1
|
Ambari AM, Qhabibi FR, Desandri DR, Dwiputra B, Baravia PA, Makes IK, Radi B. Unveiling the Group A Streptococcus Vaccine-Based L-Rhamnose from Backbone of Group A Carbohydrate: Current Insight Against Acute Rheumatic Fever to Reduce the Global Burden of Rheumatic Heart Disease. F1000Res 2025; 13:132. [PMID: 39959434 PMCID: PMC11829149 DOI: 10.12688/f1000research.144903.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Group A Streptococcus (GAS) is a widely distributed bacterium that is Gram-positive and serves as the primary cause of acute rheumatic fever (ARF) episodes. Rheumatic heart disease (RHD) is a sequela resulting from repeated ARF attacks which are also caused by repeated GAS infections. ARF/RHD morbidity and mortality rates are incredibly high in low- and middle-income countries. This is closely related to poor levels of sanitation which causes the enhanced incidence of GAS infections. Management of carditis in RHD cases is quite challenging, particularly in developing countries, considering that medical treatment is only palliative, while definitive treatment often requires more invasive procedures with high costs. Preventive action through vaccination against GAS infection is one of the most effective steps as a solution in reducing RHD morbidity and mortality due to curative treatments are expensive. Various developments of M-protein-based GAS vaccines have been carried out over the last few decades and have recently begun to enter the clinical stage. Nevertheless, this vaccination generates cross-reactive antibodies that might trigger ARF assaults as a result of the resemblance between the M-protein structure and proteins found in many human tissues. Consequently, the development of a vaccine utilizing L-Rhamnose derived from the poly-rhamnose backbone of Group A Carbohydrate (GAC) commenced. The L-Rhamnose-based vaccine was chosen due to the absence of the Rhamnose biosynthesis pathway in mammalian cells including humans thus this molecule is not found in any body tissue. Recent pre-clinical studies reveal that L-Rhamnose-based vaccines provide a protective effect by increasing IgG antibody titers without causing cross-reactive antibodies in test animal tissue. These findings demonstrate that the L-Rhamnose-based vaccine possesses strong immunogenicity, which effectively protects against GAS infection while maintaining a significantly higher degree of safety.
Collapse
Affiliation(s)
- Ade Meidian Ambari
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Faqrizal Ria Qhabibi
- Research Assistant, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
| | - Dwita Rian Desandri
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Bambang Dwiputra
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| | - Pirel Aulia Baravia
- Cardiovascular Prevention and Rehabilitation Department, Dr. Saiful Anwar General Hospital, Malang, East Java, 65122, Indonesia
| | - Indira Kalyana Makes
- Research Assistant, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
| | - Basuni Radi
- Cardiovascular Prevention and Rehabilitation Department, National Cardiovascular Center Hospital Harapan Kita, Jakarta, Jakarta, 11420, Indonesia
- Cardiology and Vascular Department, Faculty of Medicine, University of Indonesia, Jakarta, Jakarta, 10430, Indonesia
| |
Collapse
|
2
|
Tamminga SM, Schipper K, Murner N, Davies M, Berkhout P, Bessen DE, Hendriks A, Korotkova N, Pannekoek Y, van Sorge NM. Natural variation of the streptococcal Group A carbohydrate biosynthesis genes impacts host-pathogen interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621835. [PMID: 39574630 PMCID: PMC11580967 DOI: 10.1101/2024.11.04.621835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
Streptococcus pyogenes ( S. pyogenes ) is a leading cause of infection-related mortality in humans globally. The characteristic cell wall-anchored Group A Carbohydrate (GAC) is expressed by all S. pyogenes strains and consists of a polyrhamnose backbone with alternating N -acetylglucosamine (GlcNAc) side chains, of which 25% are decorated with glycerol phosphate (GroP). The genes in the gacA-L cluster are critical for GAC biosynthesis with gacI-L being responsible for the characteristic GlcNAc-GroP decoration, which confers the agglutination in rapid test diagnostic assays and contributes to S. pyogenes pathogenicity. Seminal research papers described S. pyogenes isolates, so-called A-variant strains, that lost the characteristic GlcNAc side chain following serial animal passage. We performed genomic analysis of a single viable historic parent/A-variant strain pair to reveal a premature inactivating stop codon in gacI , explaining the described loss of the GlcNAc side chain. Subsequently, we analyzed the genetic variation of the 12 gacA-L genes in a collection of 2,044 S. pyogenes genome sequences. Although all gac genes ( gacA-L ) displayed genetic variation, we only identified 31 isolates (1.5%) with a premature stop codon in one of the gac genes. Nearly 40% of these isolates contained a premature stop codon in gacH . To study the functional consequences of the different premature stop codons for GacH function, we plasmid-expressed three gacH variants in a S. pyogenes gacH -deficient strain. Cell wall analysis confirmed GacH loss-of-function through the significant reduction of GroP. Complementary, we showed that strains expressing gacH loss-of-function variants were completely resistant to the human bactericidal enzyme group IIA-secreted phospholipase. Overall, our data provide a comprehensive overview of the genetic variation of the gacA-L gene cluster in a global population of S. pyogenes strains and the functional consequences of gacH variation for immune recognition and clearance. Data summary All S. pyogenes genome sequences used for this analysis are available within the publication by Davies et al . (2019), 'Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics' Nature Genetics, 51(6):1035-43.
Collapse
Affiliation(s)
- Sara M. Tamminga
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Kim Schipper
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nicholas Murner
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | - Matthew Davies
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM), Amsterdam UMC location AMC, Amsterdam, The Netherlands
| | - Paul Berkhout
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Debra E. Bessen
- Department of Pathology, Microbiology, and Immunology, New York Medical College, Valhalla, New York, USA
| | - Astrid Hendriks
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, USA
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Yvonne Pannekoek
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Nina M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis (NRLBM), Amsterdam UMC location AMC, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Dos Santos Ré AC, Cury JA, Sassaki GL, Aires CP. Structure of rhamnoglucan, an unexpected alkali-stable polysaccharide extracted from Streptococcus mutans cell wall. Int J Biol Macromol 2024; 262:130121. [PMID: 38350588 DOI: 10.1016/j.ijbiomac.2024.130121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/07/2024] [Accepted: 02/09/2024] [Indexed: 02/15/2024]
Abstract
This study identified a rhamnose-containing cell wall polysaccharide (RhaCWP) in an alkaline extract prepared to analyze intracellular polysaccharides (IPS) from Streptococcus mutans biofilm. IPS was an 1,4-α-D-glucan with branchpoints introduced by 1,6-α-glucan while RhaCWP presented 1,2-α-L-and 1,3-α-L rhamnose backbone and side chains connected by 1,2-α-D-glucans, as identified by nuclear magnetic resonance (NMR) spectroscopy and methylation analyses. The MW of IPS and RhaCWP was 11,298 Da, as determined by diffusion-ordered NMR spectroscopy. Therefore, this study analyzed the chemical structure of RhaCWP and IPS from biofilm in a single fraction prepared via a convenient hot-alkali extraction method. This method could be a feasible approach to obtain such molecules and improve the comprehension of the structure-function relationships in polymers from S. mutans in future studies.
Collapse
Affiliation(s)
- Ana Carolina Dos Santos Ré
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| | - Jaime Aparecido Cury
- Department of Biosciences, Piracicaba Dental School, UNICAMP, CP 52, 13414-903 Piracicaba, SP, Brazil.
| | - Guilherme Lanzi Sassaki
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, CEP: 81531-980 Curitiba, PR, Brazil.
| | - Carolina Patrícia Aires
- Department of BioMolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, CEP 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
4
|
Ouyang X, Hoeksma J, Beenker WA, van der Beek S, den Hertog J. Harzianic acid exerts antimicrobial activity against Gram-positive bacteria and targets the cell membrane. Front Microbiol 2024; 15:1332774. [PMID: 38348189 PMCID: PMC10860749 DOI: 10.3389/fmicb.2024.1332774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
The thermophilic fungus Oidiodendron flavum is a saprobe that is commonly isolated from soil. Here, we identified a Gram-positive bacteria-selective antimicrobial secondary metabolite from this fungal species, harzianic acid (HA). Using Bacillus subtilis strain 168 combined with dynamic bacterial morphology imaging, we found that HA targeted the cell membrane. To further study the antimicrobial activity of HA, we isolated an HA-resistant strain, Bacillus subtilis strain M9015, and discovered that the mutant had more translucent colonies than the wild type strain, showed cross resistance to rifampin, and harbored five mutations in the coding region of four distinct genes. Further analysis of these genes indicated that the mutation in atpE might be responsible for the translucency of the colonies, and mutation in mdtR for resistance to both HA and rifampin. We conclude that HA is an antimicrobial agent against Gram-positive bacteria that targets the cell membrane.
