1
|
Moutacharrif S, Haichar FEZ, Meyer S, Ribot C, Reverchon S, Nasser W, Hommais F. The Power Duo: How the Interplay Between Nucleoid-Associated Proteins and Small Noncoding RNAs Orchestrates the Cellular Regulatory Symphony. Mol Microbiol 2025. [PMID: 40186492 DOI: 10.1111/mmi.15359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 03/06/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
In bacteria, the regulation of gene expression involves complex networks that integrate both transcriptional and posttranscriptional mechanisms. At the transcriptional level, nucleoid-associated proteins (NAPs) such as H-NS, HU, Lrp, IHF, Fis and Hfq are key players as they not only compact bacterial DNA but also regulate transcription. Small noncoding RNAs (sRNAs), on the other hand, are known to affect bacterial gene expression posttranscriptionally by base pairing with the target mRNA, but they can also be involved in nucleoid condensation. Interestingly, certain NAPs also influence the function of sRNAs and, conversely, sRNAs themselves can modulate the activity of NAPs, creating a complex bidirectional regulatory network. Here, we summarise the current knowledge of the major NAPs, focusing on the specific role of Hfq. Examples of the regulation of NAPs by sRNAs, the regulation of sRNAs by NAPs and the role of sRNAs in nucleoid structuring are also discussed. This review focuses on the cross-talk between NAPs and sRNAs in an attempt to understand how this interplay works to orchestrate the functioning of the cell.
Collapse
Affiliation(s)
- Sara Moutacharrif
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Feth El Zahar Haichar
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sam Meyer
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Cecile Ribot
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Sylvie Reverchon
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - William Nasser
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Florence Hommais
- INSA Lyon, CNRS UMR5240, Laboratoire de Microbiologie, Adaptation et Pathogénie, Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
2
|
Zhou N, Yu J, Liu X, Li C, Tang H, Lyu L, Wu C, Chen Y, Zhang J, Ni J, Wang D, Tao J, Wu W, Zhang Y, Feng Y, Chao Y, Lu J, He P, Yao YF. Within-host evolution of a transcriptional regulator contributes to the establishment of chronic Pseudomonas aeruginosa infection. Cell Rep 2025; 44:115214. [PMID: 39826124 DOI: 10.1016/j.celrep.2024.115214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/18/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025] Open
Abstract
As an opportunistic pathogen, Pseudomonas aeruginosa can cause both acute and chronic infections that are notoriously difficult to treat. However, the mechanism underlying acute or chronic P. aeruginosa infection remains unclear. Here, we identify a mutation in a transcriptional regulator PA5438 (named GavR). This mutation causes a 3-amino-acid absence in GavR and is strongly associated with chronic P. aeruginosa infection. Mechanistically, the deletion in GavR directly downregulates the transcription of the aceEF operon and leads to an accumulation of intracellular pyruvate, which can promote bacterial survival in neutrophils. Notably, P. aeruginosa with 9-bp-deleted or full-length gavR composes a mixed population in most patients with chronic or acute infections. Overall, the mutation in gavR attenuates P. aeruginosa virulence and enhances innate immune evasion by reprogramming pyruvate metabolism and the glyoxylate cycle. This work reveals a molecular mechanism of transition control from acute to chronic infection in P. aeruginosa.
Collapse
Affiliation(s)
- Ning Zhou
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jingchen Yu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xujiao Liu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengxi Li
- Anhui Key Laboratory of Infection and Immunity, Department of Microbiology and Parasitology, Bengbu Medical College, Bengbu, Anhui 233030, China
| | - Huang Tang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lin Lyu
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chengwei Wu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yana Chen
- Department of Pediatrics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, Anhui 230001, China
| | - Jian Zhang
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinjing Ni
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Danni Wang
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jing Tao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenjuan Wu
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200123, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yun Feng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yanjie Chao
- Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Lu
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Ping He
- Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Yu-Feng Yao
- Laboratory of Bacterial Pathogenesis, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Microbiology and Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases (20dz2261100), Shanghai 200025, China.
| |
Collapse
|
3
|
Zhu Y, Luo B, Mou X, Song Y, Zhou Y, Luo Y, Sun B, Luo Y, Tang H, Su Z, Bao R. Pseudomonas aeruginosa regulator PvrA binds simultaneously to multiple pseudo-palindromic sites for efficient transcription activation. SCIENCE CHINA. LIFE SCIENCES 2024; 67:900-912. [PMID: 37938507 DOI: 10.1007/s11427-022-2363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 05/10/2023] [Indexed: 11/09/2023]
Abstract
Tetracycline repressor (TetR) family regulators (TFRs) are the largest group of DNA-binding transcription factors and are widely distributed in bacteria and archaea. TFRs play vital roles in controlling the expression of various genes and regulating diverse physiological processes. Recently, a TFR protein Pseudomonas virulence regulator A (PvrA), was identified from Pseudomonas aeruginosa as the transcriptional activator of genes involved in fatty acid utilization and bacterial virulence. Here, we show that PvrA can simultaneously bind to multiple pseudo-palindromic sites and upregulate the expression levels of target genes. Cryo-electron microscopy (cryo-EM) analysis indicates the simultaneous DNA recognition mechanism of PvrA and suggests that the bound DNA fragments consist of a distorted B-DNA double helix. The crystal structure and functional analysis of PvrA reveal a hinge region that secures the correct domain motion for recognition of the promiscuous promoter. Additionally, our results showed that mutations disrupting the regulatory hinge region have differential effects on biofilm formation and pyocyanin biosynthesis, resulting in attenuated bacterial virulence. Collectively, these findings will improve the understanding of the relationship between the structure and function of the TetR family and provide new insights into the mechanism of regulation of P. aeruginosa virulence.
