decades. Initially, resistance was against drugs such as chloroquine, pyrimethamine, sulfadoxine, mefloquine and quinine. Research studies are now reporting parasites with resistance to the most effective and novel drug used against malaria infection worldwide, namely artemisinin. For this reason, the first-line treatment strategy of artemisinin-based combination therapy is becoming unsuccessful in areas where drug resistance is highly prevalent. The increase in artemisinin-resistant P. falciparum strains has threatened international efforts to eliminate malarial infections and to reduce the disease burden. Detection of several phenotypes that display artemisinin resistance, specification of basic genetic factors, the discovery of molecular pathways, and evaluation of its clinical outcome are possible by the current series of research on genomics and transcriptomic levels in Asia and Africa. In artemisinin resistance, slow parasite clearance among malaria-infected patients and enhanced in vitro survival of parasites occurs at the early ring stage. This resistance is due to single nucleotide polymorphisms within the Kelch 13 gene of the parasite and is related to significantly upregulated resistance signalling pathways; thus, the pro-oxidant action of artemisinins can be antagonised. New strategies are required to halt the spread of artemisinin-resistant malarial parasites.
Collapse
Affiliation(s)
- Noreen Noreen
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | - Asad Ullah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan
| | | | - Yahia Mabkhot
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, P.O. Box 960, Abha 61421, Saudi Arabia.
| | - Abdulrhman Alsayari
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University, Peshawar 25120, Pakistan.
| |
Collapse
|
11
|
Rasmussen C, Alonso P, Ringwald P. Current and emerging strategies to combat antimalarial resistance. Expert Rev Anti Infect Ther 2021; 20:353-372. [PMID: 34348573 DOI: 10.1080/14787210.2021.1962291] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Since the spread of chloroquine resistance in Plasmodium falciparum in the 1960s, recommendations have been made on how to respond to antimalarial resistance. Only with the advent of artemisinin partial resistance were large scale efforts made in the Greater Mekong Subregion to carry out recommendations in a coordinated and well-funded manner. Independent emergence of parasites partially resistant to artemisinins has now been reported in Rwanda. AREAS COVERED We reviewed past recommendations and activities to respond to resistance as well as the research ongoing into new ways to stop or delay the spread of resistant parasites. EXPERT OPINION Inadequate information limits the options and support for a strong, coordinated response to artemisinin partial resistance in Africa, making better phenotypic and genotypic surveillance a priority. A response to resistance needs to address factors that may have hastened the emergence and could speed the spread, including overuse of drugs and lack of access to quality treatment. New ways to use the existing treatments in the response to resistance such as multiple first-lines are currently impeded by the limited number of drugs available.
Collapse
Affiliation(s)
| | - Pedro Alonso
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Pascal Ringwald
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| |
Collapse
|
12
|
Gnangnon B, Duraisingh MT, Buckee CO. Deconstructing the parasite multiplication rate of Plasmodium falciparum. Trends Parasitol 2021; 37:922-932. [PMID: 34119440 DOI: 10.1016/j.pt.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023]
Abstract
Epidemiological indicators describing population-level malaria transmission dynamics are widely used to guide policy recommendations. However, the determinants of malaria outcomes within individuals are still poorly understood. This conceptual gap partly reflects the fact that there are few indicators that robustly predict the trajectory of individual infections or clinical outcomes. The parasite multiplication rate (PMR) is a widely used indicator for the Plasmodium intraerythrocytic development cycle (IDC), for example, but its relationship to clinical outcomes is complex. Here, we review its calculation and use in P. falciparum malaria research, as well as the parasite and host factors that impact it. We also provide examples of metrics that can help to link within-host dynamics to malaria clinical outcomes when used alongside the PMR.
Collapse
Affiliation(s)
- Bénédicte Gnangnon
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Manoj T Duraisingh
- Immunology & Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Caroline O Buckee
- Center for Communicable Diseases Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
13
|
Duffey M, Blasco B, Burrows JN, Wells TNC, Fidock DA, Leroy D. Assessing risks of Plasmodium falciparum resistance to select next-generation antimalarials. Trends Parasitol 2021; 37:709-721. [PMID: 34001441 DOI: 10.1016/j.pt.2021.04.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Strategies to counteract or prevent emerging drug resistance are crucial for the design of next-generation antimalarials. In the past, resistant parasites were generally identified following treatment failures in patients, and compounds would have to be abandoned late in development. An early understanding of how candidate therapeutics lose efficacy as parasites evolve resistance is important to facilitate drug design and improve resistance detection and monitoring up to the postregistration phase. We describe a new strategy to assess resistance to antimalarial compounds as early as possible in preclinical development by leveraging tools to define the Plasmodium falciparum resistome, predict potential resistance risks of clinical failure for candidate therapeutics, and inform decisions to guide antimalarial drug development.
Collapse
Affiliation(s)
| | - Benjamin Blasco
- Medicines for Malaria Venture, Geneva, Switzerland; Global Antibiotic Research and Development Partnership, Geneva, Switzerland
| | | | | | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland.
| |
Collapse
|
14
|
Buyon LE, Elsworth B, Duraisingh MT. The molecular basis of antimalarial drug resistance in Plasmodium vivax. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 16:23-37. [PMID: 33957488 PMCID: PMC8113647 DOI: 10.1016/j.ijpddr.2021.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/31/2021] [Accepted: 04/08/2021] [Indexed: 01/07/2023]
Abstract
Plasmodium vivax is the most geographically widespread cause of human malaria and is responsible for the majority of cases outside of the African continent. While great progress has been made towards eliminating human malaria, drug resistant parasite strains pose a threat towards continued progress. Resistance has arisen to multiple antimalarials in P. vivax, including to chloroquine, which is currently the first line therapy for P. vivax in most regions. Despite its importance, an understanding of the molecular mechanisms of drug resistance in this species remains elusive, in large part due to the complex biology of P. vivax and the lack of in vitro culture. In this review, we will cover the extent and challenges of measuring clinical and in vitro drug resistance in P. vivax. We will consider the roles of candidate drug resistance genes. We will highlight the development of molecular approaches for studying P. vivax biology that provide the opportunity to validate the role of putative drug resistance mutations as well as identify novel mechanisms of drug resistance in this understudied parasite. Validated molecular determinants and markers of drug resistance are essential for the rapid and cost-effective monitoring of drug resistance in P. vivax, and will be useful for optimizing drug regimens and for informing drug policy in control and elimination settings. Drug resistance is emerging in Plasmodium vivax, an important cause of malaria. The complex biology of P. vivax and the limited range of research tools make it difficult to identify drug resistance. The molecular mechanisms of drug resistance in P. vivax remain elusive. This review highlights the extent of drug resistance, the putative mechanisms of resistance and new technologies for the study of P. vivax drug resistance.
Collapse
Affiliation(s)
- Lucas E Buyon
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Brendan Elsworth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, 02115, MA, USA.
| |
Collapse
|
15
|
Lawong A, Gahalawat S, Okombo J, Striepen J, Yeo T, Mok S, Deni I, Bridgford JL, Niederstrasser H, Zhou A, Posner B, Wittlin S, Gamo FJ, Crespo B, Churchyard A, Baum J, Mittal N, Winzeler E, Laleu B, Palmer MJ, Charman SA, Fidock DA, Ready JM, Phillips MA. Novel Antimalarial Tetrazoles and Amides Active against the Hemoglobin Degradation Pathway in Plasmodium falciparum. J Med Chem 2021; 64:2739-2761. [PMID: 33620219 DOI: 10.1021/acs.jmedchem.0c02022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Malaria control programs continue to be threatened by drug resistance. To identify new antimalarials, we conducted a phenotypic screen and identified a novel tetrazole-based series that shows fast-kill kinetics and a relatively low propensity to develop high-level resistance. Preliminary structure-activity relationships were established including identification of a subseries of related amides with antiplasmodial activity. Assaying parasites with resistance to antimalarials led us to test whether the series had a similar mechanism of action to chloroquine (CQ). Treatment of synchronized Plasmodium falciparum parasites with active analogues revealed a pattern of intracellular inhibition of hemozoin (Hz) formation reminiscent of CQ's action. Drug selections yielded only modest resistance that was associated with amplification of the multidrug resistance gene 1 (pfmdr1). Thus, we have identified a novel chemical series that targets the historically druggable heme polymerization pathway and that can form the basis of future optimization efforts to develop a new malaria treatment.
