1
|
Kozusnik T, Kebbi-Beghdadi C, Ardissone S, Adams SE, Greub G. A conserved Chlamydiota-specific Type III Secretion System effector linked to stress response. MICROBIOLOGY (READING, ENGLAND) 2025; 171:001545. [PMID: 40293431 PMCID: PMC12038028 DOI: 10.1099/mic.0.001545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Despite broad genetic variability, members of the Chlamydiota phylum share a crucial stress response phenotype, the formation of aberrant bodies. However, how this response operates upon exposure to different kinds of stressors is still largely unknown. In Waddlia chondrophila, wcw_0502 RNA levels are upregulated in aberrant bodies induced by iron starvation. Wcw_0502 is a putative type III secretion system (T3SS) effector and has a homologue in every known chlamydial species, regardless of their host. However, the upregulation of the wcw_0502 gene expression upon iron starvation is not conserved in other chlamydial species such as Chlamydia trachomatis, Chlamydia pneumoniae, Simkania negevensis or Estrella lausannensis. Moreover, among all the stressors examined, only heat shock induced a strong upregulation of wcw_0502 and its C. trachomatis homologue, ctl0271. A Controlling Inverted Repeat of Chaperone Expression sequence is present in the promoter region of wcw_0502 and its homologues. We hypothesized that in the absence of stress, the conserved repressor HrcA, in association with the Hsp60 chaperone, binds this sequence and represses transcription. A decreased occupancy of HrcA and Hsp60 at the wcw_0502 promoter region was observed in aberrant bodies induced by iron starvation when compared to reticulate bodies, which may lead to wcw_0502 upregulation. The precise function of this newly described T3SS effector is still unclear. A cystine knot-like domain, a structural feature never described before in bacterial proteins, was found in the C-terminal region of Wcw_0502. This structure is described as highly resistant to proteolytic, chemical and thermic stressors, an advantageous property for a secreted protein with an increased production during stresses that impact protein integrity.
Collapse
Affiliation(s)
- Thomas Kozusnik
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Silvia Ardissone
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Simone E. Adams
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
2
|
Roncarati D, Vannini A, Scarlato V. Temperature sensing and virulence regulation in pathogenic bacteria. Trends Microbiol 2025; 33:66-79. [PMID: 39164134 DOI: 10.1016/j.tim.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Pathogenic bacteria can detect a variety of environmental signals, including temperature changes. While sudden and significant temperature variations act as danger signals that trigger a protective heat-shock response, minor temperature fluctuations typically signal to the pathogen that it has moved from one environment to another, such as entering a specific niche within a host during infection. These latter temperature fluctuations are utilized by pathogens to coordinate the expression of crucial virulence factors. Here, we elucidate the critical role of temperature in governing the expression of virulence factors in bacterial pathogens. Moreover, we outline the molecular mechanisms used by pathogens to detect temperature fluctuations, focusing on systems that employ proteins and nucleic acids as sensory devices. We also discuss the potential implications and the extent of the risk that climate change poses to human pathogenic diseases.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum - University of Bologna, Bologna, Italy
| |
Collapse
|
3
|
Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell JD, Lai Z, Wan D, Wu X, Li WV, Fan H. Requirement of GrgA for Chlamydia infectious progeny production, optimal growth, and efficient plasmid maintenance. mBio 2024; 15:e0203623. [PMID: 38112466 PMCID: PMC10790707 DOI: 10.1128/mbio.02036-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023] Open
Abstract
IMPORTANCE Hallmarks of the developmental cycle of the obligate intracellular pathogenic bacterium Chlamydia are the primary differentiation of the infectious elementary body (EB) into the proliferative reticulate body (RB) and the secondary differentiation of RBs back into EBs. The mechanisms regulating these transitions remain unclear. In this report, we developed an effective novel strategy termed dependence on plasmid-mediated expression (DOPE) that allows for the knockdown of essential genes in Chlamydia. We demonstrate that GrgA, a Chlamydia-specific transcription factor, is essential for the secondary differentiation and optimal growth of RBs. We also show that GrgA, a chromosome-encoded regulatory protein, controls the maintenance of the chlamydial virulence plasmid. Transcriptomic analysis further indicates that GrgA functions as a critical regulator of all three sigma factors that recognize different promoter sets at developmental stages. The DOPE strategy outlined here should provide a valuable tool for future studies examining chlamydial growth, development, and pathogenicity.