Collapse
Affiliation(s)
- Yibo Zhu
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Accurate Biotechnology (Hunan) Co., Ltd, Changsha, 410006, China
| | - Bingnan Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xingyu Mou
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yonghong Zhou
- Key Laboratory of Biodiversity and Environment on the Qinghai-Tibetan Plateau, Ministry of Education, School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Yongbo Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Bo Sun
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Youfu Luo
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Tang
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Zhaoming Su
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Department of Geriatrics and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Rui Bao
- Center of Infectious Diseases, Division of Infectious Diseases in State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Shi Q, Zeng S, Yu R, Li M, Shen C, Zhang X, Zhao C, Zeng J, Huang B, Pu J, Chen C. The small RNA PrrH aggravates Pseudomonas aeruginosa-induced acute lung injury by regulating the type III secretion system activator ExsA. Microbiol Spectr 2024; 12:e0062623. [PMID: 38289930 PMCID: PMC10913731 DOI: 10.1128/spectrum.00626-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 01/09/2024] [Indexed: 02/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes acute and chronic infections in immunocompromised individuals. Small regulatory RNAs (sRNAs) regulate multiple bacterial adaptations to environmental changes, especially virulence. Our previous study showed that sRNA PrrH negatively regulates the expression of a number of virulence factors, such as pyocyanin, rhamnolipid, biofilm, and elastase in the P. aeruginosa strain PAO1. However, previous studies have shown that the prrH-deficient mutant attenuates virulence in an acute murine lung infection model. All ΔprrH-infected mice survived the entire 28-day course of the experiment, whereas all mice inoculated with the wild-type or the complemented mutant succumbed to lung infection within 4 days of injection, but the specific mechanism is unclear. Herein, we explored how PrrH mediates severe lung injury by regulating the expression of virulence factors. In vivo mouse and in vitro cellular assays demonstrated that PrrH enhanced the pathogenicity of PAO1, causing severe lung injury. Mechanistically, PrrH binds to the coding sequence region of the mRNA of exsA, which encodes the type III secretion system master regulatory protein. We further demonstrated that PrrH mediates a severe inflammatory response and exacerbates the apoptosis of A549 cells. Overall, our results revealed that PrrH positively regulates ExsA, enhances the pathogenicity of P. aeruginosa, and causes severe lung injury. IMPORTANCE Pseudomonas aeruginosa is a Gram-negative bacterium and the leading cause of nosocomial pneumonia. The pathogenicity of P. aeruginosa is due to the secretion of many virulence factors. Small regulatory RNAs (sRNAs) regulate various bacterial adaptations, especially virulence. Therefore, understanding the mechanism by which sRNAs regulate virulence is necessary for understanding the pathogenicity of P. aeruginosa and the treatment of the related disease. In this study, we demonstrated that PrrH enhances the pathogenicity of P. aeruginosa by binding to the coding sequence regions of the ExsA, the master regulatory protein of type III secretion system, causing severe lung injury and exacerbating the inflammatory response and apoptosis. These findings revealed that PrrH is a crucial molecule that positively regulates ExsA. Type III-positive strains are often associated with a high mortality rate in P. aeruginosa infections in clinical practice. Therefore, this discovery may provide a new target for treating P. aeruginosa infections, especially type III-positive strains.
Collapse
Affiliation(s)
- Qixuan Shi
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shenghe Zeng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruiqi Yu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mo Li
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cong Shen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuan Zhang
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chanjing Zhao
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianming Zeng
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bin Huang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jieying Pu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cha Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
5
|
Dendooven T, Sonnleitner E, Bläsi U, Luisi BF. Translational regulation by Hfq-Crc assemblies emerges from polymorphic ribonucleoprotein folding. EMBO J 2023; 42:e111129. [PMID: 36504222 PMCID: PMC9890229 DOI: 10.15252/embj.2022111129] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/25/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
The widely occurring bacterial RNA chaperone Hfq is a key factor in the post-transcriptional control of hundreds of genes in Pseudomonas aeruginosa. How this broadly acting protein can contribute to the regulatory requirements of many different genes remains puzzling. Here, we describe cryo-EM structures of higher order assemblies formed by Hfq and its partner protein Crc on control regions of different P. aeruginosa target mRNAs. Our results show that these assemblies have mRNA-specific quaternary architectures resulting from the combination of multivalent protein-protein interfaces and recognition of patterns in the RNA sequence. The structural polymorphism of these ribonucleoprotein assemblies enables selective translational repression of many different target mRNAs. This system elucidates how highly complex regulatory pathways can evolve with a minimal economy of proteinogenic components in combination with RNA sequence and fold.
Collapse
Affiliation(s)
- Tom Dendooven
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max Perutz LabsUniversity of ViennaViennaAustria
| | - Ben F Luisi
- Department of BiochemistryUniversity of CambridgeCambridgeUK
| |
Collapse
|
6
|
Liu P, Yue C, Liu L, Gao C, Lyu Y, Deng S, Tian H, Jia X. The function of small RNA in Pseudomonas aeruginosa. PeerJ 2022; 10:e13738. [PMID: 35891650 PMCID: PMC9308961 DOI: 10.7717/peerj.13738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/25/2022] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa, the main conditional pathogen causing nosocomial infection, is a gram-negative bacterium with the largest genome among the known bacteria. The main reasons why Pseudomonas aeruginosa is prone to drug-resistant strains in clinic are: the drug-resistant genes in its genome and the drug resistance easily induced by single antibiotic treatment. With the development of high-throughput sequencing technology and bioinformatics, the functions of various small RNAs (sRNA) in Pseudomonas aeruginosa are being revealed. Different sRNAs regulate gene expression by binding to protein or mRNA to play an important role in the complex regulatory network. In this article, first, the importance and biological functions of different sRNAs in Pseudomonas aeruginosa are explored, and then the evidence and possibilities that sRNAs served as drug therapeutic targets are discussed, which may introduce new directions to develop novel disease treatment strategies.
