1
|
Megli CJ, Carlin SM, Giacobe EJ, Hillebrand GH, Hooven TA. Virulence and pathogenicity of group B Streptococcus: Virulence factors and their roles in perinatal infection. Virulence 2025; 16:2451173. [PMID: 39844743 PMCID: PMC11758947 DOI: 10.1080/21505594.2025.2451173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/24/2025] Open
Abstract
This review summarizes key virulence factors associated with group B Streptococcus (GBS), a significant pathogen particularly affecting pregnant women, fetuses, and infants. Beginning with an introduction to the historical transition of GBS from a zoonotic pathogen to a prominent cause of human infections, particularly in the perinatal period, the review describes major disease manifestations caused by GBS, including sepsis, meningitis, chorioamnionitis, pneumonia, and others, linking each to specific virulence mechanisms. A detailed exploration of the genetic basis for GBS pathogenicity follows, emphasizing the roles of capsules in pathogenesis and immune evasion. The paper also examines the molecular structures and functions of key GBS surface proteins, such as pili, serine-rich repeat proteins, and fibrinogen-binding proteins, which facilitate colonization and disease. Additionally, the review discusses the significance of environmental sensing and response systems, like the two-component systems, in adapting GBS to different host environments. We conclude by addressing current efforts in vaccine development, underscoring the need for effective prevention strategies against this pervasive pathogen.
Collapse
Affiliation(s)
- Christina J. Megli
- Department of Obstetrics and Gynecology, University of Pittsburgh School of Medicine, Pittsburgh, USA
- Magee-Womens Research Institute, UPMC Medical Center, Pittsburgh, USA
| | - Sophia M. Carlin
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Elizabeth J. Giacobe
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Gideon H. Hillebrand
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
| | - Thomas A. Hooven
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, USA
- R.K. Mellon Institute for Pediatric Research, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
2
|
Perez VP, Torini LR, Manieri FZ, de Queiroz SB, de Brito Gomes JIA, Santos Filho L, Campana EH, de Oliveira CJB, Sousa ESS, Camargo ILBC. Genomic Diversity, Virulome, and Resistome of Streptococcus agalactiae in Northeastern Brazil: Are Multi-Host Adapted Strains Rising? Pathogens 2025; 14:292. [PMID: 40137777 PMCID: PMC11945199 DOI: 10.3390/pathogens14030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/29/2025] Open
Abstract
Streptococcus agalactiae, known as group B streptococci (GBS), colonizes the digestive and genitourinary tracts and causes neonatal diseases and infections in immunocompromised and elderly individuals. GBS neonatal disease prevention includes intrapartum antibiotic prophylaxis. We characterized 101 GBS isolates obtained from patients in João Pessoa, northeastern Brazil, owing to the need to develop and implement vaccines to prevent GBS infections. Capsular types were determined using multiplex-PCR, and antibiotic susceptibility profiles were determined using disc diffusion or the gradient strip method. Clonal diversity was evaluated using pulsed-field gel electrophoresis. Fourteen selected isolates had the genome sequenced and evaluated for virulence and resistance genes. The GBS population had high clonal diversity, with serotype Ia and V prevalence. Among the sequenced isolates, we detected antibiotic resistance genes (ant(6)-Ia, catA8, ermA, ermB, lsaE, lsnuB, mefA/msrD, tetM, tetO, and tetS), several virulence genes, and mobile genetic elements integrated into the chromosome. The most frequent Sequence Type (ST) was ST144, followed by ST196, ST28, ST19, ST12, ST23, ST103, and the new ST1983 (CC103). Phylogenetically, ST103 and ST1983 were distant from the other STs. Our data revealed highly virulent GBS strains in this population and a new ST that could be related to a zoonotic origin.
Collapse
Affiliation(s)
- Vinicius Pietta Perez
- Núcleo de Medicina Tropical—NUMETROP, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I, João Pessoa 58050-085, PB, Brazil; (S.B.d.Q.); (J.I.A.d.B.G.); (L.S.F.)
| | - Luciana Roberta Torini
- Laboratório de Epidemiologia e Microbiologia Moleculares—LEMiMo, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil; (L.R.T.); (F.Z.M.)
| | - Fernanda Zani Manieri
- Laboratório de Epidemiologia e Microbiologia Moleculares—LEMiMo, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil; (L.R.T.); (F.Z.M.)
| | - Suellen Bernardo de Queiroz
- Núcleo de Medicina Tropical—NUMETROP, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I, João Pessoa 58050-085, PB, Brazil; (S.B.d.Q.); (J.I.A.d.B.G.); (L.S.F.)
| | - Jorhanna Isabelle Araujo de Brito Gomes
- Núcleo de Medicina Tropical—NUMETROP, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I, João Pessoa 58050-085, PB, Brazil; (S.B.d.Q.); (J.I.A.d.B.G.); (L.S.F.)
| | - Lauro Santos Filho
- Núcleo de Medicina Tropical—NUMETROP, Centro de Ciências da Saúde, Universidade Federal da Paraíba, Campus I, João Pessoa 58050-085, PB, Brazil; (S.B.d.Q.); (J.I.A.d.B.G.); (L.S.F.)
| | - Eloiza Helena Campana
- Laboratório de Biologia Molecular—LABIMOL, Centro de Ciências Médicas, Universidade Federal da Paraíba, Campus I, João Pessoa 58050-085, PB, Brazil (E.S.S.S.)
| | - Celso Jose Bruno de Oliveira
- Laboratório de Avaliação de Produtos de Origem Animal—LAPOA, Centro de Ciências Agrárias, Campus II, Areia 58397-000, PB, Brazil;
| | - Eduardo Sergio Soares Sousa
- Laboratório de Biologia Molecular—LABIMOL, Centro de Ciências Médicas, Universidade Federal da Paraíba, Campus I, João Pessoa 58050-085, PB, Brazil (E.S.S.S.)
| | - Ilana Lopes Baratella Cunha Camargo
- Laboratório de Epidemiologia e Microbiologia Moleculares—LEMiMo, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos 13563-120, SP, Brazil; (L.R.T.); (F.Z.M.)
| |
Collapse
|
3
|
Manuel G, Twentyman J, Noble K, Eastman AJ, Aronoff DM, Seepersaud R, Rajagopal L, Adams Waldorf KM. Group B streptococcal infections in pregnancy and early life. Clin Microbiol Rev 2025; 38:e0015422. [PMID: 39584819 PMCID: PMC11905376 DOI: 10.1128/cmr.00154-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
SUMMARYBacterial infections with Group B Streptococcus (GBS) are an important cause of adverse outcomes in pregnant individuals, neonates, and infants. GBS is a common commensal in the genitourinary and gastrointestinal tracts and can be detected in the vagina of approximately 20% of women globally. GBS can infect the fetus either during pregnancy or vaginal delivery resulting in preterm birth, stillbirth, or early-onset neonatal disease (EOD) in the first week of life. The mother can also become infected with GBS leading to postpartum endometritis, and rarely, maternal sepsis. An invasive GBS infection of the neonate may present after the first week of life (late-onset disease, LOD) through transmission from caregivers, breast milk, and other sources. Invasive GBS infections in neonates can result in sepsis, pneumonia, meningitis, neurodevelopmental impairment, death, and lifelong disability. A policy of routine screening for GBS rectovaginal colonization in well-resourced countries can trigger the administration of intrapartum antibiotic prophylaxis (IAP) when prenatal testing is positive, which drastically reduces rates of EOD. However, many countries do not routinely screen pregnant women for GBS colonization but may administer IAP in cases with a high risk of EOD. IAP does not reduce rates of LOD. A global vaccination campaign is needed to reduce the significant burden of invasive GBS disease that remains among infants and pregnant individuals. In this narrative review, we provide a comprehensive overview of the global impact of GBS colonization and infection, virulence factors and pathogenesis, and current and future prophylactics and therapeutics.