Collapse
Affiliation(s)
- Aloysus Lawong
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Suraksha Gahalawat
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Jessica L Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Hanspeter Niederstrasser
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Anwu Zhou
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Bruce Posner
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Sergio Wittlin
- Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4002 Basel, Switzerland
| | | | - Benigno Crespo
- Medicines Development Campus, GlaxoSmithKline, Tres Cantos, 28760 Madrid, Spain
| | - Alisje Churchyard
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Jake Baum
- Department of Life Sciences, Imperial College London, SW7 2AZ South Kensington, U.K
| | - Nimisha Mittal
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Elizabeth Winzeler
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, California 92093, United States
| | - Benoît Laleu
- Medicines for Malaria Venture, 1215 Geneva, Switzerland
| | | | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, United States.,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Joseph M Ready
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Margaret A Phillips
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| |
Collapse
|
16
|
Shafik SH, Cobbold SA, Barkat K, Richards SN, Lancaster NS, Llinás M, Hogg SJ, Summers RL, McConville MJ, Martin RE. The natural function of the malaria parasite's chloroquine resistance transporter. Nat Commun 2020; 11:3922. [PMID: 32764664 PMCID: PMC7413254 DOI: 10.1038/s41467-020-17781-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.
Collapse
Affiliation(s)
- Sarah H Shafik
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon A Cobbold
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Kawthar Barkat
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sashika N Richards
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicole S Lancaster
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Simon J Hogg
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert L Summers
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Malcolm J McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rowena E Martin
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
17
|
Balikagala B, Sakurai-Yatsushiro M, Tachibana SI, Ikeda M, Yamauchi M, Katuro OT, Ntege EH, Sekihara M, Fukuda N, Takahashi N, Yatsushiro S, Mori T, Hirai M, Opio W, Obwoya PS, Anywar DA, Auma MA, Palacpac NMQ, Tsuboi T, Odongo-Aginya EI, Kimura E, Ogwang M, Horii T, Mita T. Recovery and stable persistence of chloroquine sensitivity in Plasmodium falciparum parasites after its discontinued use in Northern Uganda. Malar J 2020; 19:76. [PMID: 32070358 PMCID: PMC7026951 DOI: 10.1186/s12936-020-03157-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/09/2020] [Indexed: 11/10/2022] Open
Abstract
Background Usage of chloroquine was discontinued from the treatment of Plasmodium falciparum infection in almost all endemic regions because of global spread of resistant parasites. Since the first report in Malawi, numerous epidemiological studies have demonstrated that the discontinuance led to re-emergence of chloroquine-susceptible P. falciparum, suggesting a possible role in future malaria control. However, most studies were cross-sectional, with few studies looking at the persistence of chloroquine recovery in long term. This study fills the gap by providing, for a period of at least 6 years, proof of persistent re-emergence/stable recovery of susceptible parasite populations using both molecular and phenotypic methods. Methods Ex vivo drug-susceptibility assays to chloroquine (n = 319) and lumefantrine (n = 335) were performed from 2013 to 2018 in Gulu, Northern Uganda, where chloroquine had been removed from the official malaria treatment regimen since 2006. Genotyping of pfcrt and pfmdr1 was also performed. Results Chloroquine resistance (≥ 100 nM) was observed in only 3 (1.3%) samples. Average IC50 values for chloroquine were persistently low throughout the study period (17.4–24.9 nM). Parasites harbouring pfcrt K76 alleles showed significantly lower IC50s to chloroquine than the parasites harbouring K76T alleles (21.4 nM vs. 43.1 nM, p-value = 3.9 × 10−8). Prevalence of K76 alleles gradually increased from 71% in 2013 to 100% in 2018. Conclusion This study found evidence of stable persistence of chloroquine susceptibility with the fixation of pfcrt K76 in Northern Uganda after discontinuation of chloroquine in the region. Accumulation of similar evidence in other endemic areas in Uganda could open channels for possible future re-use of chloroquine as an option for malaria treatment or prevention.
Collapse
Affiliation(s)
- Betty Balikagala
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Miki Sakurai-Yatsushiro
- Department of International Affairs and Tropical Medicine, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shin-Ichiro Tachibana
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Osbert T Katuro
- Mildmay Uganda, Nazibwa Hill, Lweza, P.O. Box 24985, Kampala, Uganda
| | - Edward H Ntege
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Nobuyuki Takahashi
- Department of International Affairs and Tropical Medicine, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Shouki Yatsushiro
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2217-14 Hayashi-cho, Takamatsu, Kagawa, 761-0395, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Walter Opio
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Paul S Obwoya
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Denis A Anywar
- Faculty of Science, Gulu University, P.O. Box 166, Gulu, Uganda
| | - Mary A Auma
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Nirianne M Q Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, 3 Bunkyo-cho, Matsuyama, Ehime, 790-8577, Japan
| | | | - Eisaku Kimura
- Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Martin Ogwang
- St. Mary's Hospital Lacor, P.O. Box 180, Gulu, Uganda
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, 3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
18
|
Li X, Kumar S, McDew-White M, Haile M, Cheeseman IH, Emrich S, Button-Simons K, Nosten F, Kappe SHI, Ferdig MT, Anderson TJC, Vaughan AM. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet 2019; 15:e1008453. [PMID: 31609965 PMCID: PMC6821138 DOI: 10.1371/journal.pgen.1008453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.
Collapse
Affiliation(s)
- Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Marina McDew-White
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Meseret Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ian H. Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Scott Emrich
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Tim J. C. Anderson
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (TJCA); (AMV)
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail: (TJCA); (AMV)
| |
Collapse
|
19
|
Conrad MD, Rosenthal PJ. Antimalarial drug resistance in Africa: the calm before the storm? THE LANCET. INFECTIOUS DISEASES 2019; 19:e338-e351. [DOI: 10.1016/s1473-3099(19)30261-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 11/26/2022]
|
20
|
Cowell AN, Winzeler EA. The genomic architecture of antimalarial drug resistance. Brief Funct Genomics 2019; 18:314-328. [PMID: 31119263 PMCID: PMC6859814 DOI: 10.1093/bfgp/elz008] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/19/2019] [Accepted: 04/09/2019] [Indexed: 11/15/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax, the two protozoan parasite species that cause the majority of cases of human malaria, have developed resistance to nearly all known antimalarials. The ability of malaria parasites to develop resistance is primarily due to the high numbers of parasites in the infected person's bloodstream during the asexual blood stage of infection in conjunction with the mutability of their genomes. Identifying the genetic mutations that mediate antimalarial resistance has deepened our understanding of how the parasites evade our treatments and reveals molecular markers that can be used to track the emergence of resistance in clinical samples. In this review, we examine known genetic mutations that lead to resistance to the major classes of antimalarial medications: the 4-aminoquinolines (chloroquine, amodiaquine and piperaquine), antifolate drugs, aryl amino-alcohols (quinine, lumefantrine and mefloquine), artemisinin compounds, antibiotics (clindamycin and doxycycline) and a napthoquinone (atovaquone). We discuss how the evolution of antimalarial resistance informs strategies to design the next generation of antimalarial therapies.