Collapse
Affiliation(s)
- Pei Liu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Lihua Liu
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Can Gao
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Yuhong Lyu
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Shanshan Deng
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
| | - Hongying Tian
- Yan’an University, Key Laboratory of Microbial Drugs Innovation and Transformation, Yan’an, Shaanxi, China
| | - Xu Jia
- Chengdu Medical College, Non-coding RNA and Drug Discovery Key Laboratory of Sichuan Province, Chengdu, Sichuan, China,School of Basic Medical Science, Chengdu Medical College, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Trouillon J, Han K, Attrée I, Lory S. The core and accessory Hfq interactomes across Pseudomonas aeruginosa lineages. Nat Commun 2022; 13:1258. [PMID: 35273147 PMCID: PMC8913705 DOI: 10.1038/s41467-022-28849-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/14/2022] [Indexed: 01/16/2023] Open
Abstract
The major RNA-binding protein Hfq interacts with mRNAs, either alone or together with regulatory small noncoding RNAs (sRNAs), affecting mRNA translation and degradation in bacteria. However, studies tend to focus on single reference strains and assume that the findings may apply to the entire species, despite the important intra-species genetic diversity known to exist. Here, we use RIP-seq to identify Hfq-interacting RNAs in three strains representing the major phylogenetic lineages of Pseudomonas aeruginosa. We find that most interactions are in fact not conserved among the different strains. We identify growth phase-specific and strain-specific Hfq targets, including previously undescribed sRNAs. Strain-specific interactions are due to different accessory gene sets, RNA abundances, or potential context- or sequence- dependent regulatory mechanisms. The accessory Hfq interactome includes most mRNAs encoding Type III Secretion System (T3SS) components and secreted toxins in two strains, as well as a cluster of CRISPR guide RNAs in one strain. Conserved Hfq targets include the global virulence regulator Vfr and metabolic pathways involved in the transition from fast to slow growth. Furthermore, we use rGRIL-seq to show that RhlS, a quorum sensing sRNA, activates Vfr translation, thus revealing a link between quorum sensing and virulence regulation. Overall, our work highlights the important intra-species diversity in post-transcriptional regulatory networks in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, 38044, Grenoble, France
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Pusic P, Sonnleitner E, Bläsi U. Specific and Global RNA Regulators in Pseudomonas aeruginosa. Int J Mol Sci 2021; 22:8632. [PMID: 34445336 PMCID: PMC8395346 DOI: 10.3390/ijms22168632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/05/2021] [Accepted: 08/08/2021] [Indexed: 01/20/2023] Open
Abstract
Pseudomonas aeruginosa (Pae) is an opportunistic pathogen showing a high intrinsic resistance to a wide variety of antibiotics. It causes nosocomial infections that are particularly detrimental to immunocompromised individuals and to patients suffering from cystic fibrosis. We provide a snapshot on regulatory RNAs of Pae that impact on metabolism, pathogenicity and antibiotic susceptibility. Different experimental approaches such as in silico predictions, co-purification with the RNA chaperone Hfq as well as high-throughput RNA sequencing identified several hundreds of regulatory RNA candidates in Pae. Notwithstanding, using in vitro and in vivo assays, the function of only a few has been revealed. Here, we focus on well-characterized small base-pairing RNAs, regulating specific target genes as well as on larger protein-binding RNAs that sequester and thereby modulate the activity of translational repressors. As the latter impact large gene networks governing metabolism, acute or chronic infections, these protein-binding RNAs in conjunction with their cognate proteins are regarded as global post-transcriptional regulators.
Collapse
Affiliation(s)
- Petra Pusic
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Udo Bläsi
- Max Perutz Labs, Department of Microbiology, Immunobiology and Genetics, Centre of Molecular Biology, Vienna Biocenter (VBC), University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
9
|
Hou S, Zhang J, Ma X, Hong Q, Fang L, Zheng G, Huang J, Gao Y, Xu Q, Zhuang X, Song X. Role of rgsA in Oxidative Stress Resistance in Pseudomonas aeruginosa. Curr Microbiol 2021; 78:3133-3141. [PMID: 34185129 DOI: 10.1007/s00284-021-02580-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/13/2021] [Indexed: 10/21/2022]
Abstract
Pseudomonas aeruginosa is a common opportunistic pathogen that causes infections in vulnerable patients including those with metabolic disorders, hematologic diseases, and malignancies, and in those who have undergone surgery. In addition, P. aeruginosa exhibits high intrinsic resistance to numerous antibiotics and tends to form biofilms rendering it even more refractory to treatment. Among the mechanisms used by P. aeruginosa to adapt to environmental stresses are those involving small regulatory RNAs (sRNAs), which are 40-500 nucleotides long and are ubiquitous in bacteria. sRNAs play important regulatory roles in various vital processes in diverse bacteria, with their quantity and diversity of regulatory functions exceeding those of proteins. In this study, we show that deletion of the sRNA, rgsA, decreased the growth rate of P. aeruginosa. Furthermore, ΔrgsA P. aeruginosa exhibited decreased ability to resist the stress induced by exposure to different concentrations and durations of peroxides in both planktonic and biofilm growth modes compared with the wild-type strain. These results highlight the role of rgsA in the defense of P. aeruginosa against oxidative stress.
Collapse
Affiliation(s)
- Shuyi Hou
- Department of Clinical Laboratory, Xiang'an Hospital of Xiamen University, 2000 Xiangan Dong Road, Xiamen, 361000, Fujian, China
| | - Jiaqin Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China. .,Xiamen Key Laboratory of Genetic Testing, 55 Zhenhai Road, Xiamen, 361000, Fujian, China.
| | - Xiaobo Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Qiang Hong
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Lili Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Gangsen Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Jiaming Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Yingchun Gao
- Department of Clinical Laboratory, The First People's Hospital of Xiaoshan District, 199 Shixin Nan Road, Hangzhou, 311200, Zhejiang, China
| | - Qiaoli Xu
- Department of Clinical Laboratory, Zhangzhou Affiliated Hospital of Fujian Medical University, 59 Shengli Road, Zhangzhou, 363000, Fujian, China
| | - Xinguo Zhuang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xiamen University, 55 Zhenhai Road, Xiamen, 361000, Fujian, China
| | - Xiuyu Song
- Xiamen Blood Centre, 121 Hubin Nan Road, Xiamen, 361000, Fujian, China.