Collapse
Affiliation(s)
- Gygeria Manuel
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
| | - Joy Twentyman
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Kristen Noble
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Alison J. Eastman
- Department of Obstetrics and Gynecology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - David M. Aronoff
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ravin Seepersaud
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Lakshmi Rajagopal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| | - Kristina M. Adams Waldorf
- Department of Obstetrics & Gynecology, University of Washington, Seattle, Washington, USA
- Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Claverie C, Coppolino F, Mazzuoli MV, Guyonnet C, Jacquemet E, Legendre R, Sismeiro O, De Gaetano GV, Teti G, Trieu-Cuot P, Tazi A, Beninati C, Firon A. Constitutive activation of two-component systems reveals regulatory network interactions in Streptococcus agalactiae. Nat Commun 2024; 15:9175. [PMID: 39448655 PMCID: PMC11502775 DOI: 10.1038/s41467-024-53439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/07/2024] [Indexed: 10/26/2024] Open
Abstract
Bacterial two-component systems (TCSs) are signaling modules that control physiology, adaptation, and host interactions. A typical TCS consists of a histidine kinase (HK) that activates a response regulator via phosphorylation in response to environmental signals. Here, we systematically test the effect of inactivating the conserved phosphatase activity of HKs to activate TCS signaling pathways. Transcriptome analyses of 14 HK mutants in Streptococcus agalactiae, the leading cause of neonatal meningitis, validate the conserved HK phosphatase mechanism and its role in the inhibition of TCS activity in vivo. Constitutive TCS activation, independent of environmental signals, enables high-resolution mapping of the regulons for several TCSs (e.g., SaeRS, BceRS, VncRS, DltRS, HK11030, HK02290) and reveals the functional diversity of TCS signaling pathways, ranging from highly specialized to interconnected global regulatory networks. Targeted analysis shows that the SaeRS-regulated PbsP adhesin acts as a signaling molecule to activate CovRS signaling, thereby linking the major regulators of host-pathogen interactions. Furthermore, constitutive BceRS activation reveals drug-independent activity, suggesting a role in cell envelope homeostasis beyond antimicrobial resistance. This study highlights the versatility of constitutive TCS activation, via phosphatase-deficient HKs, to uncover regulatory networks and biological processes.
Collapse
Affiliation(s)
- Cosme Claverie
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Francesco Coppolino
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
- University of Messina, Department of Human Pathology, Messina, Italy
| | - Maria-Vittoria Mazzuoli
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Cécile Guyonnet
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Bacteriology, French National Reference Center for Streptococci, Paris, France
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, Paris, France
| | - Elise Jacquemet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Odile Sismeiro
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | | | | | - Patrick Trieu-Cuot
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France
| | - Asmaa Tazi
- Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Department of Bacteriology, French National Reference Center for Streptococci, Paris, France
- Université Paris Cité, Institut Cochin, Institut National de la Santé et de la Recherche Médicale U1016, Centre National de la Recherche Scientifique UMR8104, Team Bacteria and Perinatality, Paris, France
- Fédération Hospitalo-Universitaire Fighting Prematurity, Paris, France
| | - Concetta Beninati
- University of Messina, Department of Human Pathology, Messina, Italy
| | - Arnaud Firon
- Institut Pasteur, Université Paris Cité, Department of Microbiology, Biology of Gram-Positive Pathogens, Paris, France.
| |
Collapse
|
5
|
Coppolino F, Berbiglia A, Lentini G, Famà A, Pietrocola G, Teti G, Beninati C, De Gaetano GV. Role of the SaeRS Two-Component Regulatory System in Group B Streptococcus Biofilm Formation on Human Fibrinogen. Microorganisms 2024; 12:2096. [PMID: 39458405 PMCID: PMC11510217 DOI: 10.3390/microorganisms12102096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Streptococcus agalactiae, also known as Group B Streptococcus or GBS, is a commensal colonizer of human vaginal and gastrointestinal tracts that can also be a deadly pathogen for newborns, pregnant women, and the elderly. The SaeRS two-component regulatory system (TCS) positively regulates the expression of two GBS adhesins genes, but its role in the formation of biofilm, an important step in pathogenesis, has not been investigated. In the present study, we set up a novel model of GBS biofilm formation using surfaces coated with human fibrinogen (hFg). Biofilm mass and structure were analyzed by crystal violet staining and three-dimensional fluorescence microscopy, respectively. GBS growth on hFg resulted in the formation of a mature and abundant biofilm composed of bacterial cells and an extracellular matrix containing polysaccharides, proteins, and extracellular DNA (eDNA). Enzymatic and genetic analysis showed that GBS biofilm formation on hFg is dependent on proteins and eDNA in the extracellular matrix and on the presence of covalently linked cell wall proteins on the bacterial surface but not on the type-specific capsular polysaccharide. In the absence of the SaeR regulator of the SaeRS TCS, there was a significant reduction in biomass formation, with reduced numbers of bacterial cells, reduced eDNA content, and disruption of the biofilm architecture. Overall, our data suggest that GBS binding to hFg contributes to biofilm formation and that the SaeRS TCS plays an important role in this process.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Alessia Berbiglia
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Germana Lentini
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | - Agata Famà
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| | | | | | - Concetta Beninati
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
- Scylla Biotech S.r.l., 98168 Messina, Italy
| | - Giuseppe Valerio De Gaetano
- Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, 98168 Messina, Italy
| |
Collapse
|
6
|
Coppolino F, De Gaetano GV, Claverie C, Sismeiro O, Varet H, Legendre R, Pellegrini A, Berbiglia A, Tavella L, Lentini G, Famà A, Barbieri G, Pietrocola G, Teti G, Firon A, Beninati C. The SaeRS two-component system regulates virulence gene expression in group B Streptococcus during invasive infection. mBio 2024; 15:e0197524. [PMID: 39158291 PMCID: PMC11389388 DOI: 10.1128/mbio.01975-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 08/20/2024] Open
Abstract
Group B Streptococcus (GBS) is a pathobiont responsible for invasive infections in neonates and the elderly. The transition from a commensal to an invasive pathogen relies on the timely regulation of virulence factors. In this study, we characterized the role of the SaeRS two-component system in GBS pathogenesis. Loss-of-function mutations in the SaeR response regulator decrease virulence in mouse models of invasive infection by hindering the ability of bacteria to persist at the inoculation site and to spread to distant organs. Transcriptome and in vivo analysis reveal a specialized regulatory system specifically activated during infection to control the expression of only two virulence factors: the PbsP adhesin and the BvaP secreted protein. The in vivo surge in SaeRS-regulated genes is complemented by fine-tuning mediated by the repressor of virulence CovRS system to establish a coordinated response. Constitutive activation of the SaeRS regulatory pathway increases PbsP-dependent adhesion and invasion of epithelial and endothelial barriers, though at the cost of reduced virulence. In conclusion, SaeRS is a dynamic, highly specialized regulatory system enabling GBS to express a restricted set of virulence factors that promote invasion of host barriers and allow these bacteria to persist inside the host during lethal infection. IMPORTANCE Group B Streptococcus (or GBS) is a normal inhabitant of the human gastrointestinal and genital tracts that can also cause deadly infections in newborns and elderly people. The transition from a harmless commensal to a dangerous pathogen relies on the timely expression of bacterial molecules necessary for causing disease. In this study, we characterize the two-component system SaeRS as a key regulator of such virulence factors. Our analysis reveals a specialized regulatory system that is activated only during infection to dynamically adjust the production of two virulence factors involved in interactions with host cells. Overall, our findings highlight the critical role of SaeRS in GBS infections and suggest that targeting this system may be useful for developing new antibacterial drugs.