Collapse
Affiliation(s)
- Xudong Ouyang
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
| | - Jelmer Hoeksma
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Wouter A.G. Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | | | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Institute Biology Leiden, Leiden University, Leiden, Netherlands
| |
Collapse
|
5
|
Burns K, Dorfmueller HC, Wren BW, Mawas F, Shaw HA. Progress towards a glycoconjugate vaccine against Group A Streptococcus. NPJ Vaccines 2023; 8:48. [PMID: 36977677 PMCID: PMC10043865 DOI: 10.1038/s41541-023-00639-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/27/2023] [Indexed: 03/30/2023] Open
Abstract
The Group A Carbohydrate (GAC) is a defining feature of Group A Streptococcus (Strep A) or Streptococcus pyogenes. It is a conserved and simple polysaccharide, comprising a rhamnose backbone and GlcNAc side chains, further decorated with glycerol phosphate on approximately 40% GlcNAc residues. Its conservation, surface exposure and antigenicity have made it an interesting focus on Strep A vaccine design. Glycoconjugates containing this conserved carbohydrate should be a key approach towards the successful mission to build a universal Strep A vaccine candidate. In this review, a brief introduction to GAC, the main carbohydrate component of Strep A bacteria, and a variety of published carrier proteins and conjugation technologies are discussed. Components and technologies should be chosen carefully for building affordable Strep A vaccine candidates, particularly for low- and middle-income countries (LMICs). Towards this, novel technologies are discussed, such as the prospective use of bioconjugation with PglB for rhamnose polymer conjugation and generalised modules for membrane antigens (GMMA), particularly as low-cost solutions to vaccine production. Rational design of "double-hit" conjugates encompassing species specific glycan and protein components would be beneficial and production of a conserved vaccine to target Strep A colonisation without invoking an autoimmune response would be ideal.
Collapse
Affiliation(s)
- Keira Burns
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, Dow Street, Dundee, UK
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Fatme Mawas
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK
| | - Helen A Shaw
- Vaccine Division, Scientific Research & Innovation Group, MHRA, Potters Bar, UK.
| |
Collapse
|
6
|
Kuijk MM, Wu Y, van Hensbergen VP, Shanlitourk G, Payré C, Lambeau G, Man-Bovenkerk S, Herrmann J, Müller R, van Strijp JAG, Pannekoek Y, Touqui L, van Sorge NM. Interference with Lipoprotein Maturation Sensitizes Methicillin-Resistant Staphylococcus aureus to Human Group IIA-Secreted Phospholipase A2 and Daptomycin. J Innate Immun 2022; 15:333-350. [PMID: 36473432 PMCID: PMC10643906 DOI: 10.1159/000527549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has been classified as a high priority pathogen by the World Health Organization underlining the high demand for new therapeutics to treat infections. Human group IIA-secreted phospholipase A2 (hGIIA) is among the most potent bactericidal proteins against Gram-positive bacteria, including S. aureus. To determine hGIIA-resistance mechanisms of MRSA, we screened the Nebraska Transposon Mutant Library using a sublethal concentration of recombinant hGIIA. We identified and confirmed the role of lspA, encoding the lipoprotein signal peptidase LspA, as a new hGIIA resistance gene in both in vitro assays and an infection model in hGIIA-transgenic mice. Increased susceptibility of the lspA mutant was associated with enhanced activity of hGIIA on the cell membrane. Moreover, lspA deletion increased susceptibility to daptomycin, a last-resort antibiotic to treat MRSA infections. MRSA wild type could be sensitized to hGIIA and daptomycin killing through exposure to LspA-specific inhibitors globomycin and myxovirescin A1. Analysis of >26,000 S. aureus genomes showed that LspA is highly sequence-conserved, suggesting universal application of LspA inhibition. The role of LspA in hGIIA resistance was not restricted to MRSA since Streptococcus mutans and Enterococcus faecalis were also more hGIIA-susceptible after lspA deletion or LspA inhibition, respectively. Overall, our data suggest that pharmacological interference with LspA may disarm Gram-positive pathogens, including MRSA, to enhance clearance by innate host defense molecules and clinically applied antibiotics.
Collapse
Affiliation(s)
- Marieke M Kuijk
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands,
| | - Yongzheng Wu
- Unité de Biologie Cellulaire de l'Infection Microbionne, CNRS UMR3691, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Vincent P van Hensbergen
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Gizem Shanlitourk
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Christine Payré
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Gérard Lambeau
- Université Côte d'Azur, CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Valbonne Sophia Antipolis, France
| | - Sandra Man-Bovenkerk
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Jennifer Herrmann
- Department of Pharmacy at Saarland University, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbrücken, Germany
| | - Rolf Müller
- Department of Pharmacy at Saarland University, Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbrücken, Germany
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Pannekoek
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
| | - Lhousseine Touqui
- Mucoviscidose et Bronchopathies Chroniques, Institut Pasteur, Université de Paris Cité, Paris, France
- Sorbonne Université, INSERM UMR S 938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Nina M van Sorge
- Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Guérin H, Kulakauskas S, Chapot-Chartier MP. Structural variations and roles of rhamnose-rich cell wall polysaccharides in Gram-positive bacteria. J Biol Chem 2022; 298:102488. [PMID: 36113580 PMCID: PMC9574508 DOI: 10.1016/j.jbc.2022.102488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/17/2022] Open
Abstract
Rhamnose-rich cell wall polysaccharides (Rha-CWPSs) have emerged as crucial cell wall components of numerous Gram-positive, ovoid-shaped bacteria—including streptococci, enterococci, and lactococci—of which many are of clinical or biotechnological importance. Rha-CWPS are composed of a conserved polyrhamnose backbone with side-chain substituents of variable size and structure. Because these substituents contain phosphate groups, Rha-CWPS can also be classified as polyanionic glycopolymers, similar to wall teichoic acids, of which they appear to be functional homologs. Recent advances have highlighted the critical role of these side-chain substituents in bacterial cell growth and division, as well as in specific interactions between bacteria and infecting bacteriophages or eukaryotic hosts. Here, we review the current state of knowledge on the structure and biosynthesis of Rha-CWPS in several ovoid-shaped bacterial species. We emphasize the role played by multicomponent transmembrane glycosylation systems in the addition of side-chain substituents of various sizes as extracytoplasmic modifications of the polyrhamnose backbone. We provide an overview of the contribution of Rha-CWPS to cell wall architecture and biogenesis and discuss current hypotheses regarding their importance in the cell division process. Finally, we sum up the critical roles that Rha-CWPS can play as bacteriophage receptors or in escaping host defenses, roles that are mediated mainly through their side-chain substituents. From an applied perspective, increased knowledge of Rha-CWPS can lead to advancements in strategies for preventing phage infection of lactococci and streptococci in food fermentation and for combating pathogenic streptococci and enterococci.
Collapse
Affiliation(s)
- Hugo Guérin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | |
Collapse
|
8
|
A colorimetric assay for the screening and kinetic analysis of nucleotide sugar 4,6-dehydratases. Anal Biochem 2022; 655:114870. [PMID: 36027972 DOI: 10.1016/j.ab.2022.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Nucleotide sugar 4,6-dehydratases belong to the Short-chain Dehydrogenase/Reductase (SDR) superfamily and catalyze the conversion of an NDP-hexose to an NDP-4-keto-6-deoxy hexose, a key step in the biosynthesis of a plethora of deoxy and amino sugars. Here, we present a colorimetric assay for the detection of their reaction products (NDP-4-keto-6-deoxy hexoses) using concentrated sulfuric acid and an ethanolic resorcinol solution. Under these conditions, the keto-function of the dehydratase product reacts specifically with resorcinol to form an orange-red or pink complex for NDP-glucose/GDP-mannose and UDP-N-acetylglucosamine, respectively, with an absorption maximum at 510 nm. The presented assay allows reliable product detection at low concentrations and can be applied in microtiter plates. It thus allows the determination of kinetic enzyme parameters like the optimal temperature, pH, Vmax, KM and kcat, as well as the miniaturization for screening purposes with crude cell extracts. As such, this detection assay opens new possibilities for the characterization and screening of these dehydratases in 96-well plates for different research goals.