| |
Collapse
|
10
|
YbeY controls the type III and type VI secretion systems and biofilm formation through RetS in Pseudomonas aeruginosa. Appl Environ Microbiol 2021; 87:AEM.02171-20. [PMID: 33310711 PMCID: PMC8090875 DOI: 10.1128/aem.02171-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YbeY is a highly conserved RNase in bacteria and plays essential roles in the maturation of 16S rRNA, regulation of small RNAs (sRNAs) and bacterial responses to environmental stresses. Previously, we verified the role of YbeY in rRNA processing and ribosome maturation in Pseudomonas aeruginosa and demonstrated YbeY-mediated regulation of rpoS through a sRNA ReaL. In this study, we demonstrate that mutation of the ybeY gene results in upregulation of the type III secretion system (T3SS) genes as well as downregulation of the type VI secretion system (T6SS) genes and reduction of biofilm formation. By examining the expression of the known sRNAs in P. aeruginosa, we found that mutation of the ybeY gene leads to downregulation of the small RNAs RsmY/Z that control the T3SS, the T6SS and biofilm formation. Further studies revealed that the reduced levels of RsmY/Z are due to upregulation of retS Taken together, our results reveal the pleiotropic functions of YbeY and provide detailed mechanisms of YbeY-mediated regulation in P. aeruginosa IMPORTANCE Pseudomonas aeruginosa causes a variety of acute and chronic infections in humans. The type III secretion system (T3SS) plays an important role in acute infection and the type VI secretion system (T6SS) and biofilm formation are associated with chronic infections. Understanding of the mechanisms that control the virulence determinants involved in acute and chronic infections will provide clues for the development of effective treatment strategies. Our results reveal a novel RNase mediated regulation on the T3SS, T6SS and biofilm formation in P. aeruginosa.
Collapse
|
11
|
Molina-Mora JA, Chinchilla-Montero D, García-Batán R, García F. Genomic context of the two integrons of ST-111 Pseudomonas aeruginosa AG1: A VIM-2-carrying old-acquaintance and a novel IMP-18-carrying integron. INFECTION GENETICS AND EVOLUTION 2021; 89:104740. [PMID: 33516973 DOI: 10.1016/j.meegid.2021.104740] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/28/2020] [Accepted: 01/23/2021] [Indexed: 12/24/2022]
Abstract
Pseudomonas aeruginosa is an opportunist and versatile organism responsible for infections mainly in immunocompromised hosts. This pathogen has high intrinsic resistance to most antimicrobials. P. aeruginosa AG1 (PaeAG1) is a Costa Rican high-risk ST-111 strain with resistance to multiple antibiotics, including carbapenems, due to the activity of VIM-2 and IMP-18 metallo-β-lactamases (MBLs). These genes are harbored in two class 1 integrons located inone out of the 57 PaeAG1 genomic islands. However, the genomic context associated to these determinants in PaeAG1 and other P. aeruginosa strains is unclear. Thus, we first assessed the transcriptional activity of VIM-2 and IMP-18 genes when exposed to imipenem (a carbapenem) by RT-qPCR. To select related genomes to PaeAG1, we implemented a pan-genome analysis to define and up-date the phylogenetic relationship among complete P. aeruginosa genomes. We also studied the PaeAG1 genomic islands content in the related strains and finally we described the architecture and possible evolutionary steps of the genomic regions around the VIM-2- and IMP-18-carrying integrons. Expression of VIM-2 and IMP-18 genes was demonstrated to be induced after imipenem exposure. In a subsequent comparative genomics analysis with 211 strains, the P. aeruginosa pan-genome revealed that complete genome sequences are able to separate clones by MLST profile, including a clear ST-111 cluster with PaeAG1. The PaeAG1 genomic islands were found to define a diverse presence/absence pattern among related genomes. Finally, landscape reconstruction of genomic regions showed that VIM-2-carrying integron (In59-like) is an old-acquaintance element harbored in the same known region found in other two ST-111 strains. Also, PaeAG1 has an exclusive genomic region containing a novel IMP-18-carrying integron (registered as In1666), with an arrangement never reported before. Altogether, we provide new insights about the genomic determinants associated with the resistance to carbapenems in this high-risk P. aeruginosa using comparative genomics.
Collapse
Affiliation(s)
| | | | - Raquel García-Batán
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| | - Fernando García
- Research Center in Tropical Diseases (CIET), University of Costa Rica, Costa Rica.
| |
Collapse
|
12
|
Molina-Mora JA, García F. Molecular Determinants of Antibiotic Resistance in the Costa Rican Pseudomonas aeruginosa AG1 by a Multi-omics Approach: A Review of 10 Years of Study. PHENOMICS 2021; 1:129-142. [PMID: 35233560 PMCID: PMC8210740 DOI: 10.1007/s43657-021-00016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 01/13/2023]
Abstract
Pseudomonas aeruginosa AG1 (PaeAG1) is a Costa Rican strain that was isolated in 2010 in a major Hospital. This strain has resistance to multiple antibiotics such as β-lactams (including carbapenems), aminoglycosides, and fluoroquinolones. PaeAG1 is considered critical (Priority 1) due to its resistance to carbapenems, and it was the first report of a P. aeruginosa isolate carrying both VIM-2 and IMP-18 genes encoding for metallo-β-lactamases (MBL) enzymes (both with carbapenemase activity). Owing to these traits, we have studied this model for 10 years using diverse approaches including multi-omics. In this review, we summarize the main points of the different steps that we have studied in PaeAG1: preliminary analyses of this strain at the genomic and phenomic levels revealed that this microorganism has particular features of antibiotic resistance. In the multi-omics approach, the genome assembly was the initial step to identify the genomic determinants of this strain, including virulence factors, antibiotic resistance genes, as well as a complex accessory genome. Second, a comparative genomic approach was implemented to define and update the phylogenetic relationship among complete P. aeruginosa genomes, the genomic island content in other strains, and the architecture of the two MBL-carrying integrons. Third, the proteomic profile of PaeAG1 was studied after exposure to antibiotics using 2-dimensional gel electrophoresis (2D-GE). Fourth, to study the central response to multiple perturbations in P. aeruginosa, i.e., the core perturbome, a machine learning approach was used. The analysis revealed biological functions and determinants that are shared by different disturbances. Finally, to evaluate the effects of ciprofloxacin (CIP) on PaeAG1, a growth curve comparison, differential expression analysis (RNA-Seq), and network analysis were performed. Using the results of the core perturbome (pathways that also were found in this perturbation with CIP), it was possible to identify the “exclusive” response and determinants of PaeAG1 after exposure to CIP. Altogether, after a decade of study using a multi-omics approach (at genomics, comparative genomics, perturbomics, transcriptomics, proteomics, and phenomics levels), we have provided new insights about the genomic and transcriptomic determinants associated with antibiotic resistance in PaeAG1. These results not only partially explain the high-risk condition of this strain that enables it to conquer nosocomial environments and its multi-resistance profile, but also this information may eventually be used as part of the strategies to fight this pathogen.