Collapse
Affiliation(s)
- Annie N Cowell
- Division of Infectious Diseases and Global Health, Department of Medicine, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| | - Elizabeth A Winzeler
- Division of Host-Microbe Systems & Therapeutics, Department of Pediatrics, University of California, San Diego, Gilman Dr., La Jolla, CA, USA
| |
Collapse
|
21
|
Buppan P, Seethamchai S, Kuamsab N, Harnyuttanakorn P, Putaporntip C, Jongwutiwes S. Multiple Novel Mutations in Plasmodium falciparum Chloroquine Resistance Transporter Gene during Implementation of Artemisinin Combination Therapy in Thailand. Am J Trop Med Hyg 2019; 99:987-994. [PMID: 30141388 DOI: 10.4269/ajtmh.18-0401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mutations in the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) are associated with drug susceptibility status of chloroquine and other antimalarials that interfere with heme detoxification process including artemisinin. We aim to investigate whether an increase in duration of artemisinin combination therapy (ACT) in Thailand could affect mutations in Pfcrt. The complete coding sequences of Pfcrt and dihydrofolate reductase (Pfdhfr), and size polymorphisms of the merozoite surface proteins-1 and 2 (Pfmsp-1 and Pfmsp-2) of 189 P. falciparum isolates collected during 1991 and 2016 were analyzed. In total, 12 novel amino acid substitutions and 13 novel PfCRT haplotypes were identified. The most prevalent haplotype belonged to the Dd2 sequence and no wild type was found. A significant positive correlation between the frequency of Pfcrt mutants and the year of sample collection was observed during nationwide ACT implementation (r = 0.780; P = 0.038). The number of haplotypes and nucleotide diversity of isolates collected during 3-day ACT (2009-2016) significantly outnumbered those collected before this treatment regimen. Positive Darwinian selection occurred in the transmembrane domains only among isolates collected during 3-day ACT but not among those collected before this period. No remarkable change was observed in the molecular indices for other loci analyzed when similar comparisons were performed. An increase in the duration of artesunate in combination therapy in Thailand could exert selective pressure on the Pfcrt locus, resulting in emergence of novel variants. The impact of these novel haplotypes on antimalarial susceptibilities requires further study.
Collapse
Affiliation(s)
- Pattakorn Buppan
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Inter-Department Program of Biomedical Sciences, Faculty of Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Seethamchai
- Department of Biology, Faculty of Science, Naresuan University, Pitsanulok Province, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
22
|
Tirrell AR, Vendrely KM, Checkley LA, Davis SZ, McDew-White M, Cheeseman IH, Vaughan AM, Nosten FH, Anderson TJC, Ferdig MT. Pairwise growth competitions identify relative fitness relationships among artemisinin resistant Plasmodium falciparum field isolates. Malar J 2019; 18:295. [PMID: 31462253 PMCID: PMC6714446 DOI: 10.1186/s12936-019-2934-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Background Competitive outcomes between co-infecting malaria parasite lines can reveal fitness disparities in blood stage growth. Blood stage fitness costs often accompany the evolution of drug resistance, with the expectation that relatively fitter parasites will be more likely to spread in populations. With the recent emergence of artemisinin resistance, it is important to understand the relative competitive fitness of the metabolically active asexual blood stage parasites. Genetically distinct drug resistant parasite clones with independently evolved sets of mutations are likely to vary in asexual proliferation rate, contributing to their chance of transmission to the mosquito vector. Methods An optimized in vitro 96-well plate-based protocol was used to quantitatively measure-head-to-head competitive fitness during blood stage development between seven genetically distinct field isolates from a hotspot of emerging artemisinin resistance and the laboratory strain, NF54. These field isolates were isolated from patients in Southeast Asia carrying different alleles of kelch13 and included both artemisinin-sensitive and artemisinin-resistant isolates. Fluorescent labeled microsatellite markers were used to track the relative densities of each parasite throughout the co-growth period of 14–60 days. All-on-all competitions were conducted for the panel of eight parasite lines (28 pairwise competitions) to determine their quantitative competitive fitness relationships. Results Twenty-eight pairwise competitive growth outcomes allowed for an unambiguous ranking among a set of seven genetically distinct parasite lines isolated from patients in Southeast Asia displaying a range of both kelch13 alleles and clinical clearance times and a laboratory strain, NF54. This comprehensive series of assays established the growth relationships among the eight parasite lines. Interestingly, a clinically artemisinin resistant parasite line that carries the wild-type form of kelch13 outcompeted all other parasites in this study. Furthermore, a kelch13 mutant line (E252Q) was competitively more fit without drug than lines with other resistance-associated kelch13 alleles, including the C580Y allele that has expanded to high frequencies under drug pressure in Southeast Asian resistant populations. Conclusions This optimized competitive growth assay can be employed for assessment of relative growth as an index of fitness during the asexual blood stage growth between natural lines carrying different genetic variants associated with artemisinin resistance. Improved understanding of the fitness costs of different parasites proliferating in human blood and the role different resistance mutations play in the context of specific genetic backgrounds will contribute to an understanding of the potential for specific mutations to spread in populations, with the potential to inform targeted strategies for malaria therapy.
Collapse
Affiliation(s)
- Abigail R Tirrell
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Katelyn M Vendrely
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Sage Z Davis
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | | | - Michael T Ferdig
- Eck Institute for Global Health, Dept. of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
23
|
Sanchez CP, Moliner Cubel S, Nyboer B, Jankowska-Döllken M, Schaeffer-Reiss C, Ayoub D, Planelles G, Lanzer M. Phosphomimetic substitution at Ser-33 of the chloroquine resistance transporter PfCRT reconstitutes drug responses in Plasmodium falciparum. J Biol Chem 2019; 294:12766-12778. [PMID: 31285265 DOI: 10.1074/jbc.ra119.009464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/24/2019] [Indexed: 01/01/2023] Open
Abstract
The chloroquine resistance transporter PfCRT of the human malaria parasite Plasmodium falciparum confers resistance to the former first-line antimalarial drug chloroquine, and it modulates the responsiveness to a wide range of quinoline and quinoline-like compounds. PfCRT is post-translationally modified by phosphorylation, palmitoylation, and, possibly, ubiquitination. However, the impact of these post-translational modifications on P. falciparum biology and, in particular, the drug resistance-conferring activity of PfCRT has remained elusive. Here, we confirm phosphorylation at Ser-33 and Ser-411 of PfCRT of the chloroquine-resistant P. falciparum strain Dd2 and show that kinase inhibitors can sensitize drug responsiveness. Using CRISPR/Cas9 genome editing to generate genetically engineered PfCRT variants in the parasite, we further show that substituting Ser-33 with alanine reduced chloroquine and quinine resistance by ∼50% compared with the parental P. falciparum strain Dd2, whereas the phosphomimetic amino acid aspartic acid could fully and glutamic acid could partially reconstitute the level of chloroquine/quinine resistance. Transport studies conducted in the parasite and in PfCRT-expressing Xenopus laevis oocytes linked phosphomimetic substitution at Ser-33 to increased transport velocity. Our data are consistent with phosphorylation of Ser-33 relieving an autoinhibitory intramolecular interaction within PfCRT, leading to a stimulated drug transport activity. Our findings shed additional light on the function of PfCRT and suggest that chloroquine could be reevaluated as an antimalarial drug by targeting the kinase in P. falciparum that phosphorylates Ser-33 of PfCRT.