Collapse
Affiliation(s)
- Bin Lu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan, China
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Andrew Cheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Sydney Yeung
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Joseph D. Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Xiang Wu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan, China
| | - Wei Vivian Li
- Department of Statistics, University of California Riverside, Riverside, California, USA
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
4
|
Lu B, Wang Y, Wurihan W, Cheng A, Yeung S, Fondell JD, Lai Z, Wan D, Wu X, Li WV, Fan H. Requirement of GrgA for Chlamydia infectious progeny production, optimal growth, and efficient plasmid maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551707. [PMID: 37577610 PMCID: PMC10418237 DOI: 10.1101/2023.08.02.551707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Chlamydia, an obligate intracellular bacterial pathogen, has a unique developmental cycle involving the differentiation of invading elementary bodies (EBs) to noninfectious reticulate bodies (RBs), replication of RBs, and redifferentiation of RBs into progeny EBs. Progression of this cycle is regulated by three sigma factors, which direct the RNA polymerase to their respective target gene promoters. We hypothesized that the Chlamydia-specific transcriptional regulator GrgA, previously shown to activate σ66 and σ28, plays an essential role in chlamydial development and growth. To test this hypothesis, we applied a novel genetic tool known as dependence on plasmid-mediated expression (DOPE) to create Chlamydia trachomatis with conditional GrgA-deficiency. We show that GrgA-deficient C. trachomatis RBs have a growth rate that is approximately half of the normal rate and fail to transition into progeny EBs. In addition, GrgA-deficient C. trachomatis fail to maintain its virulence plasmid. Results of RNA-seq analysis indicate that GrgA promotes RB growth by optimizing tRNA synthesis and expression of nutrient-acquisition genes, while it enables RB-to-EB conversion by facilitating the expression of a histone and outer membrane proteins required for EB morphogenesis. GrgA also regulates numerous other late genes required for host cell exit and subsequent EB invasion into host cells. Importantly, GrgA stimulates the expression of σ54, the third and last sigma factor, and its activator AtoC, and thereby indirectly upregulating the expression of σ54-dependent genes. In conclusion, our work demonstrates that GrgA is a master transcriptional regulator in Chlamydia and plays multiple essential roles in chlamydial pathogenicity.
Collapse
Affiliation(s)
- Bin Lu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan 410013, China
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Andrew Cheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sydney Yeung
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Joseph D. Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Xiang Wu
- Department of Parasitology, Central South University Xiangya Medical School, Changsha, Hunan 410013, China
| | - Wei Vivian Li
- Department of Statistics, University of California Riverside, Riverside, CA 92521, USA
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
5
|
Rosario C, Tan M. Chlamydia trachomatis RsbU Phosphatase Activity Is Inhibited by the Enolase Product, Phosphoenolpyruvate. J Bacteriol 2022; 204:e0017822. [PMID: 36121291 PMCID: PMC9578391 DOI: 10.1128/jb.00178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
The intracellular pathogen Chlamydia temporally regulates the expression of its genes, but the upstream signals that control transcription are not known. The best-studied regulatory pathway is a partner-switching mechanism that involves an anti-sigma factor, RsbW, which inhibits transcription by binding and sequestering the sigma subunit of RNA polymerase. RsbW is itself regulated by an anti-anti-sigma factor, RsbV, whose phosphorylation state is controlled by the phosphatase RsbU. In this study, we showed that Chlamydia trachomatis RsbU requires manganese or magnesium as a cofactor and dephosphorylates RsbV1 and RsbV2, which are the two chlamydial paralogs of RsbV. The gene for RsbU is adjacent to the enolase gene in a number of Chlamydia genomes, and we showed that eno and rsbU are cotranscribed from the same operon. In other bacteria, there