Collapse
Affiliation(s)
- Jose Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Fernando García
- Centro de Investigación en Enfermedades Tropicales (CIET) & Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
13
|
Zhang Y, Zhang B, Wu X, Zhang LQ. Characterization the role of GacA-dependent small RNAs and RsmA family proteins on 2,4-diacetylphloroglucinol production in Pseudomonas fluorescens 2P24. Microbiol Res 2019; 233:126391. [PMID: 31865097 DOI: 10.1016/j.micres.2019.126391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/26/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Pseudomonas fluorescens 2P24 is a plant-beneficial rhizobacteria that controls many root diseases caused by soil-borne pathogens, and the production of the antibiotic compound 2,4-diacetylphloroglucinol (2,4-DAPG) is essential for its biocontrol ability. In the present study, we investigated the regulatory mechanism acting on the production of 2,4-DAPG by the GacA-dependent small non-coding RNAs (sRNAs) and RsmA/E proteins in strain 2P24. Our results showed that the GacS-GacA system regulates the expression of the phlACBD locus, which is responsible for 2,4-DAPG production, by inducing the expression of rsmX, rsmX1, rsmY, and rsmZ. A novel GacA-regulated sRNA, RgsA, was found to negatively regulate 2,4-DAPG production. Activation of the phlACBD locus by the GacS-GacA system is mediated through RsmA and RsmE proteins (but not RsmI), which inhibit phlACBD translation by binding to the putative RsmA/E recognition element in the phlACBD leader. Taken together, our results suggested that in P. fluorescens 2P24, the GacS-GacA system controls the cellular 2,4-DAPG levels in the cell by fine-tuning the function of sRNAs in P. fluorescens.
Collapse
Affiliation(s)
- Yang Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Bo Zhang
- College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xiaogang Wu
- College of Agriculture, Guangxi University, Nanning 530004, China.
| | - Li-Qun Zhang
- Department of Plant Pathology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Conditional Hfq Association with Small Noncoding RNAs in Pseudomonas aeruginosa Revealed through Comparative UV Cross-Linking Immunoprecipitation Followed by High-Throughput Sequencing. mSystems 2019; 4:4/6/e00590-19. [PMID: 31796567 PMCID: PMC6890931 DOI: 10.1128/msystems.00590-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome. Bacterial small noncoding RNAs (sRNAs) play posttranscriptional regulatory roles in cellular responses to changing environmental cues and in adaptation to harsh conditions. Generally, the RNA-binding protein Hfq helps sRNAs associate with target mRNAs to modulate their translation and to modify global RNA pools depending on physiological state. Here, a combination of in vivo UV cross-linking immunoprecipitation followed by high-throughput sequencing (CLIP-seq) and total RNA-seq showed that Hfq interacts with different regions of the Pseudomonas aeruginosa transcriptome under planktonic versus biofilm conditions. In the present approach, P. aeruginosa Hfq preferentially interacted with repeats of the AAN triplet motif at mRNA 5′ untranslated regions (UTRs) and sRNAs and U-rich sequences at rho-independent terminators. Further transcriptome analysis suggested that the association of sRNAs with Hfq is primarily a function of their expression levels, strongly supporting the notion that the pool of Hfq-associated RNAs is equilibrated by RNA concentration-driven cycling on and off Hfq. Overall, our combinatorial CLIP-seq and total RNA-seq approach highlights conditional sRNA associations with Hfq as a novel aspect of posttranscriptional regulation in P. aeruginosa. IMPORTANCE The Gram-negative bacterium P. aeruginosa is ubiquitously distributed in diverse environments and can cause severe biofilm-related infections in at-risk individuals. Although the presence of a large number of putative sRNAs and widely conserved RNA chaperones in this bacterium implies the importance of posttranscriptional regulatory networks for environmental fluctuations, limited information is available regarding the global role of RNA chaperones such as Hfq in the P. aeruginosa transcriptome, especially under different environmental conditions. Here, we characterize Hfq-dependent differences in gene expression and biological processes in two physiological states: the planktonic and biofilm forms. A combinatorial comparative CLIP-seq and total RNA-seq approach uncovered condition-dependent association of RNAs with Hfq in vivo and expands the potential direct regulatory targets of Hfq in the P. aeruginosa transcriptome.
Collapse
|
15
|
Georg J, Lalaouna D, Hou S, Lott SC, Caldelari I, Marzi S, Hess WR, Romby P. The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs. Mol Microbiol 2019; 113:603-612. [PMID: 31705780 PMCID: PMC7154689 DOI: 10.1111/mmi.14420] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/06/2019] [Indexed: 12/17/2022]
Abstract
Trans‐acting small regulatory RNAs (sRNAs) are key players in the regulation of gene expression in bacteria. There are hundreds of different sRNAs in a typical bacterium, which in contrast to eukaryotic microRNAs are more heterogeneous in length, sequence composition, and secondary structure. The vast majority of sRNAs function post‐transcriptionally by binding to other RNAs (mRNAs, sRNAs) through rather short regions of imperfect sequence complementarity. Besides, every single sRNA may interact with dozens of different target RNAs and impact gene expression either negatively or positively. These facts contributed to the view that the entirety of the regulatory targets of a given sRNA, its targetome, is challenging to identify. However, recent developments show that a more comprehensive sRNAs targetome can be achieved through the combination of experimental and computational approaches. Here, we give a short introduction into these methods followed by a description of two sRNAs, RyhB, and RsaA, to illustrate the particular strengths and weaknesses of these approaches in more details. RyhB is an sRNA involved in iron homeostasis in Enterobacteriaceae, while RsaA is a modulator of virulence in Staphylococcus aureus. Using such a combined strategy, a better appreciation of the sRNA‐dependent regulatory networks is now attainable.