Collapse
Affiliation(s)
| | | | - Cosme Claverie
- Department of Microbiology, Biology of Gram-Positive Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Odile Sismeiro
- Department of Microbiology, Biology of Gram-Positive Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Hugo Varet
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Rachel Legendre
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | | | - Alessia Berbiglia
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Luca Tavella
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology 'Lazzaro Spallanzani', University of Pavia, Pavia, Italy
| | | | | | - Arnaud Firon
- Department of Microbiology, Biology of Gram-Positive Pathogens, Institut Pasteur, Université Paris Cité, Paris, France
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Pellegrini A, Pietrocola G. Recruitment of Vitronectin by Bacterial Pathogens: A Comprehensive Overview. Microorganisms 2024; 12:1385. [PMID: 39065153 PMCID: PMC11278874 DOI: 10.3390/microorganisms12071385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
The key factor that enables pathogenic bacteria to establish successful infections lies largely in their ability to escape the host's immune response and adhere to host surfaces. Vitronectin (Vn) is a multidomain glycoprotein ubiquitously present in blood and the extracellular matrix of several tissues, where it plays important roles as a regulator of membrane attack complex (MAC) formation and as a mediator of cell adhesion. Vn has emerged as an intriguing target for several microorganisms. Vn binding by bacterial receptors confers protection from lysis resulting from MAC deposition. Furthermore, through its Arg-Gly-Asp (RGD) motif, Vn can bind several host cell integrins. Therefore, Vn recruited to the bacterial cell functions as a molecular bridge between bacteria and host surfaces, where it triggers several host signaling events that could promote bacterial internalization. Each bacterium uses different receptors that recognize specific Vn domains. In this review, we update the current knowledge of Vn receptors of major bacterial pathogens, emphasizing the role they may play in the host upon Vn binding. Focusing on the structural properties of bacterial proteins, we provide details on the residues involved in their interaction with Vn. Furthermore, we discuss the possible involvement of Vn adsorption on biomaterials in promoting bacterial adhesion on abiotic surfaces and infection.
Collapse
Affiliation(s)
| | - Giampiero Pietrocola
- Biochemistry Unit, Department of Molecular Medicine, University of Pavia, Viale Taramelli 3/b, 27100 Pavia, Italy;
| |
Collapse
|
8
|
De Gaetano GV, Lentini G, Coppolino F, Famà A, Pietrocola G, Beninati C. Engagement of α 3β 1 and α 2β 1 integrins by hypervirulent Streptococcus agalactiae in invasion of polarized enterocytes. Front Microbiol 2024; 15:1367898. [PMID: 38511003 PMCID: PMC10951081 DOI: 10.3389/fmicb.2024.1367898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
The gut represents an important site of colonization of the commensal bacterium Streptococcus agalactiae (group B Streptococcus or GBS), which can also behave as a deadly pathogen in neonates and adults. Invasion of the intestinal epithelial barrier is likely a crucial step in the pathogenesis of neonatal infections caused by GBS belonging to clonal complex 17 (CC17). We have previously shown that the prototypical CC17 BM110 strain invades polarized enterocyte-like cells through their lateral surfaces using an endocytic pathway. By analyzing the cellular distribution of putative GBS receptors in human enterocyte-like Caco-2 cells, we find here that the alpha 3 (α3) and alpha 2 (α2) integrin subunits are selectively expressed on lateral enterocyte surfaces at equatorial and parabasal levels along the vertical axis of polarized cells, in an area corresponding to GBS entry sites. The α3β1 and α2β1 integrins were not readily accessible in fully differentiated Caco-2 monolayers but could be exposed to specific antibodies after weakening of intercellular junctions in calcium-free media. Under these conditions, anti-α3β1 and anti-α2β1 antibodies significantly reduced GBS adhesion to and invasion of enterocytes. After endocytosis, α3β1 and α2β1 integrins localized to areas of actin remodeling around GBS containing vacuoles. Taken together, these data indicate that GBS can invade enterocytes by binding to α3β1 and α2β1 integrins on the lateral membrane of polarized enterocytes, resulting in cytoskeletal remodeling and bacterial internalization. Blocking integrins might represent a viable strategy to prevent GBS invasion of gut epithelial tissues.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
9
|
Zhao T, Gussak A, van der Hee B, Brugman S, van Baarlen P, Wells JM. Identification of plasminogen-binding sites in Streptococcus suis enolase that contribute to bacterial translocation across the blood-brain barrier. Front Cell Infect Microbiol 2024; 14:1356628. [PMID: 38456079 PMCID: PMC10919400 DOI: 10.3389/fcimb.2024.1356628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus suis is an emerging zoonotic pathogen that can cause invasive disease commonly associated with meningitis in pigs and humans. To cause meningitis, S. suis must cross the blood-brain barrier (BBB) comprising blood vessels that vascularize the central nervous system (CNS). The BBB is highly selective due to interactions with other cell types in the brain and the composition of the extracellular matrix (ECM). Purified streptococcal surface enolase, an essential enzyme participating in glycolysis, can bind human plasminogen (Plg) and plasmin (Pln). Plg has been proposed to increase bacterial traversal across the BBB via conversion to Pln, a protease which cleaves host proteins in the ECM and monocyte chemoattractant protein 1 (MCP1) to disrupt tight junctions. The essentiality of enolase has made it challenging to unequivocally demonstrate its role in binding Plg/Pln on the bacterial surface and confirm its predicted role in facilitating translocation of the BBB. Here, we report on the CRISPR/Cas9 engineering of S. suis enolase mutants eno261, eno252/253/255, eno252/261, and eno434/435 possessing amino acid substitutions at in silico predicted binding sites for Plg. As expected, amino acid substitutions in the predicted Plg binding sites reduced Plg and Pln binding to S. suis but did not affect bacterial growth in vitro compared to the wild-type strain. The binding of Plg to wild-type S. suis enhanced translocation across the human cerebral microvascular endothelial cell line hCMEC/D3 but not for the eno mutant strains tested. To our knowledge, this is the first study where predicted Plg-binding sites of enolase have been mutated to show altered Plg and Pln binding to the surface of S. suis and attenuation of translocation across an endothelial cell monolayer in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | - Jerry M. Wells
- Host-Microbe Interactomics, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
10
|
Manzer HS, Brunetti T, Doran KS. Identification of a DNA-cytosine methyltransferase that impacts global transcription to promote group B streptococcal vaginal colonization. mBio 2023; 14:e0230623. [PMID: 37905908 PMCID: PMC10746215 DOI: 10.1128/mbio.02306-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Group B Streptococcus (GBS) colonizes the female reproductive tract (FRT) in one-third of women, and carriage leads to numerous adverse pregnancy outcomes including the preterm premature rupture of membranes, chorioamnionitis, and stillbirth. The presence of GBS in the FRT during pregnancy is also the largest predisposing factor for the transmission of GBS and invasive neonatal diseases, including pneumonia, sepsis, and meningitis. The factors contributing to GBS colonization are still being elucidated. Here, we show for the first time that GBS transcription is regulated by an orphan DNA cytosine methyltransferase (Dcm). Many GBS factors are regulated by Dcm, especially those involved in carbohydrate transport and metabolism. We show that GBS persistence in the FRT is dependent on the catabolism of sugars found on the vaginal mucin MUC5B. Collectively, this work highlights the regulatory importance of a DNA methyltransferase and identifies both host and bacterial factors required for GBS colonization.