Collapse
Affiliation(s)
- Cecilia P Sanchez
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sonia Moliner Cubel
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Britta Nyboer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Monika Jankowska-Döllken
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Christine Schaeffer-Reiss
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178, 67037 Strasbourg, France
| | - Daniel Ayoub
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Institut Pluridisciplinaire Hubert Curien (IPHC) UMR 7178, 67037 Strasbourg, France
| | - Gabrielle Planelles
- INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS, ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, 75006 Paris, France
| | - Michael Lanzer
- Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Dhingra SK, Gabryszewski SJ, Small-Saunders JL, Yeo T, Henrich PP, Mok S, Fidock DA. Global Spread of Mutant PfCRT and Its Pleiotropic Impact on Plasmodium falciparum Multidrug Resistance and Fitness. mBio 2019; 10:e02731-18. [PMID: 31040246 PMCID: PMC6495381 DOI: 10.1128/mbio.02731-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
The global spread of Plasmodium falciparum chloroquine resistance transporter (PfCRT) variant haplotypes earlier caused the widespread loss of chloroquine (CQ) efficacy. In Asia, novel PfCRT mutations that emerged on the Dd2 allelic background have recently been implicated in high-level resistance to piperaquine, and N326S and I356T have been associated with genetic backgrounds in which resistance emerged to artemisinin derivatives. By analyzing large-scale genome sequencing data, we report that the predominant Asian CQ-resistant Dd2 haplotype is undetectable in Africa. Instead, the GB4 and previously unexplored Cam783 haplotypes predominate, along with wild-type, drug-sensitive PfCRT that has reemerged as the major haplotype. To interrogate how these alleles impact drug susceptibility, we generated pfcrt-modified isogenic parasite lines spanning the mutational interval between GB4 and Dd2, which includes Cam783 and involves amino acid substitutions at residues 326 and 356. Relative to Dd2, the GB4 and Cam783 alleles were observed to mediate lower degrees of resistance to CQ and the first-line drug amodiaquine, while resulting in higher growth rates. These findings suggest that differences in growth rates, a surrogate of parasite fitness, influence selection in the context of African infections that are frequently characterized by high transmission rates, mixed infections, increased immunity, and less recourse to treatment. We also observe that the Asian Dd2 allele affords partial protection against piperaquine yet does not directly impact artemisinin efficacy. Our results can help inform the regional recommendations of antimalarials, whose activity is influenced by and, in certain cases, enhanced against select PfCRT variant haplotypes.IMPORTANCE Our study defines the allelic distribution of pfcrt, an important mediator of multidrug resistance in Plasmodium falciparum, in Africa and Asia. We leveraged whole-genome sequence analysis and gene editing to demonstrate how current drug combinations can select different allelic variants of this gene and shape region-specific parasite population structures. We document the ability of PfCRT mutations to modulate parasite susceptibility to current antimalarials in dissimilar, pfcrt allele-specific ways. This study underscores the importance of actively monitoring pfcrt genotypes to identify emerging patterns of multidrug resistance and help guide region-specific treatment options.
Collapse
Affiliation(s)
- Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Stanislaw J Gabryszewski
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Jennifer L Small-Saunders
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
25
|
Sekihara M, Tachibana SI, Yamauchi M, Yatsushiro S, Tiwara S, Fukuda N, Ikeda M, Mori T, Hirai M, Hombhanje F, Mita T. Lack of significant recovery of chloroquine sensitivity in Plasmodium falciparum parasites following discontinuance of chloroquine use in Papua New Guinea. Malar J 2018; 17:434. [PMID: 30477515 PMCID: PMC6260888 DOI: 10.1186/s12936-018-2585-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 11/21/2018] [Indexed: 11/20/2022] Open
Abstract
Background Chloroquine treatment for Plasmodium falciparum has been discontinued in almost all endemic regions due to the spread of resistant isolates. Reversal of chloroquine susceptibility after chloroquine discontinuation has been reported in dozens of endemic regions. However, this phenomenon has been mostly observed in Africa and is not well documented in other malaria endemic regions. To investigate this, an ex vivo study on susceptibility to chloroquine and lumefantrine was conducted during 2016–2018 in Wewak, Papua New Guinea where chloroquine had been removed from the official malaria treatment regimen in 2010. Genotyping of pfcrt and pfmdr1 was also performed. Results In total, 368 patients were enrolled in this study. Average IC50 values for chloroquine were 106.6, 80.5, and 87.6 nM in 2016, 2017, and 2018, respectively. These values were not significantly changed from those obtained in 2002/2003 (108 nM). The majority of parasites harboured a pfcrt K76T the mutation responsible for chloroquine resistance. However, a significant upward trend was observed in the frequency of the K76 (wild) allele from 2.3% in 2016 to 11.7% in 2018 (P = 0.008; Cochran–Armitage trend test). Conclusions Eight years of chloroquine withdrawal has not induced a significant recovery of susceptibility in Papua New Guinea. However, an increasing tendency of parasites harbouring chloroquine-susceptible K76 suggests a possibility of resurgence of chloroquine susceptibility in the future. Electronic supplementary material The online version of this article (10.1186/s12936-018-2585-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Makoto Sekihara
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shin-Ichiro Tachibana
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shoki Yatsushiro
- Health Technology Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Takamatsu, Japan
| | - Steven Tiwara
- Wewak General Hospital, Wewak, East Sepik Province, Papua New Guinea
| | - Naoyuki Fukuda
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Mie Ikeda
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Toshiyuki Mori
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Makoto Hirai
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Francis Hombhanje
- Centre for Health Research & Diagnostics, Divine Word University, P.O. Box 483, Madang, Papua New Guinea
| | - Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University, Faculty of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| |
Collapse
|
26
|
Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter. Sci Rep 2018; 8:13578. [PMID: 30206341 PMCID: PMC6134138 DOI: 10.1038/s41598-018-31715-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca2+ release, with substantially reduced Ca2+ levels observed in Dd2 + L272F parasites. Our data reveal a central role for PfCRT in regulating hemoglobin catabolism, amino acid availability, and ionic balance in P. falciparum, in addition to its role in determining parasite susceptibility to heme-binding 4-aminoquinoline drugs.
Collapse
|
27
|
Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Curr Opin Pharmacol 2018; 42:71-80. [PMID: 30142480 DOI: 10.1016/j.coph.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 01/24/2023]
Abstract
The deployment of artemisinin-based combination therapies (ACTs) has been, and continues to be, integral to reducing the number of malaria cases and deaths. However, their efficacy is being increasingly jeopardized by the emergence and spread of parasites that are resistant (or partially resistant) to the artemisinin derivatives and to their partner drugs, with the efficacy of the latter being especially crucial for treatment success. A detailed understanding of the genetic determinants of resistance to the ACT partner drugs, and the mechanisms by which they mediate resistance, is required for the surveillance of molecular markers and to optimize the efficacy and lifespan of the partner drugs through resistance management strategies. We summarize new insights into the molecular basis of parasite resistance to the ACTs, such as recently-uncovered determinants of parasite susceptibility to the artemisinin derivatives, piperaquine, lumefantrine, and mefloquine, and outline the mechanisms through which polymorphisms in these determinants may be conferring resistance.