Collapse
Affiliation(s)
- Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - David Lalaouna
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Steffen C Lott
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Isabelle Caldelari
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Stefano Marzi
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| | - Wolfgang R Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany.,Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Pascale Romby
- Architecture et Réactivité de l'ARN, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
16
|
Sonnleitner E, Wulf A, Campagne S, Pei XY, Wolfinger MT, Forlani G, Prindl K, Abdou L, Resch A, Allain FHT, Luisi BF, Urlaub H, Bläsi U. Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Res 2019; 46:1470-1485. [PMID: 29244160 PMCID: PMC5815094 DOI: 10.1093/nar/gkx1245] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/01/2017] [Indexed: 12/23/2022] Open
Abstract
In Pseudomonas aeruginosa the RNA chaperone Hfq and the catabolite repression control protein (Crc) act as post-transcriptional regulators during carbon catabolite repression (CCR). In this regard Crc is required for full-fledged Hfq-mediated translational repression of catabolic genes. RNAseq based transcriptome analyses revealed a significant overlap between the Crc and Hfq regulons, which in conjunction with genetic data supported a concerted action of both proteins. Biochemical and biophysical approaches further suggest that Crc and Hfq form an assembly in the presence of RNAs containing A-rich motifs, and that Crc interacts with both, Hfq and RNA. Through these interactions, Crc enhances the stability of Hfq/Crc/RNA complexes, which can explain its facilitating role in Hfq-mediated translational repression. Hence, these studies revealed for the first time insights into how an interacting protein can modulate Hfq function. Moreover, Crc is shown to interfere with binding of a regulatory RNA to Hfq, which bears implications for riboregulation. These results are discussed in terms of a working model, wherein Crc prioritizes the function of Hfq toward utilization of favored carbon sources.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Alexander Wulf
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Xue-Yuan Pei
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Michael T Wolfinger
- Institute of Theoretical Chemistry, University of Vienna, 1090 Vienna, Austria.,Center for Anatomy and Cell Biology, Medical University of Vienna, 1090 Vienna, Austria
| | - Giada Forlani
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Konstantin Prindl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Laetitia Abdou
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Armin Resch
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| | - Frederic H-T Allain
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Henning Urlaub
- Biophysical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dr. Bohrgasse 9, 1030 Vienna, Austria
| |
Collapse
|
17
|
Fitting Pieces into the Puzzle of Pseudomonas aeruginosa Type III Secretion System Gene Expression. J Bacteriol 2019; 201:JB.00209-19. [PMID: 31010903 DOI: 10.1128/jb.00209-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type III secretion systems (T3SS) are widely distributed in Gram-negative microorganisms and critical for host-pathogen and host-symbiont interactions with plants and animals. Central features of the T3SS are a highly conserved set of secretion and translocation genes and contact dependence wherein host-pathogen interactions trigger effector protein delivery and serve as an inducing signal for T3SS gene expression. In addition to these conserved features, there are pathogen-specific properties that include a unique repertoire of effector genes and mechanisms to control T3SS gene expression. The Pseudomonas aeruginosa T3SS serves as a model system to understand transcriptional and posttranscriptional mechanisms involved in the control of T3SS gene expression. The central regulatory feature is a partner-switching system that controls the DNA-binding activity of ExsA, the primary regulator of T3SS gene expression. Superimposed upon the partner-switching mechanism are cyclic AMP and cyclic di-GMP signaling systems, two-component systems, global regulators, and RNA-binding proteins that have positive and negative effects on ExsA transcription and/or synthesis. In the present review, we discuss advances in our understanding of how these regulatory systems orchestrate the activation of T3SS gene expression in the context of acute infections and repression of the T3SS as P. aeruginosa adapts to and colonizes the cystic fibrosis airways.
Collapse
|
18
|
Chen R, Wei X, Li Z, Weng Y, Xia Y, Ren W, Wang X, Jin Y, Bai F, Cheng Z, Jin S, Wu W. Identification of a small RNA that directly controls the translation of the quorum sensing signal synthase gene
rhlI
in
Pseudomonas aeruginosa. Environ Microbiol 2019; 21:2933-2947. [DOI: 10.1111/1462-2920.14686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Ronghao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
- Department of Molecular Genetics and Microbiology, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| | - Xueying Wei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Zhenpeng Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Yuding Weng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Yushan Xia
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - WenRan Ren
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Xiangxiang Wang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life SciencesNankai University Tianjin 300071 China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of MedicineUniversity of Florida Gainesville FL 32610 USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life SciencesNankai University Tianjin 300071 China
| |
Collapse
|
19
|
Bathke J, Konzer A, Remes B, McIntosh M, Klug G. Comparative analyses of the variation of the transcriptome and proteome of Rhodobacter sphaeroides throughout growth. BMC Genomics 2019; 20:358. [PMID: 31072330 PMCID: PMC6509803 DOI: 10.1186/s12864-019-5749-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/29/2019] [Indexed: 02/08/2023] Open
Abstract
Background In natural environments, bacteria must frequently cope with extremely scarce nutrients. Most studies focus on bacterial growth in nutrient replete conditions, while less is known about the stationary phase. Here, we are interested in global gene expression throughout all growth phases, including the adjustment to deep stationary phase. Results We monitored both the transcriptome and the proteome in cultures of the alphaproteobacterium Rhodobacter sphaeroides, beginning with the transition to stationary phase and at different points of the stationary phase and finally during exit from stationary phase (outgrowth) following dilution with fresh medium. Correlation between the transcriptomic and proteomic changes was very low throughout the growth phases. Surprisingly, even in deep stationary phase, the abundance of many proteins continued to adjust, while the transcriptome analysis revealed fewer adjustments. This pattern was reversed during the first 90 min of outgrowth, although this depended upon the duration of the stationary phase. We provide a detailed analysis of proteomic changes based on the clustering of orthologous groups (COGs), and compare these with the transcriptome. Conclusions The low correlation between transcriptome and proteome supports the view that post-transcriptional processes play a major role in the adaptation to growth conditions. Our data revealed that many proteins with functions in transcription, energy production and conversion and the metabolism and transport of amino acids, carbohydrates, lipids, and secondary metabolites continually increased in deep stationary phase. Based on these findings, we conclude that the bacterium responds to sudden changes in environmental conditions by a radical and rapid reprogramming of the transcriptome in the first 90 min, while the proteome changes were modest. In response to gradually deteriorating conditions, however, the transcriptome remains mostly at a steady state while the bacterium continues to adjust its proteome. Even long after the population has entered stationary phase, cells are still actively adjusting their proteomes. Electronic supplementary material The online version of this article (10.1186/s12864-019-5749-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jochen Bathke
- Institute of Bioinformatics, University of Giessen, Giessen, Germany
| | - Anne Konzer
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Bernhard Remes
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Matthew McIntosh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany.