is no known functional connection between the Rsb pathway and enolase, which is an enzyme in the glycolytic pathway. We found, however, that Chlamydia RsbU phosphatase activity was inhibited by phosphoenolpyruvate (PEP), the product of the enolase reaction, but not by 2-phosphoglycerate (2PGA), which is the substrate. These findings suggest that the enolase reaction and, more generally, glucose metabolism, may provide an upstream signal that regulates transcription in Chlamydia through the RsbW pathway. IMPORTANCE The RsbW pathway is a phosphorelay that regulates gene expression in Chlamydia, but its upstream signal has not been identified. We showed that RsbU, a phosphatase in this pathway, is inhibited by phosphoenolpyruvate, which is the product of the enolase reaction. As enolase is an enzyme in the glycolytic pathway, these results reveal an unrecognized link between glucose metabolism and gene regulation in chlamydiae. Moreover, as these intracellular bacteria acquire glucose from the infected host cell, our findings suggest that glucose availability may be an external signal that controls chlamydial gene expression.
Collapse
Affiliation(s)
- Christopher Rosario
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
- Department of Medicine, University of California, Irvine, California, USA
| |
Collapse
|
6
|
Abstract
Temperature is one of the ubiquitous signals that control both the development as well as virulence of various microbial species. Therefore their survival is dependent upon initiating appropriate response upon temperature fluctuations. In particular, pathogenic microbes exploit host-temperature sensing mechanisms for triggering the expression of virulence genes. Many studies have revealed that the biomolecules within a cell such as DNA, RNA, lipids and proteins help in sensing change in temperature, thereby acting as thermosensors. This review shall provide an insight into the different mechanisms of thermosensing and how they aid pathogenic microbes in host invasion.
Collapse
|
7
|
Huang Y, Wurihan W, Lu B, Zou Y, Wang Y, Weldon K, Fondell JD, Lai Z, Wu X, Fan H. Robust Heat Shock Response in Chlamydia Lacking a Typical Heat Shock Sigma Factor. Front Microbiol 2022; 12:812448. [PMID: 35046926 PMCID: PMC8762339 DOI: 10.3389/fmicb.2021.812448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/02/2021] [Indexed: 11/13/2022] Open
Abstract
Cells reprogram their transcriptome in response to stress, such as heat shock. In free-living bacteria, the transcriptomic reprogramming is mediated by increased DNA-binding activity of heat shock sigma factors and activation of genes normally repressed by heat-induced transcription factors. In this study, we performed transcriptomic analyses to investigate heat shock response in the obligate intracellular bacterium Chlamydia trachomatis, whose genome encodes only three sigma factors and a single heat-induced transcription factor. Nearly one-third of C. trachomatis genes showed statistically significant (≥1.5-fold) expression changes 30 min after shifting from 37 to 45°C. Notably, chromosomal genes encoding chaperones, energy metabolism enzymes, type III secretion proteins, as well as most plasmid-encoded genes, were differentially upregulated. In contrast, genes with functions in protein synthesis were disproportionately downregulated. These findings suggest that facilitating protein folding, increasing energy production, manipulating host activities, upregulating plasmid-encoded gene expression, and decreasing general protein synthesis helps facilitate C. trachomatis survival under stress. In addition to relieving negative regulation by the heat-inducible transcriptional repressor HrcA, heat shock upregulated the chlamydial primary sigma factor σ66 and an alternative sigma factor σ28. Interestingly, we show for the first time that heat shock downregulates the other alternative sigma factor σ54 in a bacterium. Downregulation of σ54 was accompanied by increased expression of the σ54 RNA polymerase activator AtoC, thus suggesting a unique regulatory mechanism for reestablishing normal expression of select σ54 target genes. Taken together, our findings reveal that C. trachomatis utilizes multiple novel survival strategies to cope with environmental stress and even to replicate. Future strategies that can specifically target and disrupt Chlamydia’s heat shock response will likely be of therapeutic value.