Collapse
|
28
|
Seethamchai S, Buppan P, Kuamsab N, Teeranaipong P, Putaporntip C, Jongwutiwes S. Variation in intronic microsatellites and exon 2 of the Plasmodium falciparum chloroquine resistance transporter gene during modification of artemisinin combination therapy in Thailand. INFECTION GENETICS AND EVOLUTION 2018; 65:35-42. [PMID: 30016713 DOI: 10.1016/j.meegid.2018.07.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 11/28/2022]
Abstract
The amino acid substitution at residue 76 of the food vacuolar transmembrane protein encoded by the chloroquine resistance transporter gene of Plasmodium falciparum (Pfcrt) is an important, albeit imperfect, determinant of chloroquine susceptibility status of the parasite. Other mutations in Pfcrt can modulate susceptibility of P. falciparum to other antimalarials capable of interfering with heme detoxification process, and may exert compensatory effect on parasite growth rate. To address whether nationwide implementation of artemisinin combination therapy (ACT) in Thailand could affect sequence variation in exon 2 and introns of Pfcrt, we analyzed 136 P. falciparum isolates collected during 1997 and 2016 from endemic areas bordering Myanmar, Cambodia and Malaysia. Results revealed 6 haplotypes in exon 2 of Pfcrt with 2 novel substitutions at c.243A > G (p.R81) and c.251A > T (p.N84I). Positive selection was observed at amino acid residues 75, 76 and 97. Four, 3, and 2 alleles of microsatellite (AT/TA) repeats occurred in introns 1, 2 and 4, respectively, resulting in 7 different 3-locus haplotypes. The number of haplotypes and haplotype diversity of exon 2, and introns 1, 2 and 4 were significantly greater among isolates collected during 2009 and 2016 than those collected during 1997 and 2008 when 3-day ACT and 2-day ACT regimens were implemented nationwide, respectively (p < 0.05). By contrast, the number of haplotypes and haplotype diversity of the merozoite surface proteins 1 and 2 of these parasite populations did not differ significantly between these periods. Therefore, the Pfcrt locus of P. falciparum in Thailand continues to evolve and could have been affected by selective pressure from modification of ACT regimen.
Collapse
Affiliation(s)
- Sunee Seethamchai
- Department of Biology, Naresuan University, Pitsanulok Province 65000, Thailand
| | - Pattakorn Buppan
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Napaporn Kuamsab
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phairote Teeranaipong
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chaturong Putaporntip
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Somchai Jongwutiwes
- Molecular Biology of Malaria and Opportunistic Parasites Research Unit, Department of Parasitology, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
29
|
Abstract
A marked decrease in malaria-related deaths worldwide has been attributed to the administration of effective antimalarials against Plasmodium falciparum, in particular, artemisinin-based combination therapies (ACTs). Increasingly, ACTs are also used to treat Plasmodium vivax, the second major human malaria parasite. However, resistance to frontline artemisinins and partner drugs is now causing the failure of P. falciparum ACTs in southeast Asia. In this Review, we discuss our current knowledge of markers and mechanisms of resistance to artemisinins and ACTs. In particular, we describe the identification of mutations in the propeller domains of Kelch 13 as the primary marker for artemisinin resistance in P. falciparum and explore two major mechanisms of resistance that have been independently proposed: the activation of the unfolded protein response and proteostatic dysregulation of parasite phosphatidylinositol 3- kinase. We emphasize the continuing challenges and the imminent need to understand mechanisms of resistance to improve parasite detection strategies, develop new combinations to eliminate resistant parasites and prevent their global spread.
Collapse
|
30
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
31
|
Vanaerschot M, Lucantoni L, Li T, Combrinck JM, Ruecker A, Kumar TRS, Rubiano K, Ferreira PE, Siciliano G, Gulati S, Henrich PP, Ng CL, Murithi JM, Corey VC, Duffy S, Lieberman OJ, Veiga MI, Sinden RE, Alano P, Delves MJ, Lee Sim K, Winzeler EA, Egan TJ, Hoffman SL, Avery VM, Fidock DA. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol 2017. [PMID: 28808258 DOI: 10.1038/s41564-017-0007–4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Tao Li
- Sanaria Inc., Rockville, MD, 20852, USA
| | - Jill M Combrinck
- Division of Pharmacology, Department of Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Pedro E Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Sonia Gulati
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Caroline L Ng
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Victoria C Corey
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Ori J Lieberman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - M Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Cape Town, 7700, South Africa
| | | | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
32
|
Vanaerschot M, Lucantoni L, Li T, Combrinck JM, Ruecker A, Kumar TRS, Rubiano K, Ferreira PE, Siciliano G, Gulati S, Henrich PP, Ng CL, Murithi JM, Corey VC, Duffy S, Lieberman OJ, Veiga MI, Sinden RE, Alano P, Delves MJ, Lee Sim K, Winzeler EA, Egan TJ, Hoffman SL, Avery VM, Fidock DA. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol 2017; 2:1403-1414. [PMID: 28808258 DOI: 10.1038/s41564-017-0007-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Tao Li
- Sanaria Inc., Rockville, MD, 20852, USA
| | - Jill M Combrinck
- Division of Pharmacology, Department of Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Pedro E Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Sonia Gulati
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Caroline L Ng
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Victoria C Corey
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Ori J Lieberman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - M Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Cape Town, 7700, South Africa
| | | | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
33
|
Bakouh N, Bellanca S, Nyboer B, Moliner Cubel S, Karim Z, Sanchez CP, Stein WD, Planelles G, Lanzer M. Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes. J Biol Chem 2017; 292:16109-16121. [PMID: 28768767 DOI: 10.1074/jbc.m117.805200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum, PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo, our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes.
Collapse
Affiliation(s)
- Naziha Bakouh
- From INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris 75006, France
| | - Sebastiano Bellanca
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Britta Nyboer
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sonia Moliner Cubel
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Zoubida Karim
- INSERM, UMR1149, CNRS ERL 8252, Université Paris Diderot Paris 75890, France, and
| | - Cecilia P Sanchez
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wilfred D Stein
- Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gabrielle Planelles
- From INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris 75006, France,
| | - Michael Lanzer
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany,
| |
Collapse
|
34
|
Murray L, Stewart LB, Tarr SJ, Ahouidi AD, Diakite M, Amambua-Ngwa A, Conway DJ. Multiplication rate variation in the human malaria parasite Plasmodium falciparum. Sci Rep 2017; 7:6436. [PMID: 28743888 PMCID: PMC5527095 DOI: 10.1038/s41598-017-06295-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 06/09/2017] [Indexed: 11/09/2022] Open
Abstract
It is important to understand intrinsic variation in asexual blood stage multiplication rates of the most virulent human malaria parasite, Plasmodium falciparum. Here, multiplication rates of long-term laboratory adapted parasite clones and new clinical isolates were measured, using a newly standardised assay of growth from low starting density in replicate parallel cultures with erythrocytes from multiple different donors, across multiple cycles. Multiplication rates of long-term established clones were between 7.6 and 10.5 fold per 48 hours, with clone Dd2 having a higher rate than others (clones 3D7, HB3 and D10). Parasite clone-specific growth was then analysed in co-culture assays with all possible heterologous pairwise combinations. This showed that co-culture of different parasites did not affect their replication rates, indicating that there were no suppressive interactions operating between parasites. Multiplication rates of eleven new clinical isolates were measured after a few weeks of culture, and showed a spectrum of replication rates between 2.3 and 6.0 fold per 48 hours, the entire range being lower than for the long-term laboratory adapted clones. Multiplication rate estimates remained stable over time for several isolates tested repeatedly up to three months after culture initiation, indicating considerable persistence of this important trait variation.
Collapse
Affiliation(s)
- Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Lindsay B Stewart
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Sarah J Tarr
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | | | - Mahamadou Diakite
- Malaria Research and Training Center, University of Bamako, Bamako, Mali
| | | | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
35
|
A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio 2017; 8:mBio.00303-17. [PMID: 28487425 PMCID: PMC5424201 DOI: 10.1128/mbio.00303-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates. The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.