Collapse
Affiliation(s)
- Haider S. Manzer
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
11
|
In Vivo Role of Two-Component Regulatory Systems in Models of Urinary Tract Infections. Pathogens 2023; 12:pathogens12010119. [PMID: 36678467 PMCID: PMC9861413 DOI: 10.3390/pathogens12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/23/2022] [Accepted: 01/08/2023] [Indexed: 01/12/2023] Open
Abstract
Two-component signaling systems (TCSs) are finely regulated mechanisms by which bacteria adapt to environmental conditions by modifying the expression of target genes. In bacterial pathogenesis, TCSs play important roles in modulating adhesion to mucosal surfaces, resistance to antibiotics, and metabolic adaptation. In the context of urinary tract infections (UTI), one of the most common types infections causing significant health problems worldwide, uropathogens use TCSs for adaptation, survival, and establishment of pathogenicity. For example, uropathogens can exploit TCSs to survive inside bladder epithelial cells, sense osmolar variations in urine, promote their ascension along the urinary tract or even produce lytic enzymes resulting in exfoliation of the urothelium. Despite the usefulness of studying the function of TCSs in in vitro experimental models, it is of primary necessity to study bacterial gene regulation also in the context of host niches, each displaying its own biological, chemical, and physical features. In light of this, the aim of this review is to provide a concise description of several bacterial TCSs, whose activity has been described in mouse models of UTI.
Collapse
|
12
|
Group B Streptococcus: Virulence Factors and Pathogenic Mechanism. Microorganisms 2022; 10:microorganisms10122483. [PMID: 36557736 PMCID: PMC9784991 DOI: 10.3390/microorganisms10122483] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Group B Streptococcus (GBS) or Streptococcus agalactiae is a major cause of neonatal mortality. When colonizing the lower genital tract of pregnant women, GBS may cause premature birth and stillbirth. If transmitted to the newborn, it may result in life-threatening illnesses, including sepsis, meningitis, and pneumonia. Moreover, through continuous evolution, GBS can use its original structure and unique factors to greatly improve its survival rate in the human body. This review discusses the key virulence factors that facilitate GBS invasion and colonization and their action mechanisms. A comprehensive understanding of the role of virulence factors in GBS infection is crucial to develop better treatment options and screen potential candidate molecules for the development of the vaccine.
Collapse
|
13
|
Keogh RA, Haeberle AL, Langouët-Astrié CJ, Kavanaugh JS, Schmidt EP, Moore GD, Horswill AR, Doran KS. Group B Streptococcus adaptation promotes survival in a hyperinflammatory diabetic wound environment. SCIENCE ADVANCES 2022; 8:eadd3221. [PMID: 36367946 PMCID: PMC9651866 DOI: 10.1126/sciadv.add3221] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Diabetic wounds have poor healing outcomes due to the presence of numerous pathogens and a dysregulated immune response. Group B Streptococcus (GBS) is commonly isolated from diabetic wound infections, but the mechanisms of GBS virulence during these infections have not been investigated. Here, we develop a murine model of GBS diabetic wound infection and, using dual RNA sequencing, demonstrate that GBS infection triggers an inflammatory response. GBS adapts to this hyperinflammatory environment by up-regulating virulence factors including those known to be regulated by the two-component system covRS, such as the surface protein pbsP, and the cyl operon, which is responsible for hemolysin/pigmentation production. We recover hyperpigmented/hemolytic GBS colonies from the murine diabetic wound, which we determined encode mutations in covR. We further demonstrate that GBS mutants in cylE and pbsP are attenuated in the diabetic wound. This foundational study provides insight into the pathogenesis of GBS diabetic wound infections.
Collapse
Affiliation(s)
- Rebecca A. Keogh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Amanda L. Haeberle
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | | | - Jeffrey S. Kavanaugh
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| | - Eric P. Schmidt
- Department of Medicine–Pulmonary Sciences and Critical Care, University of Colorado Anschutz, Aurora, CO, USA
| | - Garrett D. Moore
- Department of Orthopedics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
- Department of Veterans Affairs Eastern Colorado Healthcare System, Aurora, CO, USA
| | - Kelly S. Doran
- Department of Immunology and Microbiology, University of Colorado Anschutz, Aurora, CO, USA
| |
Collapse
|
14
|
Pellegrini A, Lentini G, Famà A, Bonacorsi A, Scoffone VC, Buroni S, Trespidi G, Postiglione U, Sassera D, Manai F, Pietrocola G, Firon A, Biondo C, Teti G, Beninati C, Barbieri G. CodY Is a Global Transcriptional Regulator Required for Virulence in Group B Streptococcus. Front Microbiol 2022; 13:881549. [PMID: 35572655 PMCID: PMC9096947 DOI: 10.3389/fmicb.2022.881549] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/21/2022] [Indexed: 12/03/2022] Open
Abstract
Group B Streptococcus (GBS) is a Gram-positive bacterium able to switch from a harmless commensal of healthy adults to a pathogen responsible for invasive infections in neonates. The signals and regulatory mechanisms governing this transition are still largely unknown. CodY is a highly conserved global transcriptional regulator that links nutrient availability to the regulation of major metabolic and virulence pathways in low-G+C Gram-positive bacteria. In this work, we investigated the role of CodY in BM110, a GBS strain representative of a hypervirulent lineage associated with the majority of neonatal meningitis. Deletion of codY resulted in a reduced ability of the mutant strain to cause infections in neonatal and adult animal models. The observed decreased in vivo lethality was associated with an impaired ability of the mutant to persist in the blood, spread to distant organs, and cross the blood-brain barrier. Notably, the codY null mutant showed reduced adhesion to monolayers of human epithelial cells in vitro and an increased ability to form biofilms, a phenotype associated with strains able to asymptomatically colonize the host. RNA-seq analysis showed that CodY controls about 13% of the genome of GBS, acting mainly as a repressor of genes involved in amino acid transport and metabolism and encoding surface anchored proteins, including the virulence factor Srr2. CodY activity was shown to be dependent on the availability of branched-chain amino acids, which are the universal cofactors of this regulator. These results highlight a key role for CodY in the control of GBS virulence.
Collapse
Affiliation(s)
- Angelica Pellegrini
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Agata Famà
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Andrea Bonacorsi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Viola Camilla Scoffone
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Silvia Buroni
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Gabriele Trespidi
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Umberto Postiglione
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| | | | - Arnaud Firon
- Institut Pasteur, Université de Paris, CNRS UMR 6047, Unité Biologie des Bactéries Pathogènes à Gram-positif, Paris, France
| | - Carmelo Biondo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia, Italy
| |
Collapse
|
15
|
De Gaetano GV, Coppolino F, Lentini G, Famà A, Cullotta C, Raffaele I, Motta C, Teti G, Speziale P, Pietrocola G, Beninati C. Streptococcus pneumoniae
binds collagens and C1q
via
the SSURE repeats of the PfbB adhesin. Mol Microbiol 2022; 117:1479-1492. [PMID: 35570359 PMCID: PMC9328315 DOI: 10.1111/mmi.14920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The binding of Streptococcus pneumoniae to collagen is likely an important step in the pathogenesis of pneumococcal infections, but little is known of the underlying molecular mechanisms. Streptococcal surface repeats (SSURE) are highly conserved protein domains present in cell wall adhesins from different Streptococcus species. We find here that SSURE repeats of the pneumococcal adhesin plasminogen and fibronectin binding protein B (PfbB) bind to various types of collagen. Moreover, deletion of the pfbB gene resulted in a significant impairment of the ability of encapsulated or unencapsulated pneumococci to bind collagen. Notably, a PfbB SSURE domain is also bound to the complement component C1q that bears a collagen‐like domain and promotes adherence of pneumococci to host cells by acting as a bridge between bacteria and epithelial cells. Accordingly, deletion of PfbB or pre‐treatment with anti‐SSURE antibodies markedly decreased pneumococcal binding to C1q as well as C1q‐dependent adherence to epithelial and endothelial cells. Further data indicated that C1q promotes pneumococcal adherence by binding to integrin α2β1. In conclusion, our results indicate that the SSURE domains of the PfbB protein promote interactions of pneumococci with various types of collagen and with C1q. These repeats may be useful targets in strategies to control S. pneumoniae infections.