Collapse
Affiliation(s)
- Yehong Huang
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Wurihan Wurihan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Bin Lu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Yi Zou
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Korri Weldon
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Joseph D Fondell
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Zhao Lai
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, TX, United States.,Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX, United States
| | - Xiang Wu
- Department of Parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
8
|
Abstract
Chlamydia trachomatis is an obligate intracellular bacterium whose unique developmental cycle consists of an infectious elementary body and a replicative reticulate body. Progression of this developmental cycle requires temporal control of the transcriptome. In addition to the three chlamydial sigma factors (σ66, σ28, and σ54) that recognize promoter sequences of genes, chlamydial transcription factors are expected to play crucial roles in transcriptional regulation. Here, we investigate the function of GrgA, a Chlamydia-specific transcription factor, in C. trachomatis transcriptomic expression. We show that 10 to 30 min of GrgA overexpression induces 13 genes, which likely comprise the direct regulon of GrgA. Significantly, σ66-dependent genes that code for two important transcription repressors are components of the direct regulon. One of these repressors is Euo, which prevents the expression of late genes during early phases. The other is HrcA, which regulates molecular chaperone expression and controls stress response. The direct regulon also includes a σ28-dependent gene that codes for the putative virulence factor PmpI. Furthermore, overexpression of GrgA leads to decreased expression of almost all tRNAs. Transcriptomic studies suggest that GrgA, Euo, and HrcA have distinct but overlapping indirect regulons. These findings, together with temporal expression patterns of grgA, euo, and hrcA, indicate that a transcriptional regulatory network of these three transcription factors plays critical roles in C. trachomatis growth and development. IMPORTANCEChlamydia trachomatis is the most prevalent sexually transmitted bacterial pathogen worldwide and is a leading cause of preventable blindness in underdeveloped areas as well as some developed countries. Chlamydia carries genes that encode a limited number of known transcription factors. While Euo is thought to be critical for early chlamydial development, the functions of GrgA and HrcA in the developmental cycle are unclear. Activation of euo and hrcA immediately following GrgA overexpression indicates that GrgA functions as a master transcriptional regulator. In addition, by broadly inhibiting tRNA expression, GrgA serves as a key regulator of chlamydial protein synthesis. Furthermore, by upregulating pmpI, GrgA may act as an upstream virulence determinant. Finally, genes coregulated by GrgA, Euo, and HrcA likely play critical roles in chlamydial growth and developmental control.
Collapse
|
9
|
Sigma 54-Regulated Transcription Is Associated with Membrane Reorganization and Type III Secretion Effectors during Conversion to Infectious Forms of Chlamydia trachomatis. mBio 2020; 11:mBio.01725-20. [PMID: 32900805 PMCID: PMC7482065 DOI: 10.1128/mbio.01725-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The factors that control the growth and infectious processes for Chlamydia are still poorly understood. This study used recently developed genetic tools to determine the regulon for one of the key transcription factors encoded by Chlamydia, sigma 54. Surrogate and computational analyses provide additional support for the hypothesis that sigma 54 plays a key role in controlling the expression of many components critical to converting and enabling the infectious capability of Chlamydia. These components include those that remodel the membrane for the extracellular environment and incorporation of an arsenal of type III secretion effectors in preparation for infecting new cells. Chlamydia bacteria are obligate intracellular organisms with a phylum-defining biphasic developmental cycle that is intrinsically linked to its ability to cause disease. The progression of the chlamydial developmental cycle is regulated by the temporal expression of genes predominantly controlled by RNA polymerase sigma (σ) factors. Sigma 54 (σ54) is one of three sigma factors encoded by Chlamydia for which the role and regulon are unknown. CtcC is part of a two-component signal transduction system that is requisite for σ54 transcriptional activation. CtcC activation of σ54 requires phosphorylation, which relieves inhibition by the CtcC regulatory domain and enables ATP hydrolysis by the ATPase domain. Prior studies with CtcC homologs in other organisms have shown that expression of the ATPase domain alone can activate σ54 transcription. Biochemical analysis of CtcC ATPase domain supported the idea of ATP hydrolysis occurring in the absence of the regulatory domain, as well as the presence of an active-site residue essential for ATPase activity (E242). Using recently developed genetic approaches in Chlamydia to induce expression of the CtcC ATPase domain, a transcriptional profile was determined that is expected to reflect the σ54 regulon. Computational evaluation revealed that the majority of the differentially expressed genes were preceded by highly conserved σ54 promoter elements. Reporter gene analyses using these putative σ54 promoters reinforced the accuracy of the model of the proposed regulon. Investigation of the gene products included in this regulon supports the idea that σ54 controls expression of genes that are critical for conversion of Chlamydia from replicative reticulate bodies into infectious elementary bodies.