Collapse
|
36
|
Cerqueira GC, Cheeseman IH, Schaffner SF, Nair S, McDew-White M, Phyo AP, Ashley EA, Melnikov A, Rogov P, Birren BW, Nosten F, Anderson TJC, Neafsey DE. Longitudinal genomic surveillance of Plasmodium falciparum malaria parasites reveals complex genomic architecture of emerging artemisinin resistance. Genome Biol 2017; 18:78. [PMID: 28454557 PMCID: PMC5410087 DOI: 10.1186/s13059-017-1204-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/29/2017] [Indexed: 12/30/2022] Open
Abstract
Background Artemisinin-based combination therapies are the first line of treatment for Plasmodium falciparum infections worldwide, but artemisinin resistance has risen rapidly in Southeast Asia over the past decade. Mutations in the kelch13 gene have been implicated in this resistance. We used longitudinal genomic surveillance to detect signals in kelch13 and other loci that contribute to artemisinin or partner drug resistance. We retrospectively sequenced the genomes of 194 P. falciparum isolates from five sites in Northwest Thailand, over the period of a rapid increase in the emergence of artemisinin resistance (2001–2014). Results We evaluate statistical metrics for temporal change in the frequency of individual SNPs, assuming that SNPs associated with resistance increase in frequency over this period. After Kelch13-C580Y, the strongest temporal change is seen at a SNP in phosphatidylinositol 4-kinase, which is involved in a pathway recently implicated in artemisinin resistance. Furthermore, other loci exhibit strong temporal signatures which warrant further investigation for involvement in artemisinin resistance evolution. Through genome-wide association analysis we identify a variant in a kelch domain-containing gene on chromosome 10 that may epistatically modulate artemisinin resistance. Conclusions This analysis demonstrates the potential of a longitudinal genomic surveillance approach to detect resistance-associated gene loci to improve our mechanistic understanding of how resistance develops. Evidence for additional genomic regions outside of the kelch13 locus associated with artemisinin-resistant parasites may yield new molecular markers for resistance surveillance, which may be useful in efforts to reduce the emergence or spread of artemisinin resistance in African parasite populations. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1204-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ian H Cheeseman
- Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | | | - Shalini Nair
- Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | | | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol University, Mae Sot, Thailand
| | - Elizabeth A Ashley
- Shoklo Malaria Research Unit, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Peter Rogov
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Bruce W Birren
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol University, Mae Sot, Thailand.,Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
37
|
Asare KK, Boampong JN, Duah NO, Afoakwah R, Sehgal R, Quashie NB. Synergism between Pfcrt and Pfmdr1 genes could account for the slow recovery of chloroquine sensitive Plasmodium falciparum strains in Ghana after chloroquine withdrawal. J Infect Public Health 2017; 10:110-119. [DOI: 10.1016/j.jiph.2016.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/04/2016] [Accepted: 02/20/2016] [Indexed: 12/28/2022] Open
|
38
|
Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathog 2016; 12:e1005976. [PMID: 27832198 PMCID: PMC5104409 DOI: 10.1371/journal.ppat.1005976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022] Open
Abstract
Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens. Point mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) earlier thwarted the clinical efficacy of chloroquine, the former gold standard, and constitute a major determinant of parasite susceptibility to antimalarial drugs. Recently, we reported that the highly mutated Cambodian PfCRT isoform Cam734 is fitness-neutral in terms of parasite growth, unlike other less fit isoforms such as Dd2 that are outcompeted by wild-type parasites in the absence of CQ pressure. Using pfcrt-specific zinc-finger nucleases to genetically dissect the Cam734 allele, we report that its unique constituent mutations directly contribute to CQ resistance and collectively offset fitness costs associated with intermediate mutational steps. We also report that these mutations can contribute to resistance or increased sensitivity to multiple first-line partner drugs. Using isogenic parasite lines, we provide evidence of changes in parasite metabolism associated with the Cam734 allele compared to Dd2. We also observe a close correlation between CQ inhibition of hemozoin formation and parasite growth, and provide evidence that Cam734 PfCRT can modulate drug potency depending on its membrane electrochemical gradient. Our data highlight the capacity of PfCRT to evolve new states of antimalarial drug resistance and to offset associated fitness costs through its impact on parasite physiology and hemoglobin catabolism.
Collapse
|
39
|
Srimuang K, Miotto O, Lim P, Fairhurst RM, Kwiatkowski DP, Woodrow CJ, Imwong M. Analysis of anti-malarial resistance markers in pfmdr1 and pfcrt across Southeast Asia in the Tracking Resistance to Artemisinin Collaboration. Malar J 2016; 15:541. [PMID: 27825353 PMCID: PMC5101715 DOI: 10.1186/s12936-016-1598-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/31/2016] [Indexed: 01/07/2023] Open
Abstract
Background Declining anti-malarial efficacy of artemisinin-based combination therapy, and reduced Plasmodium falciparum susceptibility to individual anti-malarials are being documented across an expanding area of Southeast Asia (SEA). Genotypic markers complement phenotypic studies in assessing the efficacy of individual anti-malarials. Methods The markers pfmdr1 and pfcrt were genotyped in parasite samples obtained in 2011–2014 at 14 TRAC (Tracking Resistance to Artemisinin Collaboration) sites in mainland Southeast Asia using a combination of PCR and next-generation sequencing methods. Results Pfmdr1 amplification, a marker of mefloquine and lumefantrine resistance, was highly prevalent at Mae Sot on the Thailand–Myanmar border (59.8% of isolates) and common (more than 10%) at sites in central Myanmar, eastern Thailand and western Cambodia; however, its prevalence was lower than previously documented in Pailin, western Cambodia. The pfmdr1 Y184F mutation was common, particularly in and around Cambodia, and the F1226Y mutation was found in about half of samples in Mae Sot. The functional significance of these two mutations remains unclear. Other previously documented pfmdr1 mutations were absent or very rare in the region. The pfcrt mutation K76T associated with chloroquine resistance was found in 98.2% of isolates. The CVIET haplotype made up 95% or more of isolates in western SEA while the CVIDT haplotype was common (30–40% of isolates) in north and northeastern Cambodia, southern Laos, and southern Vietnam. Conclusions These findings generate cause for concern regarding the mid-term efficacy of artemether–lumefantrine in Myanmar, while the absence of resistance-conferring pfmdr1 mutations and SVMNT pfcrt haplotypes suggests that amodiaquine could be an efficacious component of anti-malarial regimens in SEA. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1598-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Krongkan Srimuang
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Wellcome Trust Sanger Institute, Hinxton, UK.,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, UK.,Medical Research Council (MRC) Centre for Genomics and Global Health, University of Oxford, Oxford, UK
| | - Charles J Woodrow
- Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | | |
Collapse
|
40
|
Intermittent Preventive Treatment with Dihydroartemisinin-Piperaquine in Ugandan Schoolchildren Selects for Plasmodium falciparum Transporter Polymorphisms That Modify Drug Sensitivity. Antimicrob Agents Chemother 2016; 60:5649-54. [PMID: 27401569 DOI: 10.1128/aac.00920-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/02/2016] [Indexed: 01/12/2023] Open
Abstract
Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school term offered protection primarily during the first month after therapy. To assess the impact of DP on selection of drug resistance, we compared the prevalence of key polymorphisms in isolates that emerged at different intervals after treatment with DP. Blood obtained monthly and at each episode of fever was assessed for P. falciparum parasitemia by microscopy. Samples from 160 symptomatic and 650 asymptomatic episodes of parasitemia were assessed at 4 loci (N86Y, Y184F, and D1246Y in pfmdr1 and K76T in pfcrt) that modulate sensitivity to aminoquinoline antimalarials, utilizing a ligase detection reaction-fluorescent microsphere assay. For pfmdr1 N86Y and pfcrt K76T, but not the other studied polymorphisms, the prevalences of mutant genotypes were significantly greater in children who had received DP within the past 30 days than in those not treated within 60 days (86Y, 18.0% versus 8.3% [P = 0.03]; 76T, 96.0% versus 86.1% [P = 0.05]), suggesting selective pressure of DP. Full sequencing of pfcrt in a subset of samples did not identify additional polymorphisms selected by DP. In summary, parasites that emerged soon after treatment with DP were more likely than parasites not under drug pressure to harbor pfmdr1 and pfcrt polymorphisms associated with decreased sensitivity to aminoquinoline antimalarials. (This study has been registered at ClinicalTrials.gov under no. NCT01231880.).