Collapse
|
9
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
10
|
Vogel U, Beerens K, Desmet T. Nucleotide sugar dehydratases: Structure, mechanism, substrate specificity, and application potential. J Biol Chem 2022; 298:101809. [PMID: 35271853 PMCID: PMC8987622 DOI: 10.1016/j.jbc.2022.101809] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Nucleotide sugar (NS) dehydratases play a central role in the biosynthesis of deoxy and amino sugars, which are involved in a variety of biological functions in all domains of life. Bacteria are true masters of deoxy sugar biosynthesis as they can produce a wide range of highly specialized monosaccharides. Indeed, deoxy and amino sugars play important roles in the virulence of gram-positive and gram-negative pathogenic species and are additionally involved in the biosynthesis of diverse macrolide antibiotics. The biosynthesis of deoxy sugars relies on the activity of NS dehydratases, which can be subdivided into three groups based on their structure and reaction mechanism. The best-characterized NS dehydratases are the 4,6-dehydratases that, together with the 5,6-dehydratases, belong to the NS-short-chain dehydrogenase/reductase superfamily. The other two groups are the less abundant 2,3-dehydratases that belong to the Nudix hydrolase superfamily and 3-dehydratases, which are related to aspartame aminotransferases. 4,6-Dehydratases catalyze the first step in all deoxy sugar biosynthesis pathways, converting nucleoside diphosphate hexoses to nucleoside diphosphate-4-keto-6-deoxy hexoses, which in turn are further deoxygenated by the 2,3- and 3-dehydratases to form dideoxy and trideoxy sugars. In this review, we give an overview of the NS dehydratases focusing on the comparison of their structure and reaction mechanisms, thereby highlighting common features, and investigating differences between closely related members of the same superfamilies.
Collapse
Affiliation(s)
- Ulrike Vogel
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Koen Beerens
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB) - Unit for Biocatalysis and Enzyme Engineering, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium.
| |
Collapse
|
11
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
12
|
Tamez-Castrellón AK, van der Beek SL, López-Ramírez LA, Martínez-Duncker I, Lozoya-Pérez NE, van Sorge NM, Mora-Montes HM. Disruption of protein rhamnosylation affects the Sporothrix schenckii-host interaction. Cell Surf 2021; 7:100058. [PMID: 34308006 PMCID: PMC8258688 DOI: 10.1016/j.tcsw.2021.100058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022] Open
Abstract
Sporotrichosis is a fungal disease caused by the members of the Sporothrix pathogenic clade, and one of the etiological agents is Sporothrix schenckii. The cell wall of this organism has been previously analyzed and thus far is known to contain an inner layer composed of chitin and β -glucans, and an outer layer of glycoproteins, which are decorated with mannose and rhamnose-containing oligosaccharides. The L-rhamnose biosynthesis pathway is common in bacteria but rare in members of the Fungi kingdom. Therefore, in this study, we aimed to disrupt this metabolic route to assess the contribution of rhamnose during the S. schenckii-host interaction. We identified and silenced in S. schenckii a functional ortholog of the bacterial rmlD gene, which encodes for an essential reductase for the synthesis of nucleotide-activated L-rhamnose. RmlD silencing did not affect fungal growth or morphology but decreased cell wall rhamnose content. Compensatory, the β-1,3-glucan levels increased and were more exposed at the cell surface. Moreover, when incubated with human peripheral blood mononuclear cells, the RmlD silenced mutants differentially stimulated cytokine production when compared with the wild-type strain, reducing TNFα and IL-6 levels and increasing IL-1 β and IL-10 production. Upon incubation with human monocyte-derived macrophages, the silenced strains were more efficiently phagocytosed than the wild-type strain. In both cases, our data suggest that rhamnose-based oligosaccharides are ligands that interact with TLR4. Finally, our findings showed that cell wall rhamnose is required for the S. schenckii virulence in the G. mellonella model of infection.
Collapse
Affiliation(s)
- Alma K. Tamez-Castrellón
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Samantha L. van der Beek
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Luz A. López-Ramírez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Iván Martínez-Duncker
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. 62209, Mexico
| | - Nancy E. Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| | - Nina M. van Sorge
- University Medical Center Utrecht, Medical Microbiology, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Héctor M. Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, C.P. 36050 Guanajuato, Gto., Mexico
| |
Collapse
|
13
|
Immunobiology of the Classical Lancefield Group A Streptococcal Carbohydrate Antigen. Infect Immun 2021; 89:e0029221. [PMID: 34543125 DOI: 10.1128/iai.00292-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group A Streptococcus (GAS) is a preeminent human bacterial pathogen causing hundreds of millions of infections each year worldwide. In the clinical setting, the bacterium is easily identified by a rapid antigen test against the group A carbohydrate (GAC), a polysaccharide that comprises 30 to 50% of the GAS cell wall by weight. Originally described by Rebecca Lancefield in the 1930s, GAC consists of a polyrhamnose backbone and a N-acetylglucosamine (GlcNAc) side chain. This side chain, the species-defining immunodominant antigen, is potentially implicated in autoreactive immune responses against human heart or brain tissue in poststreptococcal rheumatic fever or rheumatic heart disease. The recent discovery of the genetic locus encoding GAC biosynthesis and new insights into its chemical structure have provided novel insights into the assembly of the polysaccharide, its contribution to immune evasion and virulence, and ideas for safely harnessing its natural immunogenicity in vaccine design. This minireview serves to summarize the emerging new literature on GAC, the eponymous cell well antigen that provides structural integrity to GAS and directly interfaces with host innate and adaptive immune responses.
Collapse
|
14
|
Arends DW, Miellet WR, Langereis JD, Ederveen THA, van der Gaast–de Jongh CE, van Scherpenzeel M, Knol MJ, van Sorge NM, Lefeber DJ, Trzciński K, Sanders EAM, Dorfmueller HC, Bootsma HJ, de Jonge MI. Examining the Distribution and Impact of Single-Nucleotide Polymorphisms in the Capsular Locus of Streptococcus pneumoniae Serotype 19A. Infect Immun 2021; 89:e0024621. [PMID: 34251291 PMCID: PMC8519296 DOI: 10.1128/iai.00246-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Streptococcus pneumoniae serotype 19A prevalence has increased after the implementation of the PCV7 and PCV10 vaccines. In this study, we have provided, with high accuracy, the genetic diversity of the 19A serotype in a cohort of Dutch invasive pneumococcal disease patients and asymptomatic carriers obtained in the period from 2004 to 2016. The whole genomes of the 338 pneumococcal isolates in this cohort were sequenced and their capsule (cps) loci compared to examine their diversity and determine the impact on the production of capsular polysaccharide (CPS) sugar precursors and CPS shedding. We discovered 79 types with a unique cps locus sequence. Most variation was observed in the rmlB and rmlD genes of the TDP-Rha synthesis pathway and in the wzg gene, which is of unknown function. Interestingly, gene variation in the cps locus was conserved in multiple alleles. Using RmlB and RmlD protein models, we predict that enzymatic function is not affected by the single-nucleotide polymorphisms as identified. To determine if RmlB and RmlD function was affected, we analyzed nucleotide sugar levels using ultrahigh-performance liquid chromatography-mass spectrometry (UHPLC-MS). CPS precursors differed between 19A cps locus subtypes, including TDP-Rha, but no clear correlation was observed. Also, significant differences in multiple nucleotide sugar levels were observed between phylogenetically branched groups. Because of indications of a role for Wzg in capsule shedding, we analyzed if this was affected. No clear indication of a direct role in shedding was found. We thus describe genotypic variety in rmlB, rmlD, and wzg in serotype 19A in the Netherlands, for which we have not discovered an associated phenotype.
Collapse
Affiliation(s)
- D. W. Arends
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W. R. Miellet
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - J. D. Langereis
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - T. H. A. Ederveen
- Center for Molecular and Biomolecular Informatics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - C. E. van der Gaast–de Jongh
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. van Scherpenzeel
- GlycoMScan, Oss, The Netherlands
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - M. J. Knol
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - N. M. van Sorge
- Department of Medical Microbiology and Infection Prevention, Netherlands Reference Laboratory for Bacterial Meningitis, Amsterdam Institute for Infection and Immunity, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - D. J. Lefeber
- Translational Metabolic Laboratory, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - K. Trzciński
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E. A. M. Sanders
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | - H. C. Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - H. J. Bootsma
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - M. I. de Jonge
- Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Lavelle K, Sinderen DV, Mahony J. Cell wall polysaccharides of Gram positive ovococcoid bacteria and their role as bacteriophage receptors. Comput Struct Biotechnol J 2021; 19:4018-4031. [PMID: 34377367 PMCID: PMC8327497 DOI: 10.1016/j.csbj.2021.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Gram-positive bacterial cell walls are characterised by the presence of a thick peptidoglycan layer which provides protection from extracellular stresses, maintains cell integrity and determines cell morphology, while it also serves as a foundation to anchor a number of crucial polymeric structures. For ovococcal species, including streptococci, enterococci and lactococci, such structures are represented by rhamnose-containing cell wall polysaccharides, which at least in some instances appear to serve as a functional replacement for wall teichoic acids. The biochemical composition of several streptococcal, lactococcal and enterococcal rhamnose-containing cell wall polysaccharides have been elucidated, while associated functional genomic analyses have facilitated the proposition of models for individual biosynthetic pathways. Here, we review the genomic loci which encode the enzymatic machinery to produce rhamnose-containing, cell wall-associated polysaccharide (Rha cwps) structures of the afore-mentioned ovococcal bacteria with particular emphasis on gene content, biochemical structure and common biosynthetic steps. Furthermore, we discuss the role played by these saccharidic polymers as receptors for bacteriophages and the important role phages play in driving Rha cwps diversification and evolution.