| | - Gabriele Klug
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| |
Collapse
|
20
|
Pei XY, Dendooven T, Sonnleitner E, Chen S, Bläsi U, Luisi BF. Architectural principles for Hfq/Crc-mediated regulation of gene expression. eLife 2019; 8:e43158. [PMID: 30758287 PMCID: PMC6422490 DOI: 10.7554/elife.43158] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/11/2019] [Indexed: 12/24/2022] Open
Abstract
In diverse bacterial species, the global regulator Hfq contributes to post-transcriptional networks that control expression of numerous genes. Hfq of the opportunistic pathogen Pseudomonas aeruginosa inhibits translation of target transcripts by forming a regulatory complex with the catabolite repression protein Crc. This repressive complex acts as part of an intricate mechanism of preferred nutrient utilisation. We describe high-resolution cryo-EM structures of the assembly of Hfq and Crc bound to the translation initiation site of a target mRNA. The core of the assembly is formed through interactions of two cognate RNAs, two Hfq hexamers and a Crc pair. Additional Crc protomers are recruited to the core to generate higher-order assemblies with demonstrated regulatory activity in vivo. This study reveals how Hfq cooperates with a partner protein to regulate translation, and provides a structural basis for an RNA code that guides global regulators to interact cooperatively and regulate different RNA targets.
Collapse
Affiliation(s)
- Xue Yuan Pei
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Tom Dendooven
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| | - Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F Perutz Laboratories, Center of Molecular BiologyUniversity of Vienna, Vienna BiocenterViennaAustria
| | - Shaoxia Chen
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F Perutz Laboratories, Center of Molecular BiologyUniversity of Vienna, Vienna BiocenterViennaAustria
| | - Ben F Luisi
- Department of BiochemistryUniversity of CambridgeCambridgeUnited Kingdom
| |
Collapse
|
21
|
Small Noncoding Regulatory RNAs from Pseudomonas aeruginosa and Burkholderia cepacia Complex. Int J Mol Sci 2018; 19:ijms19123759. [PMID: 30486355 PMCID: PMC6321483 DOI: 10.3390/ijms19123759] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
Cystic fibrosis (CF) is the most life-limiting autosomal recessive disorder in Caucasians. CF is characterized by abnormal viscous secretions that impair the function of several tissues, with chronic bacterial airway infections representing the major cause of early decease of these patients. Pseudomonas aeruginosa and bacteria from the Burkholderia cepacia complex (Bcc) are the leading pathogens of CF patients’ airways. A wide array of virulence factors is responsible for the success of infections caused by these bacteria, which have tightly regulated responses to the host environment. Small noncoding RNAs (sRNAs) are major regulatory molecules in these bacteria. Several approaches have been developed to study P. aeruginosa sRNAs, many of which were characterized as being involved in the virulence. On the other hand, the knowledge on Bcc sRNAs remains far behind. The purpose of this review is to update the knowledge on characterized sRNAs involved in P. aeruginosa virulence, as well as to compile data so far achieved on sRNAs from the Bcc and their possible roles on bacteria virulence.
Collapse
|
22
|
Grenga L, Little RH, Malone JG. Quick change: post-transcriptional regulation in Pseudomonas. FEMS Microbiol Lett 2018; 364:3866594. [PMID: 28605536 PMCID: PMC5812540 DOI: 10.1093/femsle/fnx125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023] Open
Abstract
Pseudomonas species have evolved dynamic and intricate regulatory networks to fine-tune gene expression, with complex regulation occurring at every stage in the processing of genetic information. This approach enables Pseudomonas to generate precise individual responses to the environment in order to improve their fitness and resource economy. The weak correlations we observe between RNA and protein abundance highlight the significant regulatory contribution of a series of intersecting post-transcriptional pathways, influencing mRNA stability, translational activity and ribosome function, to Pseudomonas environmental responses. This review examines our current understanding of three major post-transcriptional regulatory systems in Pseudomonas spp.; Gac/Rsm, Hfq and RimK, and presents an overview of new research frontiers, emerging genome-wide methodologies, and their potential for the study of global regulatory responses in Pseudomonas.