Collapse
|
41
|
Richards SN, Nash MN, Baker ES, Webster MW, Lehane AM, Shafik SH, Martin RE. Molecular Mechanisms for Drug Hypersensitivity Induced by the Malaria Parasite's Chloroquine Resistance Transporter. PLoS Pathog 2016; 12:e1005725. [PMID: 27441371 PMCID: PMC4956231 DOI: 10.1371/journal.ppat.1005725] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023] Open
Abstract
Mutations in the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) confer resistance to chloroquine (CQ) and related antimalarials by enabling the protein to transport these drugs away from their targets within the parasite’s digestive vacuole (DV). However, CQ resistance-conferring isoforms of PfCRT (PfCRTCQR) also render the parasite hypersensitive to a subset of structurally-diverse pharmacons. Moreover, mutations in PfCRTCQR that suppress the parasite’s hypersensitivity to these molecules simultaneously reinstate its sensitivity to CQ and related drugs. We sought to understand these phenomena by characterizing the functions of PfCRTCQR isoforms that cause the parasite to become hypersensitive to the antimalarial quinine or the antiviral amantadine. We achieved this by measuring the abilities of these proteins to transport CQ, quinine, and amantadine when expressed in Xenopus oocytes and complemented this work with assays that detect the drug transport activity of PfCRT in its native environment within the parasite. Here we describe two mechanistic explanations for PfCRT-induced drug hypersensitivity. First, we show that quinine, which normally accumulates inside the DV and therewithin exerts its antimalarial effect, binds extremely tightly to the substrate-binding site of certain isoforms of PfCRTCQR. By doing so it likely blocks the normal physiological function of the protein, which is essential for the parasite’s survival, and the drug thereby gains an additional killing effect. In the second scenario, we show that although amantadine also sequesters within the DV, the parasite’s hypersensitivity to this drug arises from the PfCRTCQR-mediated transport of amantadine from the DV into the cytosol, where it can better access its antimalarial target. In both cases, the mutations that suppress hypersensitivity also abrogate the ability of PfCRTCQR to transport CQ, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding clinically-relevant observations of inverse drug susceptibilities in the malaria parasite. In acquiring resistance to one drug, many pathogens and cancer cells become hypersensitive to other drugs. This phenomenon could be exploited to combat existing drug resistance and to delay the emergence of resistance to new drugs. However, much remains to be understood about the mechanisms that underlie drug hypersensitivity in otherwise drug-resistant microbes. Here, we describe two mechanisms by which the Plasmodium falciparum ‘chloroquine resistance transporter’ (PfCRT) causes the malaria parasite to become hypersensitive to structurally-diverse drugs. First, we show that an antimalarial drug that normally exerts its killing effect within the parasite’s digestive vacuole is also able to bind extremely tightly to certain forms of PfCRT. This activity will block the natural, essential function of the protein and thereby provide the drug with an additional killing effect. The second mechanism arises when a cytosolic-acting drug that normally sequesters within the digestive vacuole is leaked back into the cytosol via PfCRT. In both cases, mutations that suppress hypersensitivity also abrogate the ability of PfCRT to transport chloroquine, thus explaining why rescue from hypersensitivity restores the parasite’s sensitivity to this antimalarial. These insights provide a foundation for understanding and exploiting the hypersensitivity of chloroquine-resistant parasites to several of the current antimalarials.
Collapse
Affiliation(s)
- Sashika N. Richards
- Research School of Biology, Australian National University, Canberra, Australia
| | - Megan N. Nash
- Research School of Biology, Australian National University, Canberra, Australia
| | - Eileen S. Baker
- Research School of Biology, Australian National University, Canberra, Australia
| | - Michael W. Webster
- Research School of Biology, Australian National University, Canberra, Australia
| | - Adele M. Lehane
- Research School of Biology, Australian National University, Canberra, Australia
| | - Sarah H. Shafik
- Research School of Biology, Australian National University, Canberra, Australia
| | - Rowena E. Martin
- Research School of Biology, Australian National University, Canberra, Australia
- * E-mail:
| |
Collapse
|
42
|
Tilley L, Straimer J, Gnädig NF, Ralph SA, Fidock DA. Artemisinin Action and Resistance in Plasmodium falciparum. Trends Parasitol 2016; 32:682-696. [PMID: 27289273 DOI: 10.1016/j.pt.2016.05.010] [Citation(s) in RCA: 232] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
The worldwide use of artemisinin-based combination therapies (ACTs) has contributed in recent years to a substantial reduction in deaths resulting from Plasmodium falciparum malaria. Resistance to artemisinins, however, has emerged in Southeast Asia. Clinically, resistance is defined as a slower rate of parasite clearance in patients treated with an artemisinin derivative or an ACT. These slow clearance rates associate with enhanced survival rates of ring-stage parasites briefly exposed in vitro to dihydroartemisinin. We describe recent progress made in defining the molecular basis of artemisinin resistance, which has identified a primary role for the P. falciparum K13 protein. Using K13 mutations as molecular markers, epidemiological studies are now tracking the emergence and spread of artemisinin resistance. Mechanistic studies suggest potential ways to overcome resistance.
Collapse
Affiliation(s)
- Leann Tilley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia.
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Stuart A Ralph
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY, USA; Division of Infectious Diseases, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA.
| |
Collapse
|
43
|
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 2016; 7:11553. [PMID: 27189525 PMCID: PMC4873939 DOI: 10.1038/ncomms11553] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023] Open
Abstract
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. Antimalarial chemotherapy relies on combination therapies (ACTs) consisting of an artemisinin derivative and a partner drug. Here, the authors study the effects of globally prevalent mutations in a multidrug resistance transporter (PfMDR1) on the parasite's susceptibility to ACT drugs.
Collapse
|
44
|
Callaghan PS, Siriwardana A, Hassett MR, Roepe PD. Plasmodium falciparum chloroquine resistance transporter (PfCRT) isoforms PH1 and PH2 perturb vacuolar physiology. Malar J 2016; 15:186. [PMID: 27036417 PMCID: PMC4815217 DOI: 10.1186/s12936-016-1238-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Accepted: 03/16/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent work has perfected yeast-based methods for measuring drug transport by the Plasmodium falciparum chloroquine (CQ) resistance transporter (PfCRT). METHODS The approach relies on inducible heterologous expression of PfCRT in Saccharomyces cerevisiae yeast. In these experiments selecting drug concentrations are not toxic to the yeast, nor is expression of PfCRT alone toxic. Only when PfCRT is expressed in the presence of CQ is the growth of yeast impaired, due to inward transport of chloroquine (CQ) via the transporter. RESULTS During analysis of all 53 known naturally occurring PfCRT isoforms, two isoforms (PH1 and PH2 PfCRT) were found to be intrinsically toxic to yeast, even in the absence of CQ. Additional analysis of six very recently identified PfCRT isoforms from Malaysia also showed some toxicity. In this paper the nature of this yeast toxicity is examined. Data also show that PH1 and PH2 isoforms of PfCRT transport CQ with an efficiency intermediate to that catalyzed by previously studied CQR conferring isoforms. Mutation of PfCRT at position 160 is found to perturb vacuolar physiology, suggesting a fitness cost to position 160 amino acid substitutions. CONCLUSION These data further define the wide range of activities that exist for PfCRT isoforms found in P. falciparum isolates from around the globe.