Collapse
Affiliation(s)
- Katherine Lavelle
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Douwe van Sinderen
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| | - Jennifer Mahony
- School of Microbiology & APC Microbiome Ireland, University College Cork, Western Road, Cork T12 YT20, Ireland
| |
Collapse
|
16
|
King H, Ajay Castro S, Pohane AA, Scholte CM, Fischetti VA, Korotkova N, Nelson DC, Dorfmueller HC. Molecular basis for recognition of the Group A Carbohydrate backbone by the PlyC streptococcal bacteriophage endolysin. Biochem J 2021; 478:2385-2397. [PMID: 34096588 PMCID: PMC8555655 DOI: 10.1042/bcj20210158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/25/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022]
Abstract
Endolysins are peptidoglycan (PG) hydrolases that function as part of the bacteriophage (phage) lytic system to release progeny phage at the end of a replication cycle. Notably, endolysins alone can produce lysis without phage infection, which offers an attractive alternative to traditional antibiotics. Endolysins from phage that infect Gram-positive bacterial hosts contain at least one enzymatically active domain (EAD) responsible for hydrolysis of PG bonds and a cell wall binding domain (CBD) that binds a cell wall epitope, such as a surface carbohydrate, providing some degree of specificity for the endolysin. Whilst the EADs typically cluster into conserved mechanistic classes with well-defined active sites, relatively little is known about the nature of the CBDs and only a few binding epitopes for CBDs have been elucidated. The major cell wall components of many streptococci are the polysaccharides that contain the polyrhamnose (pRha) backbone modified with species-specific and serotype-specific glycosyl side chains. In this report, using molecular genetics, microscopy, flow cytometry and lytic activity assays, we demonstrate the interaction of PlyCB, the CBD subunit of the streptococcal PlyC endolysin, with the pRha backbone of the cell wall polysaccharides, Group A Carbohydrate (GAC) and serotype c-specific carbohydrate (SCC) expressed by the Group A Streptococcus and Streptococcus mutans, respectively.
Collapse
Affiliation(s)
- Harley King
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Sowmya Ajay Castro
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| | - Amol Arunrao Pohane
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
| | - Cynthia M Scholte
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, U.S.A
| | - Natalia Korotkova
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, U.S.A
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, U.S.A
| | - Daniel C Nelson
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, U.S.A
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, U.K
| |
Collapse
|
17
|
Lloyd MD, Yevglevskis M, Nathubhai A, James TD, Threadgill MD, Woodman TJ. Racemases and epimerases operating through a 1,1-proton transfer mechanism: reactivity, mechanism and inhibition. Chem Soc Rev 2021; 50:5952-5984. [PMID: 34027955 PMCID: PMC8142540 DOI: 10.1039/d0cs00540a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Indexed: 12/12/2022]
Abstract
Racemases and epimerases catalyse changes in the stereochemical configurations of chiral centres and are of interest as model enzymes and as biotechnological tools. They also occupy pivotal positions within metabolic pathways and, hence, many of them are important drug targets. This review summarises the catalytic mechanisms of PLP-dependent, enolase family and cofactor-independent racemases and epimerases operating by a deprotonation/reprotonation (1,1-proton transfer) mechanism and methods for measuring their catalytic activity. Strategies for inhibiting these enzymes are reviewed, as are specific examples of inhibitors. Rational design of inhibitors based on substrates has been extensively explored but there is considerable scope for development of transition-state mimics and covalent inhibitors and for the identification of inhibitors by high-throughput, fragment and virtual screening approaches. The increasing availability of enzyme structures obtained using X-ray crystallography will facilitate development of inhibitors by rational design and fragment screening, whilst protein models will facilitate development of transition-state mimics.
Collapse
Affiliation(s)
- Matthew D Lloyd
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Maksims Yevglevskis
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and CatSci Ltd., CBTC2, Capital Business Park, Wentloog, Cardiff CF3 2PX, UK
| | - Amit Nathubhai
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and University of Sunderland, School of Pharmacy & Pharmaceutical Sciences, Sciences Complex, Sunderland SR1 3SD, UK
| | - Tony D James
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK and School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Michael D Threadgill
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK. and Institute of Biological, Environmental & Rural Sciences, Aberystwyth University, Aberystwyth SY23 3BY, UK
| | - Timothy J Woodman
- Drug & Target Discovery, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| |
Collapse
|
18
|
Le Breton Y, Belew AT, McIver KS. Protocols for Tn-seq Analyses in the Group A Streptococcus. Methods Mol Biol 2021; 2136:33-57. [PMID: 32430812 DOI: 10.1007/978-1-0716-0467-0_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Transposon-sequencing (Tn-seq) has revolutionized forward-genetic analyses to study genotype-phenotype associations and interrogate bacterial cell physiology. The Tn-seq approach allows the en masse monitoring of highly complex mutant libraries, leveraging massive parallel DNA sequencing as a means to characterize the composition of these mutant pools on a genome-scale with unprecedented nucleotide-level high resolution. In this chapter, we present step-by-step protocols for Tn-seq analyses in the human pathogen Streptococcus pyogenes (Group A Streptococcus or GAS) using the mariner-based Krmit transposon. We detail how to generate highly complex Krmit mutant libraries in GAS and the en masse production of Krmit insertion tags for Illumina sequencing of the transposon-genome junctions for Tn-seq analyses. Most of the protocols presented here were developed and implemented using the S. pyogenes M1T1 serotype clinical isolate 5448, but they have been successfully applied to multiple GAS serotypes as well as other pathogenic Streptococci.
Collapse
Affiliation(s)
- Yoann Le Breton
- Wound Infections Department, Bacterial Diseases Branch, Walter Reed Army Institute for Research, Silver Spring, MD, USA.
| | - Ashton T Belew
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, USA.,Center for Bioinformatics and Computational Biology, University of Maryland, College Park, College Park, MD, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, College Park, MD, USA
| |
Collapse
|
19
|
Wagstaff BA, Zorzoli A, Dorfmueller HC. NDP-rhamnose biosynthesis and rhamnosyltransferases: building diverse glycoconjugates in nature. Biochem J 2021; 478:685-701. [PMID: 33599745 DOI: 10.1042/bcj20200505] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 11/17/2022]
Abstract
Rhamnose is an important 6-deoxy sugar present in many natural products, glycoproteins, and structural polysaccharides. Whilst predominantly found as the l-enantiomer, instances of d-rhamnose are also found in nature, particularly in the Pseudomonads bacteria. Interestingly, rhamnose is notably absent from humans and other animals, which poses unique opportunities for drug discovery targeted towards rhamnose utilizing enzymes from pathogenic bacteria. Whilst the biosynthesis of nucleotide-activated rhamnose (NDP-rhamnose) is well studied, the study of rhamnosyltransferases that synthesize rhamnose-containing glycoconjugates is the current focus amongst the scientific community. In this review, we describe where rhamnose has been found in nature, as well as what is known about TDP-β-l-rhamnose, UDP-β-l-rhamnose, and GDP-α-d-rhamnose biosynthesis. We then focus on examples of rhamnosyltransferases that have been characterized using both in vivo and in vitro approaches from plants and bacteria, highlighting enzymes where 3D structures have been obtained. The ongoing study of rhamnose and rhamnosyltransferases, in particular in pathogenic organisms, is important to inform future drug discovery projects and vaccine development.