Collapse
|
10
|
The Repressor Function of the Chlamydia Late Regulator EUO Is Enhanced by the Plasmid-Encoded Protein Pgp4. J Bacteriol 2020; 202:JB.00793-19. [PMID: 31988079 DOI: 10.1128/jb.00793-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 11/20/2022] Open
Abstract
A critical step in intracellular Chlamydia infection is the production of infectious progeny through the expression of late genes. This differentiation step involves conversion from a reticulate body (RB), which is the replicating form of the bacterium, into an elementary body (EB), which is the developmental form that spreads the infection to a new host cell. EUO is an important chlamydial transcription factor that controls the expression of late genes, but the mechanisms that regulate EUO are not known. We report that a plasmid-encoded protein, Pgp4, enhanced the repressor activity of EUO. Pgp4 did not function as a transcription factor because it did not bind or directly modulate transcription of its target promoters. Instead, Pgp4 increased the ability of EUO to bind and repress EUO-regulated promoters in vitro and physically interacted with EUO in pulldown assays with recombinant proteins. We detected earlier onset of EUO-dependent late gene expression by immunofluorescence microscopy in Pgp4-deficient C. trachomatis and C. muridarum strains. In addition, the absence of Pgp4 led to earlier onset of RB-to-EB conversion in C. muridarum These data support a role for Pgp4 as a negative regulator of chlamydial transcription that delays late gene expression. Our studies revealed that Pgp4 also has an EUO-independent function as a positive regulator of chlamydial transcription.IMPORTANCE Chlamydia trachomatis is an important human pathogen that causes more than 150 million active cases of genital and eye infection in the world. This obligate intracellular bacterium produces infectious progeny within an infected human cell through the expression of late chlamydial genes. We showed that the ability of a key chlamydial transcription factor, EUO, to repress late genes was enhanced by a plasmid-encoded protein, Pgp4. In addition, studies with Chlamydia Pgp4-deficient strains provide evidence that Pgp4 delays late gene expression in infected cells. Thus, Pgp4 is a novel regulator of late gene expression in Chlamydia through its ability to enhance the repressor function of EUO.
Collapse
|
11
|
Schramm FD, Schroeder K, Jonas K. Protein aggregation in bacteria. FEMS Microbiol Rev 2020; 44:54-72. [PMID: 31633151 PMCID: PMC7053576 DOI: 10.1093/femsre/fuz026] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Protein aggregation occurs as a consequence of perturbations in protein homeostasis that can be triggered by environmental and cellular stresses. The accumulation of protein aggregates has been associated with aging and other pathologies in eukaryotes, and in bacteria with changes in growth rate, stress resistance and virulence. Numerous past studies, mostly performed in Escherichia coli, have led to a detailed understanding of the functions of the bacterial protein quality control machinery in preventing and reversing protein aggregation. However, more recent research points toward unexpected diversity in how phylogenetically different bacteria utilize components of this machinery to cope with protein aggregation. Furthermore, how persistent protein aggregates localize and are passed on to progeny during cell division and how their presence impacts reproduction and the fitness of bacterial populations remains a controversial field of research. Finally, although protein aggregation is generally seen as a symptom of stress, recent work suggests that aggregation of specific proteins under certain conditions can regulate gene expression and cellular resource allocation. This review discusses recent advances in understanding the consequences of protein aggregation and how this process is dealt with in bacteria, with focus on highlighting the differences and similarities observed between phylogenetically different groups of bacteria.