Collapse
Affiliation(s)
| | - Francesco Coppolino
- Department of BiomedicalDental and Imaging SciencesUniversity of MessinaMessinaItaly
| | - Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Cullotta
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Ivana Raffaele
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Motta
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Pietro Speziale
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly
- Scylla Biotech SrlMessinaItaly
| |
Collapse
|
16
|
Lentini G, De Gaetano GV, Famà A, Galbo R, Coppolino F, Mancuso G, Teti G, Beninati C. Neutrophils discriminate live from dead bacteria by integrating signals initiated by Fprs and TLRs. EMBO J 2022; 41:e109386. [PMID: 35112724 PMCID: PMC8886525 DOI: 10.15252/embj.2021109386] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/15/2021] [Accepted: 01/12/2022] [Indexed: 11/09/2022] Open
Abstract
The mechanisms whereby neutrophils respond differentially to live and dead organisms are unknown. We show here that neutrophils produce 5- to 30-fold higher levels of the Cxcl2 chemokine in response to live bacteria, compared with killed bacteria or isolated bacterial components, despite producing similar levels of Cxcl1 or pro-inflammatory cytokines. Secretion of high levels of Cxcl2, which potently activates neutrophils by an autocrine mechanism, requires three signals. The first two signals are provided by two different sets of signal peptides released by live bacteria, which selectively activate formylated peptide receptor 1 (Fpr1) and Fpr2, respectively. Signal 3 originates from Toll-like receptor activation by microbial components present in both live and killed bacteria. Mechanistically, these signaling pathways converge at the level of the p38 MAP kinase, leading to activation of the AP-1 transcription factor and to Cxcl2 induction. Collectively, our data demonstrate that the simultaneous presence of agonists for Fpr1, Fpr2, and Toll-like receptors represents a unique signature associated with viable bacteria, which is sensed by neutrophils and induces Cxcl2-dependent autocrine cell activation.
Collapse
Affiliation(s)
- Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | | | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical SciencesUniversity of MessinaMessinaItaly
| | - Francesco Coppolino
- Department of BiomedicalDental, Morphological and Functional Imaging SciencesUniversity of MessinaMessinaItaly
| | | | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly,Scylla Biotech SrlMessinaItaly
| |
Collapse
|
17
|
Sulovari A, Ninomiya MJ, Beck CA, Ricciardi BF, Ketonis C, Mesfin A, Kaplan NB, Soin SP, McDowell SM, Mahmood B, Daiss JL, Schwarz EM, Oh I. Clinical utilization of species-specific immunoassays for identification of Staphylococcus aureus and Streptococcus agalactiae in orthopedic infections. J Orthop Res 2021; 39:2141-2150. [PMID: 33274775 PMCID: PMC8175449 DOI: 10.1002/jor.24935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/04/2023]
Abstract
Staphylococcus aureus and Streptococcus agalactiae (Group B streptococcus, GBS) are common causes of deep musculoskeletal infections (MSKI) and result in significant patient morbidity and cost to the healthcare system. One of the major challenges with MSKI is the lack of faithful diagnostics to correctly identify the primary pathogen, as standard culture-based assays are prone to false positives in the case of polymicrobial infections, and false negatives due to limitations in sample acquisition and antibiotic use before presentation. To improve upon our current diagnostic methods for MSKI, we developed a multiplex immunoassay for antigen-specific IgGs in serum (Luminex), and medium enriched for newly synthesized antibodies (MENSA) for anti-S. aureus and GBS generated from cultured peripheral blood mononuclear cells (PBMCs) of orthopedic infection patients undergoing surgical treatment. Samples were obtained from 110 MSKI patients: 80 diabetic foot ulcer, 21 periprosthetic joint infection, 5 septic arthritis, 2 spine, 1 hand, and 1 fracture-related infection (FRI). Anti-S. aureus and anti-GBS antibody titers were compared to culture results to assess their concordance in identifying the pathogens. Immunoassay, particularly MENSA, showed high diagnostic potential for monomicrobial S. aureus and GBS orthopedic infections (AUC > 0.95). MENSA also demonstrated diagnostic potential for GBS polymicrobial orthopedic infection and for GBS DFU (AUC > 0.83 for both). Serum showed high diagnostic potential for S. aureus PJI (AUC > 0.95). Taken together, these findings support the development of species-specific immunoassays for the identification of causal pathogens in active MSKI, especially in conjunction with standard culture.
Collapse
Affiliation(s)
- Aron Sulovari
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Mark J. Ninomiya
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F. Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Constantinos Ketonis
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Addisu Mesfin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Nathan B. Kaplan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Sandeep P. Soin
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Susan M. McDowell
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Bilal Mahmood
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - John L. Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
18
|
Coppolino F, Romeo L, Pietrocola G, Lentini G, De Gaetano GV, Teti G, Galbo R, Beninati C. Lysine Residues in the MK-Rich Region Are Not Required for Binding of the PbsP Protein From Group B Streptococci to Plasminogen. Front Cell Infect Microbiol 2021; 11:679792. [PMID: 34568085 PMCID: PMC8455988 DOI: 10.3389/fcimb.2021.679792] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Binding to plasminogen (Plg) enables bacteria to associate with and invade host tissues. The cell wall protein PbsP significantly contributes to the ability of group B streptococci, a frequent cause of invasive infection, to bind Plg. Here we sought to identify the molecular regions involved in the interactions between Plg and PbsP. The K4 Kringle domain of the Plg molecule was required for binding of Plg to whole PbsP and to a PbsP fragment encompassing a region rich in methionine and lysine (MK-rich domain). These interactions were inhibited by free L-lysine, indicating the involvement of lysine binding sites in the Plg molecule. However, mutation to alanine of all lysine residues in the MK-rich domain did not decrease its ability to bind Plg. Collectively, our data identify a novel bacterial sequence that can interact with lysine binding sites in the Plg molecule. Notably, such binding did not require the presence of lysine or other positively charged amino acids in the bacterial receptor. These data may be useful for developing alternative therapeutic strategies aimed at blocking interactions between group B streptococci and Plg.