Collapse
Affiliation(s)
- Ben A Wagstaff
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, U.K
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| |
Collapse
|
20
|
Lin JC, Wang XZ, Shen T, Zhang JY. iTRAQ-based quantitative analysis reveals the mechanism underlying the changes in physiological activity in a glutamate racemase mutant strain of Streptococcus mutans UA159. Mol Biol Rep 2020; 47:3719-3733. [PMID: 32338332 DOI: 10.1007/s11033-020-05463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/17/2020] [Indexed: 11/30/2022]
Abstract
Streptococcus mutans UA159 is responsible for human dental caries with robust cariogenic potential. Our previous study noted that a glutamate racemase (MurI) mutant strain (designated S. mutans FW1718), with the hereditary background of UA159, displayed alterations of morphogenesis, attenuated stress tolerance, and weakened biofilm-forming capabilities, accompanying with unclear mechanisms. In this study, we applied isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics to characterize the proteome profiles of the murI mutant strain vs. the wild-type strain in chemically defined media to elucidate the mechanisms by which S. mutans copes with MurI deficiency. Whole-cell proteins of S. mutans FW1718 and UA159 were assessed by iTRAQ-coupled LC-ESI-MS/MS. Furthermore, differentially expressed proteins (DEPs) were identified by Mascot, Gene Ontology (GO) annotation, Cluster of Orthologous Groups of proteins (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Finally, a protein-protein interaction (PPI) network was established using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING). Among 1173 total bacterial proteins identified, 112 DEPs exhibited altered expression patterns in S. mutans UA159 with or without the murI mutation. The ΔmurI cells displayed an increase in the relative expression of 93 proteins (fold change ≥ 1.2, p < 0.05) and a decrease in 29 proteins (fold change ≤ 0.833, p < 0.05) compared with the wild-type cells. PPI analysis revealed a complex network of DEPs containing 191 edges and 122 nodes. The DEPs significantly upregulated after murI knockout had roles in diverse functional processes spanning cell-wall biosynthesis, energy production, and DNA replication and repair. We identified distinct variations and diverse modulators caused by murI mutation in the proteome of S. mutans, indicating that the modification of cell membrane structure, redistribution of energy metabolism and enhanced nucleic acid machinery contributed to the S. mutans response to specific environmental contexts.
Collapse
Affiliation(s)
- Jia-Cheng Lin
- Department of Pediatric Dentistry, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiang-Zhu Wang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Ting Shen
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Jian-Ying Zhang
- Operative Dentistry and Endodontics, Xiangya School of Stomatology, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
21
|
Yan Y, Yang J, Wang L, Xu D, Yu Z, Guo X, Horsman GP, Lin S, Tao M, Huang SX. Biosynthetic access to the rare antiarose sugar via an unusual reductase-epimerase. Chem Sci 2020; 11:3959-3964. [PMID: 34122866 PMCID: PMC8152690 DOI: 10.1039/c9sc05766h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rubrolones, isatropolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity. They share similar aglycone skeletons but differ in their sugar moieties, and rubterolones in particular have a rare deoxysugar antiarose of unknown biosynthetic provenance. During our previously reported biosynthetic elucidation of the tropolone ring and pyridine moiety, gene inactivation experiments revealed that RubS3 is involved in sugar moiety biosynthesis. Here we report the in vitro characterization of RubS3 as a bifunctional reductase/epimerase catalyzing the formation of TDP-d-antiarose by epimerization at C3 and reduction at C4 of the key intermediate TDP-4-keto-6-deoxy-d-glucose. These new findings not only explain the biosynthetic pathway of deoxysugars in rubrolone-like natural products, but also introduce RubS3 as a new family of reductase/epimerase enzymes with potential to supply the rare antiarose unit for expanding the chemical space of glycosylated natural products. Rubrolones, isarubrolones, and rubterolones are recently isolated glycosylated tropolonids with notable biological activity.![]()
Collapse
Affiliation(s)
- Yijun Yan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Jing Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Li Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Dongdong Xu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Zhiyin Yu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Xiaowei Guo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| | - Geoff P Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University Waterloo ON N2L 3C5 Canada
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Sheng-Xiong Huang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, CAS Center for Excellence in Molecular Plant Sciences, Kunming Institute of Botany, Chinese Academy of Sciences Kunming 650201 China
| |
Collapse
|
22
|
Shields RC, Walker AR, Maricic N, Chakraborty B, Underhill SAM, Burne RA. Repurposing the Streptococcus mutans CRISPR-Cas9 System to Understand Essential Gene Function. PLoS Pathog 2020; 16:e1008344. [PMID: 32150575 PMCID: PMC7082069 DOI: 10.1371/journal.ppat.1008344] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/19/2020] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
A recent genome-wide screen identified ~300 essential or growth-supporting genes in the dental caries pathogen Streptococcus mutans. To be able to study these genes, we built a CRISPR interference tool around the Cas9 nuclease (Cas9Smu) encoded in the S. mutans UA159 genome. Using a xylose-inducible dead Cas9Smu with a constitutively active single-guide RNA (sgRNA), we observed titratable repression of GFP fluorescence that compared favorably to that of Streptococcus pyogenes dCas9 (Cas9Spy). We then investigated sgRNA specificity and proto-spacer adjacent motif (PAM) requirements. Interference by sgRNAs did not occur with double or triple base-pair mutations, or if single base-pair mutations were in the 3' end of the sgRNA. Bioinformatic analysis of >450 S. mutans genomes allied with in vivo assays revealed a similar PAM recognition sequence as Cas9Spy. Next, we created a comprehensive library of sgRNA plasmids that were directed at essential and growth-supporting genes. We discovered growth defects for 77% of the CRISPRi strains expressing sgRNAs. Phenotypes of CRISPRi strains, across several biological pathways, were assessed using fluorescence microscopy. A variety of cell structure anomalies were observed, including segregational instability of the chromosome, enlarged cells, and ovococci-to-rod shape transitions. CRISPRi was also employed to observe how silencing of cell wall glycopolysaccharide biosynthesis (rhamnose-glucose polysaccharide, RGP) affected both cell division and pathogenesis in a wax worm model. The CRISPRi tool and sgRNA library are valuable resources for characterizing essential genes in S. mutans, some of which could prove to be promising therapeutic targets.
Collapse
Affiliation(s)
- Robert C. Shields
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Natalie Maricic
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Brinta Chakraborty
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| | - Simon A. M. Underhill
- Department of Physics, University of Florida, Gainesville, Florida, United States of America
| | - Robert A. Burne
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
23
|
Disruption of l-Rhamnose Biosynthesis Results in Severe Growth Defects in Streptococcus mutans. J Bacteriol 2020; 202:JB.00728-19. [PMID: 31871035 DOI: 10.1128/jb.00728-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022] Open
Abstract
The rhamnose-glucose cell wall polysaccharide (RGP) of Streptococcus mutans plays a significant role in cell division, virulence, and stress protection. Prior studies examined function of the RGP using strains carrying deletions in the machinery involved in RGP assembly. In this study, we explored loss of the substrate for RGP, l-rhamnose, via deletion of rmlD (encoding the protein responsible for the terminal step in l-rhamnose biosynthesis). We demonstrate that loss of rhamnose biosynthesis causes a phenotype similar to strains with disrupted RGP assembly (ΔrgpG and ΔrgpF strains). Deletion of rmlD not only caused a severe growth defect under nonstress growth conditions but also elevated susceptibility of the strain to acid and oxidative stress, common conditions found in the oral cavity. A genetic complement of the ΔrmlD strain completely restored wild-type levels of growth, whereas addition of exogenous rhamnose did not. The loss of rhamnose production also significantly disrupted biofilm formation, an important aspect of S. mutans growth in the oral cavity. Further, we demonstrate that loss of either rmlD or rgpG results in ablation of rhamnose content in the S. mutans cell wall. Taken together, these results highlight the importance of rhamnose production in both the fitness and the ability of S. mutans to overcome environmental stresses.IMPORTANCE Streptococcus mutans is a pathogenic bacterium that is the primary etiologic agent of dental caries, a disease that affects billions yearly. Rhamnose biosynthesis is conserved not only in streptococcal species but in other Gram-positive, as well as Gram-negative, organisms. This study highlights the importance of rhamnose biosynthesis in RGP production for protection of the organism against acid and oxidative stresses, the two major stressors that the organism encounters in the oral cavity. Loss of RGP also severely impacts biofilm formation, the first step in the onset of dental caries. The high conservation of the rhamnose synthesis enzymes, as well as their importance in S. mutans and other organisms, makes them favorable antibiotic targets for the treatment of disease.