Collapse
Affiliation(s)
- Frederic D Schramm
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristen Schroeder
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| | - Kristina Jonas
- Science for Life Laboratory and Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, Stockholm 10691, Sweden
| |
Collapse
|
12
|
Mechanism of HrcA function in heat shock regulation in Mycobacterium tuberculosis. Biochimie 2019; 168:285-296. [PMID: 31765672 DOI: 10.1016/j.biochi.2019.11.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 11/19/2019] [Indexed: 01/16/2023]
Abstract
Molecular chaperones are a conserved family of proteins that are over-expressed in response to heat and other stresses. The regulation of expression of chaperone proteins plays a vital role in pathogenesis of various bacterial pathogens. In M. tuberculosis, HrcA and HspR negatively regulate heat shock protein operons by binding to their cognate DNA elements, CIRCE and HAIR respectively. In this study, we show that M. tuberculosis HrcA is able to bind to its cognate CIRCE DNA element present in the upstream regions of groES and groEL2 operons only with the help of other protein(s). It is also demonstrated that M. tuberculosis HrcA binds to a CIRCE like DNA element present in the upstream region of hrcA gene suggesting its auto-regulatory nature. In addition, we report the presence of a putative HAIR element in the upstream region of groES operon and demonstrate the binding of HspR to it. In vitro, HrcA inhibited the DNA binding activity of HspR in a dose-dependent manner. The current study demonstrates that M. tuberculosis HrcA requires other protein(s) to function, and the heat shock protein expression in M. tuberculosis is negatively regulated jointly by HrcA and HspR.
Collapse
|
13
|
Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to gene expression output. FEMS Microbiol Rev 2017; 41:549-574. [PMID: 28402413 DOI: 10.1093/femsre/fux015] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/14/2017] [Indexed: 02/07/2023] Open
Abstract
The heat-shock response is a mechanism of cellular protection against sudden adverse environmental growth conditions and results in the prompt production of various heat-shock proteins. In bacteria, specific sensory biomolecules sense temperature fluctuations and transduce intercellular signals that coordinate gene expression outputs. Sensory biomolecules, also known as thermosensors, include nucleic acids (DNA or RNA) and proteins. Once a stress signal is perceived, it is transduced to invoke specific molecular mechanisms controlling transcription of genes coding for heat-shock proteins. Transcriptional regulation of heat-shock genes can be under either positive or negative control mediated by dedicated regulatory proteins. Positive regulation exploits specific alternative sigma factors to redirect the RNA polymerase enzyme to a subset of selected promoters, while negative regulation is mediated by transcriptional repressors. Interestingly, while various bacteria adopt either exclusively positive or negative mechanisms, in some microorganisms these two opposite strategies coexist, establishing complex networks regulating heat-shock genes. Here, we comprehensively summarize molecular mechanisms that microorganisms have adopted to finely control transcription of heat-shock genes.
Collapse
Affiliation(s)
- Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
14
|
Using Intra-ChIP to Measure Protein-DNA Interactions in Intracellular Pathogens. Methods Mol Biol 2017. [PMID: 29027172 DOI: 10.1007/978-1-4939-7380-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Chromatin immunoprecipitation is used to measure the binding of transcription factors to target DNA sequences in order to better understand transcriptional regulation. Here, we describe a process to analyze bacterial transcription factor binding in the context of an infected eukaryotic host cell. Using this approach, we measured the binding kinetics of three Chlamydia trachomatis transcription factors within infected cells, and demonstrated temporal changes in binding.