Collapse
Affiliation(s)
- Francesco Coppolino
- Department of Biomedical, Dental and Imaging Sciences, University of Messina, Messina, Italy
| | - Letizia Romeo
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department Molecular Medicine, Biochemistry Section, University of Pavia, Pavia, Italy
| | - Germana Lentini
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy
| | | | | | - Roberta Galbo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Concetta Beninati
- Department of Human Pathology and Medicine, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
19
|
Mazzuoli MV, Daunesse M, Varet H, Rosinski-Chupin I, Legendre R, Sismeiro O, Gominet M, Kaminski PA, Glaser P, Chica C, Trieu-Cuot P, Firon A. The CovR regulatory network drives the evolution of Group B Streptococcus virulence. PLoS Genet 2021; 17:e1009761. [PMID: 34491998 PMCID: PMC8448333 DOI: 10.1371/journal.pgen.1009761] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/17/2021] [Accepted: 08/09/2021] [Indexed: 01/31/2023] Open
Abstract
Virulence of the neonatal pathogen Group B Streptococcus is under the control of the master regulator CovR. Inactivation of CovR is associated with large-scale transcriptome remodeling and impairs almost every step of the interaction between the pathogen and the host. However, transcriptome analyses suggested a plasticity of the CovR signaling pathway in clinical isolates leading to phenotypic heterogeneity in the bacterial population. In this study, we characterized the CovR regulatory network in a strain representative of the CC-17 hypervirulent lineage responsible of the majority of neonatal meningitis. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR network characterized by the direct repression of a large array of virulence-associated genes and the extent of co-regulation at specific loci. Comparative functional analysis of the signaling network links strain-specificities to the regulation of the pan-genome, including the two specific hypervirulent adhesins and horizontally acquired genes, to mutations in CovR-regulated promoters, and to variability in CovR activation by phosphorylation. This regulatory adaptation occurs at the level of genes, promoters, and of CovR itself, and allows to globally reshape the expression of virulence genes. Overall, our results reveal the direct, coordinated, and strain-specific regulation of virulence genes by the master regulator CovR and suggest that the intra-species evolution of the signaling network is as important as the expression of specific virulence factors in the emergence of clone associated with specific diseases. Streptococcus agalactiae, commonly known as the Group B Streptococcus (GBS), is a commensal bacterium of the intestinal and vaginal tracts found in approximately 30% of healthy adults. However, GBS is also an opportunistic pathogen and the leading cause of neonatal invasive infections. Epidemiologic data have identified a particular GBS clone, designated the CC-17 hypervirulent clonal complex, as responsible for the overwhelming majority of neonatal meningitis. The hypervirulence of CC-17 has been linked to the expression of two specific surface proteins increasing their abilities to cross epithelial and endothelial barriers. In this study, we characterized the role of the major regulator of virulence gene expression, the CovR response regulator, in a representative hypervirulent strain. Transcriptome and genome-wide binding analysis reveal the architecture of the CovR signaling network characterized by the direct repression of a large array of virulence-associated genes, including the specific hypervirulent adhesins. Comparative analysis in a non-CC-17 wild type strain demonstrates a high level of plasticity of the regulatory network, allowing to globally reshape pathogen-host interaction. Overall, our results suggest that the intra-species evolution of the regulatory network is an important factor in the emergence of GBS clones associated with specific pathologies.
Collapse
Affiliation(s)
- Maria-Vittoria Mazzuoli
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Sorbonne Paris Cité, Université de Paris, Paris, France
| | - Maëlle Daunesse
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Hugo Varet
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Isabelle Rosinski-Chupin
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Rachel Legendre
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Odile Sismeiro
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- Plate-forme Technologique Biomics—Centre de Ressources et Recherches Technologiques (C2RT), Institut Pasteur, Paris, France
| | - Myriam Gominet
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Pierre Alexandre Kaminski
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Philippe Glaser
- Unité Écologie et Évolution de la Résistance aux Antibiotiques, CNRS UMR3525, Institut Pasteur, Paris, France
| | - Claudia Chica
- Hub de Bioinformatique et Biostatistique—Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Patrick Trieu-Cuot
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
| | - Arnaud Firon
- Unité Biologie des Bactéries Pathogènes à Gram-positif, CNRS UMR2001 Microbiologie Intégrative et Moléculaire, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
20
|
De Gaetano GV, Lentini G, Galbo R, Coppolino F, Famà A, Teti G, Beninati C. Invasion and trafficking of hypervirulent group B streptococci in polarized enterocytes. PLoS One 2021; 16:e0253242. [PMID: 34129624 PMCID: PMC8205152 DOI: 10.1371/journal.pone.0253242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/01/2021] [Indexed: 11/29/2022] Open
Abstract
Streptococcus agalactiae (group B streptococcus or GBS) is a commensal bacterium that can frequently behave as a pathogen, particularly in the neonatal period and in the elderly. The gut is a primary site of GBS colonization and a potential port of entry during neonatal infections caused by hypervirulent clonal complex 17 (CC17) strains. Here we studied the interactions between the prototypical CC17 BM110 strain and polarized enterocytes using the Caco-2 cell line. GBS could adhere to and invade these cells through their apical or basolateral surfaces. Basolateral invasion was considerably more efficient than apical invasion and predominated under conditions resulting in weakening of cell-to-cell junctions. Bacterial internalization occurred by a mechanism involving caveolae- and lipid raft-dependent endocytosis and actin re-organization, but not clathrin-dependent endocytosis. In the first steps of Caco-2 invasion, GBS colocalized with the early endocytic marker EEA-1, to later reside in acidic vacuoles. Taken together, these data suggest that CC17 GBS selectively adheres to the lateral surface of enterocytes from which it enters through caveolar lipid rafts using a classical, actin-dependent endocytic pathway. These data may be useful to develop alternative preventive strategies aimed at blocking GBS invasion of the intestinal barrier.
Collapse
Affiliation(s)
| | - Germana Lentini
- Department of Human Pathology, University of Messina, Messina, Italy
| | - Roberta Galbo
- Department of Chemical, Biological and Pharmaceutical Sciences, University of Messina, Messina, Italy
| | | | - Agata Famà
- Department of Human Pathology, University of Messina, Messina, Italy
| | | | - Concetta Beninati
- Department of Human Pathology, University of Messina, Messina, Italy
- Scylla Biotech Srl, Messina, Italy
- * E-mail:
| |
Collapse
|
21
|
Le Guennec L, Coureuil M, Nassif X, Bourdoulous S. Strategies used by bacterial pathogens to cross the blood-brain barrier. Cell Microbiol 2019; 22:e13132. [PMID: 31658405 DOI: 10.1111/cmi.13132] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/15/2022]
Abstract
The skull, spine, meninges, and cellular barriers at the blood-brain and the blood-cerebrospinal fluid interfaces well protect the brain and meningeal spaces against microbial invasion. However, once in the bloodstream, a range of pathogenic bacteria is able to reach the brain and cause meningitis. Despite advances in antibacterial therapy, bacterial meningitis remains one of the most important infectious diseases worldwide. The most common causative bacteria in children and adults are Streptococcus pneumoniae and Neisseria meningitidis associated with high morbidity and mortality, while among neonates, most cases of bacterial meningitis are due to group B Streptococcus and Escherichia coli. Here we summarise our current knowledge on the strategies used by these bacterial pathogens to survive in the bloodstream, to colonise the brain vasculature and to cross the blood-brain barrier.
Collapse
Affiliation(s)
- Loic Le Guennec
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Mathieu Coureuil
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | - Xavier Nassif
- Inserm (Institut National de la Sante et de la Recherche Medicale), unité U1151, Institut-Necker-Enfants-Malades, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR 8253, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France.,Assistance Publique - Hôpitaux de Paris, Hôpital Necker Enfants Malades, Paris, France
| | - Sandrine Bourdoulous
- Inserm (Institut National de la Sante et de la Recherche Medicale), U1016, Institut Cochin, Paris, France.,CNRS (Centre National de la recherche Scientifique), UMR8104, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
22
|
Beninati C, Famà A, Teti G. How BspC from Streptococcus agalactiae Interacts with Host Vimentin during Meningitis. Trends Microbiol 2019; 27:727-728. [PMID: 31324435 DOI: 10.1016/j.tim.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022]
Abstract
Streptococcus agalactiae meningitis is a frequent neonatal disease associated with high mortality and permanent neurological damage. Deng et al. (PLoS Pathog., 2019) now show that interactions between the bacterial protein BspC and host cell vimentin participate in the process of invasion of the meninges by this bacterial pathogen.