Collapse
|
24
|
Zorzoli A, Meyer BH, Adair E, Torgov VI, Veselovsky VV, Danilov LL, Uhrin D, Dorfmueller HC. Group A, B, C, and G Streptococcus Lancefield antigen biosynthesis is initiated by a conserved α-d-GlcNAc-β-1,4-l-rhamnosyltransferase. J Biol Chem 2019; 294:15237-15256. [PMID: 31506299 PMCID: PMC6802508 DOI: 10.1074/jbc.ra119.009894] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/30/2019] [Indexed: 12/18/2022] Open
Abstract
Group A carbohydrate (GAC) is a bacterial peptidoglycan-anchored surface rhamnose polysaccharide (RhaPS) that is essential for growth of Streptococcus pyogenes and contributes to its ability to infect the human host. In this study, using molecular and synthetic biology approaches, biochemistry, radiolabeling techniques, and NMR and MS analyses, we examined the role of GacB, encoded in the S. pyogenes GAC gene cluster, in the GAC biosynthesis pathway. We demonstrate that GacB is the first characterized α-d-GlcNAc-β-1,4-l-rhamnosyltransferase that synthesizes the committed step in the biosynthesis of the GAC virulence determinant. Importantly, the substitution of S. pyogenes gacB with the homologous gene from Streptococcus agalactiae (Group B Streptococcus), Streptococcus equi subsp. zooepidemicus (Group C Streptococcus), Streptococcus dysgalactiae subsp. equisimilis (Group G Streptococcus), or Streptococcus mutans complemented the GAC biosynthesis pathway. These results, combined with those from extensive in silico studies, reveal a common phylogenetic origin of the genes required for this priming step in >40 pathogenic species of the Streptococcus genus, including members from the Lancefield Groups B, C, D, E, G, and H. Importantly, this priming step appears to be unique to streptococcal ABC transporter-dependent RhaPS biosynthesis, whereas the Wzx/Wzy-dependent streptococcal capsular polysaccharide pathways instead require an α-d-Glc-β-1,4-l-rhamnosyltransferase. The insights into the RhaPS priming step obtained here open the door to targeting the early steps of the group carbohydrate biosynthesis pathways in species of the Streptococcus genus of high clinical and veterinary importance.
Collapse
Affiliation(s)
- Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | - Elaine Adair
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Vladimir I Torgov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir V Veselovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Leonid L Danilov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119334, Russia
| | - Dusan Uhrin
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
25
|
Wagstaff BA, Rejzek M, Kuhaudomlarp S, Hill L, Mascia I, Nepogodiev SA, Dorfmueller HC, Field RA. Discovery of an RmlC/D fusion protein in the microalga Prymnesium parvum and its implications for NDP-β-l-rhamnose biosynthesis in microalgae. J Biol Chem 2019; 294:9172-9185. [PMID: 31010825 PMCID: PMC6556577 DOI: 10.1074/jbc.ra118.006440] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 04/19/2019] [Indexed: 11/06/2022] Open
Abstract
The 6-deoxy sugar l-rhamnose (l-Rha) is found widely in plant and microbial polysaccharides and natural products. The importance of this and related compounds in host-pathogen interactions often means that l-Rha plays an essential role in many organisms. l-Rha is most commonly biosynthesized as the activated sugar nucleotide uridine 5'-diphospho-β-l-rhamnose (UDP-β-l-Rha) or thymidine 5'-diphospho-β-l-rhamnose (TDP-β-l-Rha). Enzymes involved in the biosynthesis of these sugar nucleotides have been studied in some detail in bacteria and plants, but the activated form of l-Rha and the corresponding biosynthetic enzymes have yet to be explored in algae. Here, using sugar-nucleotide profiling in two representative algae, Euglena gracilis and the toxin-producing microalga Prymnesium parvum, we show that levels of UDP- and TDP-activated l-Rha differ significantly between these two algal species. Using bioinformatics and biochemical methods, we identified and characterized a fusion of the RmlC and RmlD proteins, two bacteria-like enzymes involved in TDP-β-l-Rha biosynthesis, from P. parvum Using this new sequence and also others, we explored l-Rha biosynthesis among algae, finding that although most algae contain sequences orthologous to plant-like l-Rha biosynthesis machineries, instances of the RmlC-RmlD fusion protein identified here exist across the Haptophyta and Gymnodiniaceae families of microalgae. On the basis of these findings, we propose potential routes for the evolution of nucleoside diphosphate β-l-Rha (NDP-β-l-Rha) pathways among algae.
Collapse
Affiliation(s)
- Ben A Wagstaff
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom, and
| | - Martin Rejzek
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sakonwan Kuhaudomlarp
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom.,Université Grenoble Alpes, CNRS, CERMAV, 38000, Grenoble, France
| | - Lionel Hill
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Ilaria Mascia
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Sergey A Nepogodiev
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom, and
| | - Robert A Field
- From the Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, United Kingdom,
| |
Collapse
|
26
|
Discovery of glycerol phosphate modification on streptococcal rhamnose polysaccharides. Nat Chem Biol 2019; 15:463-471. [PMID: 30936502 PMCID: PMC6470023 DOI: 10.1038/s41589-019-0251-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 02/20/2019] [Indexed: 12/15/2022]
Abstract
Cell wall glycopolymers on the surface of Gram-positive bacteria are fundamental to bacterial physiology and infection biology. Here we identify gacH, a gene in the Streptococcus pyogenes group A carbohydrate (GAC) biosynthetic cluster, in two independent transposon library screens for its ability to confer resistance to zinc and susceptibility to the bactericidal enzyme human group IIA-secreted phospholipase A2. Subsequent structural and phylogenetic analysis of the GacH extracellular domain revealed that GacH represents an alternative class of glycerol phosphate transferase. We detected the presence of glycerol phosphate in the GAC, as well as the serotype c carbohydrate from Streptococcus mutans, which depended on the presence of the respective gacH homologs. Finally, nuclear magnetic resonance analysis of GAC confirmed that glycerol phosphate is attached to approximately 25% of the GAC N-acetylglucosamine side-chains at the C6 hydroxyl group. This previously unrecognized structural modification impacts host-pathogen interaction and has implications for vaccine design.
Collapse
|
27
|
Cho KH, Port GC, Caparon M. Genetics of Group A Streptococci. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0056-2018. [PMID: 30825299 PMCID: PMC11590684 DOI: 10.1128/microbiolspec.gpp3-0056-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Indexed: 01/02/2023] Open
Abstract
Streptococcus pyogenes (group A streptococcus) is remarkable in terms of the large number of diseases it can cause in humans and for the large number of streptococcal factors that have been identified as potential virulence determinants for these diseases. A challenge is to link the function of potential virulence factors to the pathogenesis of specific diseases. An exciting advance has been the development of sophisticated genetic systems for the construction of loss-of-function, conditional, hypomorphic, and gain-of-function mutations in targeted S. pyogenes genes that can be used to test specific hypotheses regarding these genes in pathogenesis. This will facilitate a mechanistic understanding of how a specific gene function contributes to the pathogenesis of each streptococcal disease. Since the first S. pyogenes genome was completed in 2001, hundreds of complete and draft genome sequences have been deposited. We now know that the average S. pyogenes genome is approximately 1.85 Mb and encodes ∼1,800 genes and that the function of most of those genes in pathogenesis remains to be elucidated. However, advances in the development of a variety of genetic tools for manipulation of the S. pyogenes genome now provide a platform for the interrogation of gene/phenotype relationships for individual S. pyogenes diseases, which may lead to the development of more sophisticated and targeted therapeutic interventions. This article presents an overview of these genetic tools, including the methods of genetic modification and their applications.
Collapse
Affiliation(s)
- Kyu Hong Cho
- Department of Biology, Indiana State University, Terre Haute, IN 47809
| | - Gary C Port
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
| | - Michael Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110
- Current address: Elanco Animal Health, Natural Products Fermentation, Eli Lilly and Company, Indianapolis, IN 46285
| |
Collapse
|
28
|
van der Beek SL, Zorzoli A, Çanak E, Chapman RN, Lucas K, Meyer BH, Evangelopoulos D, de Carvalho LPS, Boons GJ, Dorfmueller HC, van Sorge NM. Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification. Mol Microbiol 2019; 111:951-964. [PMID: 30600561 PMCID: PMC6487966 DOI: 10.1111/mmi.14197] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
Biosynthesis of the nucleotide sugar precursor dTDP‐L‐rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP‐L‐rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP‐L‐rhamnose biosynthesis through their action as dTDP‐glucose‐4,6‐dehydratase and dTDP‐4‐keto‐6‐deoxyglucose‐3,5‐epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio‐layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP‐rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose‐dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120–410 µM. Importantly, we confirmed that Ri03 inhibited dTDP‐L‐rhamnose formation in a concentration‐dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP‐L‐rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP‐rhamnose biosynthesis in pathogenic bacteria.