Collapse
|
15
|
Biochemical and Genetic Analysis of the Chlamydia GroEL Chaperonins. J Bacteriol 2017; 199:JB.00844-16. [PMID: 28396349 DOI: 10.1128/jb.00844-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 04/01/2017] [Indexed: 02/01/2023] Open
Abstract
Chaperonins are essential for cellular growth under normal and stressful conditions and consequently represent one of the most conserved and ancient protein classes. The paradigm Escherichia coli chaperonin, EcGroEL, and its cochaperonin, EcGroES, assist in the folding of proteins via an ATP-dependent mechanism. In addition to the presence of groEL and groES homologs, groEL paralogs are found in many bacteria, including pathogens, and have evolved poorly understood species-specific functions. Chlamydia spp., which are obligate intracellular bacteria, have reduced genomes that nonetheless contain three groEL genes, Chlamydia groEL (ChgroEL), ChgroEL2, and ChgroEL3 We hypothesized that ChGroEL is the bona fide chaperonin and that the paralogs perform novel Chlamydia-specific functions. To test our hypothesis, we investigated the biochemical properties of ChGroEL and its cochaperonin, ChGroES, and queried the in vivo essentiality of the three ChgroEL genes through targeted mutagenesis in Chlamydia trachomatis ChGroEL hydrolyzed ATP at a rate 25% of that of EcGroEL and bound with high affinity to ChGroES, and the ChGroEL-ChGroES complex could refold malate dehydrogenase (MDH). The chlamydial ChGroEL was selective for its cognate cochaperonin, ChGroES, while EcGroEL could function with both EcGroES and ChGroES. A P35T ChGroES mutant (ChGroESP35T) reduced ChGroEL-ChGroES interactions and MDH folding activities but was tolerated by EcGroEL. Both ChGroEL-ChGroES and EcGroEL-ChGroESP35T could complement an EcGroEL-EcGroES mutant. Finally, we successfully inactivated both paralogs but not ChgroEL, leading to minor growth defects in cell culture that were not exacerbated by heat stress. Collectively, our results support novel functions for the paralogs and solidify ChGroEL as a bona fide chaperonin that is biochemically distinct from EcGroEL.IMPORTANCEChlamydia is an important cause of human diseases, including pneumonia, sexually transmitted infections, and trachoma. The chlamydial chaperonin ChGroEL and chaperonin paralog ChGroEL2 have been associated with survival under stress conditions, and ChGroEL is linked with immunopathology elicited by chlamydial infections. However, their exact roles in bacterial survival and disease remain unclear. Our results further substantiate the hypotheses that ChGroEL is the primary chlamydial chaperonin and that the paralogs play specialized roles during infection. Furthermore, ChGroEL and the mitochondrial GroEL only functioned with their cochaperonin, in contrast to the promiscuous nature of GroEL from E. coli and Helicobacter pylori, which might indicate a divergent evolution of GroEL during the transition from a free-living organism to an obligate intracellular lifestyle.
Collapse
|
16
|
Tryptophan Codon-Dependent Transcription in Chlamydia pneumoniae during Gamma Interferon-Mediated Tryptophan Limitation. Infect Immun 2016; 84:2703-13. [PMID: 27400720 DOI: 10.1128/iai.00377-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 07/05/2016] [Indexed: 12/16/2022] Open
Abstract
In evolving to an obligate intracellular niche, Chlamydia has streamlined its genome by eliminating superfluous genes as it relies on the host cell for a variety of nutritional needs like amino acids. However, Chlamydia can experience amino acid starvation when the human host cell in which the bacteria reside is exposed to interferon gamma (IFN-γ), which leads to a tryptophan (Trp)-limiting environment via induction of the enzyme indoleamine-2,3-dioxygenase (IDO). The stringent response is used to respond to amino acid starvation in most bacteria but is missing from Chlamydia Thus, how Chlamydia, a Trp auxotroph, responds to Trp starvation in the absence of a stringent response is an intriguing question. We previously observed that C. pneumoniae responds to this stress by globally increasing transcription while globally decreasing translation, an unusual response. Here, we sought to understand this and hypothesized that the Trp codon content of a given gene would determine its transcription level. We quantified transcripts from C. pneumoniae genes that were either rich or poor in Trp codons and found that Trp codon-rich transcripts were increased, whereas those that lacked Trp codons were unchanged or even decreased. There were exceptions, and these involved operons or large genes with multiple Trp codons: downstream transcripts were less abundant after Trp codon-rich sequences. These data suggest that ribosome stalling on Trp codons causes a negative polar effect on downstream sequences. Finally, reassessing previous C. pneumoniae microarray data based on codon content, we found that upregulated transcripts were enriched in Trp codons, thus supporting our hypothesis.