Collapse
Affiliation(s)
- Concetta Beninati
- Metchnikoff Laboratory, Department of Pathology, University of Messina, 98124 Messina, Italy
| | - Agata Famà
- Charybdis Vaccines S.r.l., 98124 Messina, Italy
| | | |
Collapse
|
23
|
Armistead B, Oler E, Adams Waldorf K, Rajagopal L. The Double Life of Group B Streptococcus: Asymptomatic Colonizer and Potent Pathogen. J Mol Biol 2019; 431:2914-2931. [PMID: 30711542 DOI: 10.1016/j.jmb.2019.01.035] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 12/22/2022]
Abstract
Group B streptococcus (GBS) is a β-hemolytic gram-positive bacterium that colonizes the lower genital tract of approximately 18% of women globally as an asymptomatic member of the gastrointestinal and/or vaginal flora. If established in other host niches, however, GBS is highly pathogenic. During pregnancy, ascending GBS infection from the vagina to the intrauterine space is associated with preterm birth, stillbirth, and fetal injury. In addition, vertical transmission of GBS during or after birth results in life-threatening neonatal infections, including pneumonia, sepsis, and meningitis. Although the mechanisms by which GBS traffics from the lower genital tract to vulnerable host niches are not well understood, recent advances have revealed that many of the same bacterial factors that promote asymptomatic vaginal carriage also facilitate dissemination and virulence. Furthermore, highly pathogenic GBS strains have acquired unique factors that enhance survival in invasive niches. Several host factors also exist that either subdue GBS upon vaginal colonization or alternatively permit invasive infection. This review summarizes the GBS and host factors involved in GBS's state as both an asymptomatic colonizer and an invasive pathogen. Gaining a better understanding of these mechanisms is key to overcoming the challenges associated with vaccine development and identification of novel strategies to mitigate GBS virulence.
Collapse
Affiliation(s)
- Blair Armistead
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA
| | - Elizabeth Oler
- Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA
| | - Kristina Adams Waldorf
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Department of Obstetrics and Gynecology, University of Washington School of Medicine, Seattle 98195, WA, USA; Center for Innate Immunity and Immune Disease, University of Washington, Seattle 98109, WA, USA; Sahlgrenska Academy, Gothenburg University, Gothenburg 413 90, Sweden
| | - Lakshmi Rajagopal
- Department of Global Health, University of Washington, Seattle 98195, WA, USA; Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle 98101, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle 98195, WA, USA.
| |
Collapse
|
24
|
De Gaetano GV, Pietrocola G, Romeo L, Galbo R, Lentini G, Giardina M, Biondo C, Midiri A, Mancuso G, Venza M, Venza I, Firon A, Trieu-Cuot P, Teti G, Speziale P, Beninati C. The Streptococcus agalactiae cell wall-anchored protein PbsP mediates adhesion to and invasion of epithelial cells by exploiting the host vitronectin/α v integrin axis. Mol Microbiol 2018; 110:82-94. [PMID: 30030946 DOI: 10.1111/mmi.14084] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2018] [Indexed: 01/02/2023]
Abstract
Binding of microbial pathogens to host vitronectin (Vtn) is a common theme in the pathogenesis of invasive infections. In this study, we characterized the role of Vtn in the invasion of mucosal epithelial cells by Streptococcus agalactiae (i.e. group B streptococcus or GBS), a frequent human pathogen. Moreover, we identified PbsP, a previously described plasminogen-binding protein of GBS, as a dual adhesin that can also interact with human Vtn through its streptococcal surface repeat (SSURE) domains. Deletion of the pbsP gene decreases both bacterial adhesion to Vtn-coated inert surfaces and the ability of GBS to interact with epithelial cells. Bacterial adherence to and invasion of epithelial cells were either inhibited or enhanced by cell pretreatment with, respectively, anti-Vtn antibodies or Vtn, confirming the role of Vtn as a GBS ligand on host cells. Finally, antibodies directed against the integrin αv subunit inhibited Vtn-dependent cell invasion by GBS. Collectively, these results indicate that Vtn acts as a bridge between the SSURE domains of PbsP on the GBS surface and host integrins to promote bacterial invasion of epithelial cells. Therefore, inhibition of interactions between PbsP and extracellular matrix components could represent a viable strategy to prevent colonization and invasive disease by GBS.
Collapse
Affiliation(s)
- Giuseppe Valerio De Gaetano
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy
| | - Letizia Romeo
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | - Roberta Galbo
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Germana Lentini
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Miriam Giardina
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Carmelo Biondo
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Angelina Midiri
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Mario Venza
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Isabella Venza
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Arnaud Firon
- Institut Pasteur, Unite de Biologie des Bacteriés Pathogènes a Gram positif, CNRS ERL6002, 75015, Paris, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unite de Biologie des Bacteriés Pathogènes a Gram positif, CNRS ERL6002, 75015, Paris, France
| | - Giuseppe Teti
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy
| | - Pietro Speziale
- Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| | - Concetta Beninati
- Metchnikoff Laboratory, Departments of Human Pathology, Medicine, Biomedical Sciences and Chemical Sciences, University of Messina, Messina, Italy.,Scylla Biotech Srl, Messina, Italy
| |
Collapse
|
25
|
The plasminogen binding protein PbsP is required for brain invasion by hypervirulent CC17 Group B streptococci. Sci Rep 2018; 8:14322. [PMID: 30254272 PMCID: PMC6156580 DOI: 10.1038/s41598-018-32774-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 08/30/2018] [Indexed: 01/09/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus or GBS) is a frequent cause of serious disease in newborns and adults. Epidemiological evidence indicates a strong association between GBS strains belonging to the hypervirulent CC17 clonal complex and the occurrence of meningitis in neonates. We investigate here the role of PbsP, a cell wall plasminogen binding protein, in colonization of the central nervous system by CC17 GBS. Deletion of pbsP selectively impaired the ability of the CC17 strain BM110 to colonize the mouse brain after intravenous challenge, despite its unchanged capacity to persist at high levels in the blood and to invade the kidneys. Moreover, immunization with a recombinant form of PbsP considerably reduced brain infection and lethality. In vitro, pbsP deletion markedly decreased plasmin-dependent transmigration of BM110 through brain microvascular endothelial cells. Although PbsP was modestly expressed in bacteria grown under standard laboratory conditions, pbsP expression was markedly upregulated during in vivo infection or upon contact with cultured brain endothelial cells. Collectively, our studies indicate that PbsP is a highly conserved Plg binding adhesin, which is functionally important for invasion of the central nervous system by the hypervirulent CC17 GBS. Moreover, this antigen is a promising candidate for inclusion in a universal GBS vaccine.