Collapse
Affiliation(s)
- Samantha L van der Beek
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Azul Zorzoli
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Ebru Çanak
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| | - Robert N Chapman
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA
| | - Kieron Lucas
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Benjamin H Meyer
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Dimitrios Evangelopoulos
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Luiz Pedro S de Carvalho
- Mycobacterial Metabolism and Antibiotic Research Laboratory, The Francis Crick Institute, London, UK
| | - Geert-Jan Boons
- Department of Chemistry, Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, USA.,Department of Medical Chemistry and Chemical Biology, Utrecht Institute Pharmaceutical Science, University Utrecht, Utrecht, 3508 TB, The Netherlands
| | - Helge C Dorfmueller
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dow Street, DD1 5EH, Dundee, UK
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands
| |
Collapse
|
29
|
Dhaked DK, Bala Divya M, Guruprasad L. A structural and functional perspective on the enzymes of Mycobacterium tuberculosis involved in the L-rhamnose biosynthesis pathway. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 145:52-64. [PMID: 30550737 DOI: 10.1016/j.pbiomolbio.2018.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 11/12/2018] [Accepted: 12/06/2018] [Indexed: 11/19/2022]
Abstract
Tuberculosis is one of the leading causes of death from bacterial infections. The multi-drug resistant strain has warranted the development of new drug molecules which can inhibit the growth of Mycobacterium tuberculosis (M.tb). Most of the known drugs inhibit the enzymes in the cell wall biosynthesis pathway. One such pathway is L-rhamnose, which involves four druggable enzymes RmlA, B, C and D. The 3D structure analyses of these protein models (RmlA, B and D) and crystal structure (RmlC) has been carried out. Multiple sequence alignments of homologs from distant species of 32 taxa and analyses of available structures were performed in order to study the conservation of sequence and structural motifs, and catalytically important residues. Based on these results and reported mechanism in other organisms, we have predicted putative catalytic mechanism of M.tb enzymes involved in the L-rhamnose biosynthesis pathway.
Collapse
Affiliation(s)
- Devendra K Dhaked
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - M Bala Divya
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Lalitha Guruprasad
- School of Chemistry, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
30
|
Virulence Role of the GlcNAc Side Chain of the Lancefield Cell Wall Carbohydrate Antigen in Non-M1-Serotype Group A Streptococcus. mBio 2018; 9:mBio.02294-17. [PMID: 29382733 PMCID: PMC5790915 DOI: 10.1128/mbio.02294-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Classification of streptococci is based upon expression of unique cell wall carbohydrate antigens. All serotypes of group A Streptococcus (GAS; Streptococcus pyogenes), a leading cause of infection-related mortality worldwide, express the group A carbohydrate (GAC). GAC, the classical Lancefield antigen, is comprised of a polyrhamnose backbone with N-acetylglucosamine (GlcNAc) side chains. The immunodominant GlcNAc epitope of GAC is the basis of all rapid diagnostic testing for GAS infection. We previously identified the 12-gene GAC biosynthesis gene cluster and determined that the glycosyltransferase GacI was required for addition of the GlcNAc side chain to the polyrhamnose core. Loss of the GAC GlcNAc epitope in serotype M1 GAS resulted in attenuated virulence in two animal infection models and increased GAS sensitivity to killing by whole human blood, serum, neutrophils, and antimicrobial peptides. Here, we report that the GAC biosynthesis gene cluster is ubiquitous among 520 GAS isolates from global sources, representing 105 GAS emm serotypes. Isogenic ΔgacI mutants were constructed in M2, M3, M4, M28, and M89 backgrounds and displayed an array of phenotypes in susceptibility to killing by whole human blood, baby rabbit serum, human platelet releasate, human neutrophils, and antimicrobial peptide LL-37. The contribution of the GlcNAc side chain to GAS survival in vivo also varied by strain, demonstrating that it is not a prerequisite for virulence in the murine infection model. Thus, the relative contribution of GAC to virulence in non-M1 serotypes appears to depend on the quorum of other virulence factors that each strain possesses.IMPORTANCE The Lancefield group A carbohydrate (GAC) is the species-defining antigen for group A Streptococcus (GAS), comprising ~50% of the cell wall of this major human pathogen. We previously showed that the GlcNAc side chain of GAC contributes to the innate immune resistance and animal virulence phenotypes of the globally disseminated strain of serotype M1 GAS. Here, we use isogenic mutagenesis to examine the role of GAC GlcNAc in five additional medically relevant GAS serotypes. Overall, the GlcNAc side chain of GAC contributes to the innate immune resistance of GAS, but the relative contribution varies among individual strains. Moreover, the GAC GlcNAc side chain is not a universal prerequisite for GAS virulence in the animal model.
Collapse
|
31
|
Gokey T, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-l-rhamnose biosynthetic pathway enzyme: dTDP-α-d-glucose 4,6-dehydratase, RfbB. J Struct Biol 2018; 202:175-181. [PMID: 29331609 DOI: 10.1016/j.jsb.2018.01.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/27/2022]
Abstract
Many bacteria require l-rhamnose as a key cell wall component. This sugar is transferred to the cell wall using an activated donor dTDP-l-rhamnose, which is produced by the dTDP-l-rhamnose biosynthetic pathway. We determined the crystal structure of the second enzyme of this pathway dTDP-α-d-glucose 4,6-dehydratase (RfbB) from Bacillus anthracis. Interestingly, RfbB only crystallized in the presence of the third enzyme of the pathway RfbC; however, RfbC was not present in the crystal. Our work represents the first complete structural characterization of the four proteins of this pathway in a single Gram-positive bacterium.
Collapse
Affiliation(s)
- Trevor Gokey
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA; Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA.
| |
Collapse
|
32
|
Law A, Stergioulis A, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme dTDP-4-dehydrorhamnose reductase (RfbD). Acta Crystallogr F Struct Biol Commun 2017; 73:644-650. [PMID: 29199984 PMCID: PMC5713668 DOI: 10.1107/s2053230x17015746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/30/2017] [Indexed: 01/27/2023] Open
Abstract
Bacillus anthracis is the causative agent of the deadly disease Anthrax. Its use in bioterrorism and its ability to re-emerge have brought renewed interest in this organism. B. anthracis is a Gram-positive bacterium that adds L-rhamnose to its cell-wall polysaccharides using the activated donor dTDP-β-L-rhamnose. The enzymes involved in the biosynthesis of the activated donor are absent in humans, which make them ideal targets for therapeutic development to combat pathogens. Here, the 2.65 Å resolution crystal structure of the fourth enzyme in the dTDP-β-L-rhamnose-biosynthetic pathway from B. anthracis, dTDP-4-dehydro-β-L-rhamnose reductase (RfbD), is presented in complex with NADP+. This enzyme catalyzes the reduction of dTDP-4-dehydro-β-L-rhamnose to dTDP-β-L-rhamnose. Although the protein was co-crystallized in the presence of Mg2+, the protein lacks the conserved residues that coordinate Mg2+.
Collapse
Affiliation(s)
- Ashley Law
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | | | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
33
|
RgpF Is Required for Maintenance of Stress Tolerance and Virulence in Streptococcus mutans. J Bacteriol 2017; 199:JB.00497-17. [PMID: 28924033 DOI: 10.1128/jb.00497-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/12/2017] [Indexed: 02/01/2023] Open
Abstract
Bacterial cell wall dynamics have been implicated as important determinants of cellular physiology, stress tolerance, and virulence. In Streptococcus mutans, the cell wall is composed primarily of a rhamnose-glucose polysaccharide (RGP) linked to the peptidoglycan. Despite extensive studies describing its formation and composition, the potential roles for RGP in S. mutans biology have not been well investigated. The present study characterizes the impact of RGP disruption as a result of the deletion of rgpF, the gene encoding a rhamnosyltransferase involved in the construction of the core polyrhamnose backbone of RGP. The ΔrgpF mutant strain displayed an overall reduced fitness compared to the wild type, with heightened sensitivities to various stress-inducing culture conditions and an inability to tolerate acid challenge. The loss of rgpF caused a perturbation of membrane-associated functions known to be critical for aciduricity, a hallmark of S. mutans acid tolerance. The proton gradient across the membrane was disrupted, and the ΔrgpF mutant strain was unable to induce activity of the F1Fo ATPase in cultures grown under low-pH conditions. Further, the virulence potential of S. mutans was also drastically reduced following the deletion of rgpF The ΔrgpF mutant strain produced significantly less robust biofilms, indicating an impairment in its ability to adhere to hydroxyapatite surfaces. Additionally, the ΔrgpF mutant lost competitive fitness against oral peroxigenic streptococci, and it displayed significantly attenuated virulence in an in vivoGalleria mellonella infection model. Collectively, these results highlight a critical function of the RGP in the maintenance of overall stress tolerance and virulence traits in S. mutansIMPORTANCE The cell wall of Streptococcus mutans, the bacterium most commonly associated with tooth decay, is abundant in rhamnose-glucose polysaccharides (RGP). While these structures are antigenically distinct to S. mutans, the process by which they are formed and the enzymes leading to their construction are well conserved among streptococci. The present study describes the consequences of the loss of RgpF, a rhamnosyltransferase involved in RGP construction. The deletion of rgpF resulted in severe ablation of the organism's overall fitness, culminating in significantly attenuated virulence. Our data demonstrate an important link between the RGP and cell wall physiology of S. mutans, affecting critical features used by the organism to cause disease and providing a potential novel target for inhibiting the pathogenesis of S. mutans.