Collapse
|
17
|
Hanson BR, Tan M. Intra-ChIP: studying gene regulation in an intracellular pathogen. Curr Genet 2016; 62:547-51. [PMID: 26886234 PMCID: PMC5139683 DOI: 10.1007/s00294-016-0580-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 02/11/2016] [Indexed: 12/25/2022]
Abstract
Intracellular bacteria that reside within a host cell use a variety of strategies to exploit this unique niche. While these organisms are technically challenging to study in the context of an infected host cell, recent advances have led to an improved understanding of how the intracellular environment impacts bacterial gene expression. We recently demonstrated that chromatin immunoprecipitation (ChIP) can be used to quantify transcription factor binding in the obligate intracellular pathogen Chlamydia trachomatis within infected cells. Furthermore, we showed it was possible to experimentally modulate transcription factor binding while simultaneously measuring changes in transcription. Here we discuss these findings as well as other recent work that has used ChIP to study intracellular pathogens within infected cells. We also discuss technical considerations associated with this approach and its possible future applications.
Collapse
Affiliation(s)
- Brett R Hanson
- Department of Microbiology and Molecular Genetics, University of California, B240 Med Sci, Irvine, CA, 92697-4025, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, B240 Med Sci, Irvine, CA, 92697-4025, USA.
- Department of Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
18
|
de Barsy M, Frandi A, Panis G, Théraulaz L, Pillonel T, Greub G, Viollier PH. Regulatory (pan-)genome of an obligate intracellular pathogen in the PVC superphylum. ISME JOURNAL 2016; 10:2129-44. [PMID: 26953603 PMCID: PMC4989314 DOI: 10.1038/ismej.2016.23] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 01/19/2016] [Accepted: 01/21/2016] [Indexed: 01/17/2023]
Abstract
Like other obligate intracellular bacteria, the Chlamydiae feature a compact regulatory genome that remains uncharted owing to poor genetic tractability. Exploiting the reduced number of transcription factors (TFs) encoded in the chlamydial (pan-)genome as a model for TF control supporting the intracellular lifestyle, we determined the conserved landscape of TF specificities by ChIP-Seq (chromatin immunoprecipitation-sequencing) in the chlamydial pathogen Waddlia chondrophila. Among 10 conserved TFs, Euo emerged as a master TF targeting >100 promoters through conserved residues in a DNA excisionase-like winged helix-turn-helix-like (wHTH) fold. Minimal target (Euo) boxes were found in conserved developmentally-regulated genes governing vertical genome transmission (cytokinesis and DNA replication) and genome plasticity (transposases). Our ChIP-Seq analysis with intracellular bacteria not only reveals that global TF regulation is maintained in the reduced regulatory genomes of Chlamydiae, but also predicts that master TFs interpret genomic information in the obligate intracellular α-proteobacteria, including the rickettsiae, from which modern day mitochondria evolved.
Collapse
Affiliation(s)
- Marie de Barsy
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Antonio Frandi
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laurence Théraulaz
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center, University of Lausanne, Lausanne, Switzerland
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva (iGE3), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|