Collapse
Affiliation(s)
- Paul S Callaghan
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Amila Siriwardana
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Matthew R Hassett
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA
| | - Paul D Roepe
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA. .,Department of Biochemistry, Cellular and Molecular Biology, Georgetown University, 37th and O Streets, NW, Washington, DC, 20057, USA.
| |
Collapse
|
45
|
Gabryszewski SJ, Modchang C, Musset L, Chookajorn T, Fidock DA. Combinatorial Genetic Modeling of pfcrt-Mediated Drug Resistance Evolution in Plasmodium falciparum. Mol Biol Evol 2016; 33:1554-70. [PMID: 26908582 PMCID: PMC4868112 DOI: 10.1093/molbev/msw037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The emergence of drug resistance continuously threatens global control of infectious diseases, including malaria caused by the protozoan parasite Plasmodium falciparum. A critical parasite determinant is the P. falciparum chloroquine resistance transporter (PfCRT), the primary mediator of chloroquine (CQ) resistance (CQR), and a pleiotropic modulator of susceptibility to several first-line artemisinin-based combination therapy partner drugs. Aside from the validated CQR molecular marker K76T, P. falciparum parasites have acquired at least three additional pfcrt mutations, whose contributions to resistance and fitness have been heretofore unclear. Focusing on the quadruple-mutant Ecuadorian PfCRT haplotype Ecu1110 (K76T/A220S/N326D/I356L), we genetically modified the pfcrt locus of isogenic, asexual blood stage P. falciparum parasites using zinc-finger nucleases, producing all possible combinations of intermediate pfcrt alleles. Our analysis included the related quintuple-mutant PfCRT haplotype 7G8 (Ecu1110 + C72S) that is widespread throughout South America and the Western Pacific. Drug susceptibilities and in vitro growth profiles of our combinatorial pfcrt-modified parasites were used to simulate the mutational trajectories accessible to parasites as they evolved CQR. Our results uncover unique contributions to parasite drug resistance and growth for mutations beyond K76T and predict critical roles for the CQ metabolite monodesethyl-CQ and the related quinoline-type drug amodiaquine in driving mutant pfcrt evolution. Modeling outputs further highlight the influence of parasite proliferation rates alongside gains in drug resistance in dictating successful trajectories. Our findings suggest that P. falciparum parasites have navigated constrained pfcrt adaptive landscapes by means of probabilistically rare mutational bursts that led to the infrequent emergence of pfcrt alleles in the field.
Collapse
Affiliation(s)
| | - Charin Modchang
- Department of Physics, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Lise Musset
- Laboratoire de Parasitologie, WHO Collaborating Center for Surveillance of Anti-Malarial Drug Resistance, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Thanat Chookajorn
- Genomics and Evolutionary Medicine Unit, Center of Excellence in Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY
| |
Collapse
|
46
|
Adjalley SH, Scanfeld D, Kozlowski E, Llinás M, Fidock DA. Genome-wide transcriptome profiling reveals functional networks involving the Plasmodium falciparum drug resistance transporters PfCRT and PfMDR1. BMC Genomics 2015; 16:1090. [PMID: 26689807 PMCID: PMC4687325 DOI: 10.1186/s12864-015-2320-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 12/15/2015] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The acquisition of multidrug resistance by Plasmodium falciparum underscores the need to understand the underlying molecular mechanisms so as to counter their impact on malaria control. For the many antimalarials whose mode of action relates to inhibition of heme detoxification inside infected erythrocytes, the digestive vacuole transporters PfCRT and PfMDR1 constitute primary resistance determinants. RESULTS Using gene expression microarrays over the course of the parasite intra-erythrocytic developmental cycle, we compared the transcriptomic profiles between P. falciparum strains displaying mutant or wild-type pfcrt or varying in pfcrt or pfmdr1 expression levels. To account for differences in the time of sampling, we developed a computational method termed Hypergeometric Analysis of Time Series, which combines Fast Fourier Transform with a modified Gene Set Enrichment Analysis. Our analysis revealed coordinated changes in genes involved in protein catabolism, translation initiation and DNA/RNA metabolism. We also observed differential expression of genes with a role in transport or coding for components of the digestive vacuole. Interestingly, a global comparison of all profiled transcriptomes uncovered a tight correlation between the transcript levels of pfcrt and pfmdr1, extending to dozens of other genes, suggesting an intricate regulatory balance in order to maintain optimal physiological processes. CONCLUSIONS This study provides insight into the mechanisms by which P. falciparum adjusts to the acquisition of mutations or gene amplification in key transporter loci that mediate drug resistance. Our results implicate several biological pathways that may be differentially regulated to compensate for impaired transporter function and alterations in parasite vacuole physiology.
Collapse
Affiliation(s)
- Sophie H Adjalley
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Present addresses: Wellcome Trust Sanger Institute, Hinxton, UK.
| | - Daniel Scanfeld
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Present addresses: Google Inc., New York, NY, 10011, USA.
| | - Elyse Kozlowski
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Present addresses: Pulmonary Center, Boston University School of Medicine, Boston, MA, 02118, USA.
| | - Manuel Llinás
- Department of Molecular Biology & Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Biochemistry and Molecular Biology, Department of Chemistry, Center for Malaria Research and Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, PA, 16802, USA.
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
47
|
Adaptive evolution of malaria parasites in French Guiana: Reversal of chloroquine resistance by acquisition of a mutation in pfcrt. Proc Natl Acad Sci U S A 2015; 112:11672-7. [PMID: 26261345 DOI: 10.1073/pnas.1507142112] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In regions with high malaria endemicity, the withdrawal of chloroquine (CQ) as first-line treatment of Plasmodium falciparum infections has typically led to the restoration of CQ susceptibility through the reexpansion of the wild-type (WT) allele K76 of the chloroquine resistance transporter gene (pfcrt) at the expense of less fit mutant alleles carrying the CQ resistance (CQR) marker K76T. In low-transmission settings, such as South America, drug resistance mutations can attain 100% prevalence, thereby precluding the return of WT parasites after the complete removal of drug pressure. In French Guiana, despite the fixation of the K76T allele, the prevalence of CQR isolates progressively dropped from >90% to <30% during 17 y after CQ withdrawal in 1995. Using a genome-wide association study with CQ-sensitive (CQS) and CQR isolates, we have identified a single mutation in pfcrt encoding a C350R substitution that is associated with the restoration of CQ susceptibility. Genome editing of the CQR reference strain 7G8 to incorporate PfCRT C350R caused a complete loss of CQR. A retrospective molecular survey on 580 isolates collected from 1997 to 2012 identified all C350R mutant parasites as being CQS. This mutation emerged in 2002 and rapidly spread throughout the P. falciparum population. The C350R allele is also associated with a significant decrease in piperaquine susceptibility in vitro, suggesting that piperaquine pressure in addition to potential fitness costs associated with the 7G8-type CQR pfcrt allele may have selected for this mutation. These findings have important implications for understanding the evolutionary dynamics of antimalarial drug resistance.
Collapse
|