Collapse
|
26
|
Pietrocola G, Arciola CR, Rindi S, Montanaro L, Speziale P. Streptococcus agalactiae Non-Pilus, Cell Wall-Anchored Proteins: Involvement in Colonization and Pathogenesis and Potential as Vaccine Candidates. Front Immunol 2018; 9:602. [PMID: 29686667 PMCID: PMC5900788 DOI: 10.3389/fimmu.2018.00602] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/09/2018] [Indexed: 11/13/2022] Open
Abstract
Group B Streptococcus (GBS) remains an important etiological agent of several infectious diseases including neonatal septicemia, pneumonia, meningitis, and orthopedic device infections. This pathogenicity is due to a variety of virulence factors expressed by Streptococcus agalactiae. Single virulence factors are not sufficient to provoke a streptococcal infection, which is instead promoted by the coordinated activity of several pathogenicity factors. Such determinants, mostly cell wall-associated and secreted proteins, include adhesins that mediate binding of the pathogen to host extracellular matrix/plasma ligands and cell surfaces, proteins that cooperate in the invasion of and survival within host cells and factors that neutralize phagocytosis and/or modulate the immune response. The genome-based approaches and bioinformatics tools and the extensive use of biophysical and biochemical methods and animal model studies have provided a great wealth of information on the molecular structure and function of these virulence factors. In fact, a number of new GBS surface-exposed or secreted proteins have been identified (GBS immunogenic bacterial adhesion protein, leucine-rich repeat of GBS, serine-rich repeat proteins), the three-dimensional structures of known streptococcal proteins (αC protein, C5a peptidase) have been solved and an understanding of the pathogenetic role of "old" and new determinants has been better defined in recent years. Herein, we provide an update of our current understanding of the major surface cell wall-anchored proteins from GBS, with emphasis on their biochemical and structural properties and the pathogenetic roles they may have in the onset and progression of host infection. We also focus on the antigenic profile of these compounds and discuss them as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Lucio Montanaro
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, Bologna, Italy.,Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Department of Industrial and Information Engineering, University of Pavia, Pavia, Italy
| |
Collapse
|
27
|
Oliveira JSSD, Santos GDS, Moraes JA, Saliba AM, Barja-Fidalgo TC, Mattos-Guaraldi AL, Nagao PE. Reactive oxygen species generation mediated by NADPH oxidase and PI3K/Akt pathways contribute to invasion of Streptococcus agalactiae in human endothelial cells. Mem Inst Oswaldo Cruz 2018; 113:e140421. [PMID: 29641644 PMCID: PMC5887998 DOI: 10.1590/0074-02760170421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 03/05/2018] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae can causes sepsis, pneumonia, and meningitis in neonates, the elderly, and immunocompromised patients. Although the virulence properties of S. agalactiae have been partially elucidated, the molecular mechanisms related to reactive oxygen species (ROS) generation in infected human endothelial cells need further investigation. OBJECTIVES This study aimed to evaluate the influence of oxidative stress in human umbilical vein endothelial cells (HUVECs) during S. agalactiae infection. METHODS ROS production during S. agalactiae-HUVEC infection was detected using the probe CM-H2DCFDA. Microfilaments labelled with phalloidin-FITC and p47phox-Alexa 546 conjugated were analysed by immunofluorescence. mRNA levels of p47phox (NADPH oxidase subunit) were assessed using Real Time qRT-PCR. The adherence and intracellular viability of S. agalactiae in HUVECs with or without pre-treatment of DPI, apocynin (NADPH oxidase inhibitors), and LY294002 (PI3K inhibitor) were evaluated by penicillin/gentamicin exclusion. Phosphorylation of p47phox and Akt activation by S. agalactiae were evaluated by immunoblotting analysis. FINDINGS Data showed increased ROS production 15 min after HUVEC infection. Real-Time qRT-PCR and western blotting performed in HUVEC infected with S. agalactiae detected alterations in mRNA levels and activation of p47phox. Pre-treatment of endothelial cells with NADPH oxidase (DPI and apocynin) and PI3K/Akt pathway (LY294002) inhibitors reduced ROS production, bacterial intracellular viability, and generation of actin stress fibres in HUVECs infected with S. agalactiae. CONCLUSIONS ROS generation via the NADPH oxidase pathway contributes to invasion of S. agalactiae in human endothelial cells accompanied by cytoskeletal reorganisation through the PI3K/Akt pathway, which provides novel evidence for the involvement of oxidative stress in S. agalactiae pathogenesis.
Collapse
Affiliation(s)
- Jessica Silva Santos de Oliveira
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Gabriela da Silva Santos
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - João Alfredo Moraes
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Alessandra Mattos Saliba
- Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | - Thereza Christina Barja-Fidalgo
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Prescilla Emy Nagao
- Departamento de Biologia Celular, Instituto de Biologia Roberto Alcântara Gomes, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
28
|
A Vaginal Tract Signal Detected by the Group B Streptococcus SaeRS System Elicits Transcriptomic Changes and Enhances Murine Colonization. Infect Immun 2018; 86:IAI.00762-17. [PMID: 29378799 DOI: 10.1128/iai.00762-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/19/2018] [Indexed: 01/08/2023] Open
Abstract
Streptococcus agalactiae (group B streptococcus [GBS]) can colonize the human vaginal tract, leading to both superficial and serious infections in adults and neonates. To study bacterial colonization of the reproductive tract in a mammalian system, we employed a murine vaginal carriage model. Using transcriptome sequencing (RNA-Seq), the transcriptome of GBS growing in vivo during vaginal carriage was determined. Over one-quarter of the genes in GBS were found to be differentially regulated during in vivo colonization compared to laboratory cultures. A two-component system (TCS) homologous to the staphylococcal virulence regulator SaeRS was identified as being upregulated in vivo One of the SaeRS targets, pbsP, a proposed GBS vaccine candidate, is shown to be important for colonization of the vaginal tract. A component of vaginal lavage fluid acts as a signal to turn on pbsP expression via SaeRS. These data demonstrate the ability to quantify RNA expression directly from the murine vaginal tract and identify novel genes involved in vaginal colonization by GBS. They also provide more information about the regulation of an important virulence and colonization factor of GBS, pbsP, by the TCS SaeRS.
Collapse
|
29
|
The Adc/Lmb System Mediates Zinc Acquisition in Streptococcus agalactiae and Contributes to Bacterial Growth and Survival. J Bacteriol 2016; 198:3265-3277. [PMID: 27672194 DOI: 10.1128/jb.00614-16] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 09/16/2016] [Indexed: 12/14/2022] Open
Abstract
The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids.
Collapse
|
30
|
Pietrocola G, Nobile G, Gianotti V, Zapotoczna M, Foster TJ, Geoghegan JA, Speziale P. Molecular Interactions of Human Plasminogen with Fibronectin-binding Protein B (FnBPB), a Fibrinogen/Fibronectin-binding Protein from Staphylococcus aureus. J Biol Chem 2016; 291:18148-62. [PMID: 27387503 DOI: 10.1074/jbc.m116.731125] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is a commensal bacterium that has the ability to cause superficial and deep-seated infections. Like several other invasive pathogens, S. aureus can capture plasminogen from the human host where it can be converted to plasmin by host plasminogen activators or by endogenously expressed staphylokinase. This study demonstrates that sortase-anchored cell wall-associated proteins are responsible for capturing the bulk of bound plasminogen. Two cell wall-associated proteins, the fibrinogen- and fibronectin-binding proteins A and B, were found to bind plasminogen, and one of them, FnBPB, was studied in detail. Plasminogen captured on the surface of S. aureus- or Lactococcus lactis-expressing FnBPB could be activated to the potent serine protease plasmin by staphylokinase and tissue plasminogen activator. Plasminogen bound to recombinant FnBPB with a KD of 0.532 μm as determined by surface plasmon resonance. Plasminogen binding did not to occur by the same mechanism through which FnBPB binds to fibrinogen. Indeed, FnBPB could bind both ligands simultaneously indicating that their binding sites do not overlap. The N3 subdomain of FnBPB contains the full plasminogen-binding site, and this includes, at least in part, two conserved patches of surface-located lysine residues that were recognized by kringle 4 of the host protein.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Giulia Nobile
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Valentina Gianotti
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| | - Marta Zapotoczna
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Timothy J Foster
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Joan A Geoghegan
- the Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Pietro Speziale
- From the Department of Molecular Medicine, Unit of Biochemistry, University of Pavia, 27100 Pavia, Italy and
| |
Collapse
|