Collapse
|
34
|
Baumgartner J, Lee J, Halavaty AS, Minasov G, Anderson WF, Kuhn ML. Structure of the Bacillus anthracis dTDP-L-rhamnose-biosynthetic enzyme glucose-1-phosphate thymidylyltransferase (RfbA). Acta Crystallogr F Struct Biol Commun 2017; 73:621-628. [PMID: 29095156 PMCID: PMC5683032 DOI: 10.1107/s2053230x17015357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 10/22/2017] [Indexed: 11/10/2022] Open
Abstract
L-Rhamnose is a ubiquitous bacterial cell-wall component. The biosynthetic pathway for its precursor dTDP-L-rhamnose is not present in humans, which makes the enzymes of the pathway potential drug targets. In this study, the three-dimensional structure of the first protein of this pathway, glucose-1-phosphate thymidylyltransferase (RfbA), from Bacillus anthracis was determined. In other organisms this enzyme is referred to as RmlA. RfbA was co-crystallized with the products of the enzymatic reaction, dTDP-α-D-glucose and pyrophosphate, and its structure was determined at 2.3 Å resolution. This is the first reported thymidylyltransferase structure from a Gram-positive bacterium. RfbA shares overall structural characteristics with known RmlA homologs. However, RfbA exhibits a shorter sequence at its C-terminus, which results in the absence of three α-helices involved in allosteric site formation. Consequently, RfbA was observed to exhibit a quaternary structure that is unique among currently reported glucose-1-phosphate thymidylyltransferase bacterial homologs. These structural analyses suggest that RfbA may not be allosterically regulated in some organisms and is structurally distinct from other RmlA homologs.
Collapse
Affiliation(s)
- Jackson Baumgartner
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Jesi Lee
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| | - Andrei S. Halavaty
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - George Minasov
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Wayne F. Anderson
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, USA
- Center for Structural Genomics of Infectious Diseases (CSGID), USA
| | - Misty L. Kuhn
- Department of Chemistry and Biochemistry, San Francisco State University, USA
| |
Collapse
|
35
|
Rush JS, Edgar RJ, Deng P, Chen J, Zhu H, van Sorge NM, Morris AJ, Korotkov KV, Korotkova N. The molecular mechanism of N-acetylglucosamine side-chain attachment to the Lancefield group A carbohydrate in Streptococcus pyogenes. J Biol Chem 2017; 292:19441-19457. [PMID: 29021255 DOI: 10.1074/jbc.m117.815910] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/06/2017] [Indexed: 12/21/2022] Open
Abstract
In many Lactobacillales species (i.e. lactic acid bacteria), peptidoglycan is decorated by polyrhamnose polysaccharides that are critical for cell envelope integrity and cell shape and also represent key antigenic determinants. Despite the biological importance of these polysaccharides, their biosynthetic pathways have received limited attention. The important human pathogen, Streptococcus pyogenes, synthesizes a key antigenic surface polymer, the Lancefield group A carbohydrate (GAC). GAC is covalently attached to peptidoglycan and consists of a polyrhamnose polymer, with N-acetylglucosamine (GlcNAc) side chains, which is an essential virulence determinant. The molecular details of the mechanism of polyrhamnose modification with GlcNAc are currently unknown. In this report, using molecular genetics, analytical chemistry, and mass spectrometry analysis, we demonstrated that GAC biosynthesis requires two distinct undecaprenol-linked GlcNAc-lipid intermediates: GlcNAc-pyrophosphoryl-undecaprenol (GlcNAc-P-P-Und) produced by the GlcNAc-phosphate transferase GacO and GlcNAc-phosphate-undecaprenol (GlcNAc-P-Und) produced by the glycosyltransferase GacI. Further investigations revealed that the GAC polyrhamnose backbone is assembled on GlcNAc-P-P-Und. Our results also suggested that a GT-C glycosyltransferase, GacL, transfers GlcNAc from GlcNAc-P-Und to polyrhamnose. Moreover, GacJ, a small membrane-associated protein, formed a complex with GacI and significantly stimulated its catalytic activity. Of note, we observed that GacI homologs perform a similar function in Streptococcus agalactiae and Enterococcus faecalis In conclusion, the elucidation of GAC biosynthesis in S. pyogenes reported here enhances our understanding of how other Gram-positive bacteria produce essential components of their cell wall.
Collapse
Affiliation(s)
- Jeffrey S Rush
- From the Department of Molecular and Cellular Biochemistry and
| | - Rebecca J Edgar
- From the Department of Molecular and Cellular Biochemistry and
| | - Pan Deng
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | - Jing Chen
- From the Department of Molecular and Cellular Biochemistry and
| | - Haining Zhu
- From the Department of Molecular and Cellular Biochemistry and
| | - Nina M van Sorge
- the Department of Medical Microbiology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Andrew J Morris
- Division of Cardiovascular Medicine and the Gill Heart Institute, University of Kentucky, Lexington, Kentucky 40536 and
| | | | | |
Collapse
|
36
|
Edgar RJ, Chen J, Kant S, Rechkina E, Rush JS, Forsberg LS, Jaehrig B, Azadi P, Tchesnokova V, Sokurenko EV, Zhu H, Korotkov KV, Pancholi V, Korotkova N. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes. Front Cell Infect Microbiol 2016; 6:126. [PMID: 27790410 PMCID: PMC5061733 DOI: 10.3389/fcimb.2016.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.
Collapse
Affiliation(s)
- Rebecca J. Edgar
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Sashi Kant
- Department of Pathology, Ohio State UniversityColumbus, OH, USA
| | - Elena Rechkina
- Department of Microbiology, University of WashingtonSeattle, WA, USA
| | - Jeffrey S. Rush
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | | | - Bernhard Jaehrig
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | | | | | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State UniversityColumbus, OH, USA
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| |
Collapse
|
37
|
Mistou MY, Sutcliffe IC, van Sorge NM. Bacterial glycobiology: rhamnose-containing cell wall polysaccharides in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:464-79. [PMID: 26975195 PMCID: PMC4931226 DOI: 10.1093/femsre/fuw006] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2016] [Indexed: 12/21/2022] Open
Abstract
The composition of the Gram-positive cell wall is typically described as containing peptidoglycan, proteins and essential secondary cell wall structures called teichoic acids, which comprise approximately half of the cell wall mass. The cell walls of many species within the genera Streptococcus, Enterococcus and Lactococcus contain large amounts of the sugar rhamnose, which is incorporated in cell wall-anchored polysaccharides (CWP) that possibly function as homologues of well-studied wall teichoic acids (WTA). The presence and chemical structure of many rhamnose-containing cell wall polysaccharides (RhaCWP) has sometimes been known for decades. In contrast to WTA, insight into the biosynthesis and functional role of RhaCWP has been lacking. Recent studies in human streptococcal and enterococcal pathogens have highlighted critical roles for these complex polysaccharides in bacterial cell wall architecture and pathogenesis. In this review, we provide an overview of the RhaCWP with regards to their biosynthesis, genetics and biological function in species most relevant to human health. We also briefly discuss how increased knowledge in this field can provide interesting leads for new therapeutic compounds and improve biotechnological applications. This review summarizes new insights into the genetics and function of rhamnose-containing cell wall polysaccharides expressed by lactic acid bacteria, which includes medically important pathogens, and discusses perspectives on possible future therapeutic and biotechnological applications.
Collapse
Affiliation(s)
- Michel-Yves Mistou
- Laboratory for Food Safety, Université Paris-Est, ANSES, F-94701 Maisons-Alfort, France
| | - Iain C Sutcliffe
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Nina M van Sorge
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|