Collapse
Affiliation(s)
- Lucia Grenga
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Richard H Little
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK
| | - Jacob G Malone
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich NR4 7UH, UK.,University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| |
Collapse
|
23
|
Lu P, Wang Y, Hu Y, Chen S. RgsA, an RpoS-dependent sRNA, negatively regulates rpoS expression in Pseudomonas aeruginosa. MICROBIOLOGY-SGM 2018; 164:716-724. [PMID: 29473822 DOI: 10.1099/mic.0.000632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As a master regulator, the alternative sigma factor RpoS coordinates the transcription of genes associated with protection against environmental stresses in bacteria. In Pseudomonas aeruginosa, RpoS is also involved in quorum sensing and virulence. The cellular RpoS level is regulated at multiple levels, whereas the post-transcriptional regulation of rpoS in P. aeruginosa remains unclear. To identify and characterize small regulatory RNAs (sRNAs) regulating RpoS in P. aeruginosa, an sRNA library expressing a total of 263 sRNAs was constructed to examine their regulatory roles on rpoS expression. Our results demonstrate that rpoS expression is repressed by the RpoS-dependent sRNA RgsA at the post-transcriptional level. Unlike OxyS, an sRNA previously known to repress rpoS expression under oxidative stress in Escherichia coli, RgsA represses rpoS expression during the exponential phase. This repression requires the RNA chaperone Hfq. Furthermore, the 71-77 conserved region of RgsA is necessary for full repression of rpoS expression, and the -25 to +27 region of rpoS mRNA is sufficient for RgsA-mediated rpoS repression. Together, our results not only add RgsA to the RpoS regulatory circuits but also highlight the complexity of interplay between sRNAs and transcriptional regulators in bacteria.
Collapse
Affiliation(s)
- Pei Lu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yifei Wang
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
24
|
Ma JC, Wu YQ, Cao D, Zhang WB, Wang HH. Only Acyl Carrier Protein 1 (AcpP1) Functions in Pseudomonas aeruginosa Fatty Acid Synthesis. Front Microbiol 2017; 8:2186. [PMID: 29176964 PMCID: PMC5686131 DOI: 10.3389/fmicb.2017.02186] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/25/2017] [Indexed: 11/21/2022] Open
Abstract
The genome of Pseudomonas aeruginosa contains three open reading frames, PA2966, PA1869, and PA3334, which encode putative acyl carrier proteins, AcpP1, AcpP2, and AcpP3, respectively. In this study, we found that, although these apo-ACPs were successfully phosphopantetheinylated by P. aeruginosa phosphopantetheinyl transferase (PcpS) and all holo-forms of these proteins could be acylated by Vibrio harveyi acyl-ACP synthetase (AasS), only AcpP1 could be used as a substrate for the synthesis of fatty acids, catalyzed by P. aeruginosa cell free extracts in vitro, and only acpP1 gene could restore growth in the Escherichia coliacpP mutant strain CY1877. And P. aeruginosaacpP1 could not be deleted, while disruption of acpP2 or acpP3 in the P. aeruginosa genome allowed mutant strains to grow as well as the wild type strain. These findings confirmed that only P. aeruginosa AcpP1 functions in fatty acid biosynthesis, and that acpP2 and acpP3 do not play roles in the fatty acid synthetic pathway. Moreover, disruption of acpP2 and acpP3 did not affect the ability of P. aeruginosa to produce N-acylhomoserine lactones (AHL), but replacement of P. aeruginosaacpP1 with E. coliacpP caused P. aeruginosa to reduce the production of AHL molecules, which indicated that neither P. aeruginosa AcpP2 nor AcpP3 can act as a substrate for synthesis of AHL molecules in vivo. Furthermore, replacement of acpP1 with E. coliacpP reduced the ability of P. aeruginosa to produce some exo-products and abolished swarming motility in P. aeruginosa.
Collapse
Affiliation(s)
- Jin-Cheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yun-Qi Wu
- Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW, Australia
| | - Dan Cao
- Forensic Science Center of Qingyuan, Qingyuan Public Security Department, Qingyuan, China
| | - Wen-Bin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Hai-Hong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Qi J, Caiyin Q, Wu H, Tian K, Wang B, Li Y, Qiao J. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44. Appl Microbiol Biotechnol 2017; 101:6483-6493. [PMID: 28689267 DOI: 10.1007/s00253-017-8399-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/16/2017] [Accepted: 06/19/2017] [Indexed: 11/29/2022]
Abstract
Nisin, a polycyclic antibacterial peptide produced by Lactococcus lactis, is stable at low pH. Improving the acid tolerance of L. lactis could thus enhance nisin yield. Small non-coding RNAs (sRNAs) play essential roles in acid tolerance by regulating their target mRNAs at the post-transcriptional level. In this study, a novel sRNA, s015, was identified in L. lactis F44 via the use of RNA sequencing, qRT-PCR analysis, and Northern blotting. s015 improved the acid tolerance of L. lactis and boosted nisin yield at low pH. In silico predictions enabled us to construct a library of possible s015 target mRNAs. Statistical analysis and validation suggested that s015 contains a highly conserved region (5'-GAAAAAAAC-3') that likely encompasses the regulatory core of the sRNA. atpG, busAB, cysD, ilvB, tcsR, ung, yudD, and ywdA were verified as direct targets of s015, and the interactions between s015 and its target genes were elucidated. This work provided new insight into the adaptation mechanism of L. lactis under acid stress.
Collapse
Affiliation(s)
- Jiakun Qi
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Hao Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Kairen Tian
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Binbin Wang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Yanni Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China. .,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, China.
| |
Collapse
|
26
|
Sonnleitner E, Prindl K, Bläsi U. The Pseudomonas aeruginosa CrcZ RNA interferes with Hfq-mediated riboregulation. PLoS One 2017; 12:e0180887. [PMID: 28686727 PMCID: PMC5501646 DOI: 10.1371/journal.pone.0180887] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/22/2017] [Indexed: 12/17/2022] Open
Abstract
The RNA chaperone Hfq regulates virulence and metabolism in the opportunistic pathogen Pseudomonas aeruginosa. During carbon catabolite repression (CCR) Hfq together with the catabolite repression control protein Crc can act as a translational repressor of catabolic genes. Upon relief of CCR, the level of the Hfq-titrating RNA CrcZ is increasing, which in turn abrogates Hfq-mediated translational repression. As the interdependence of Hfq-mediated and RNA based control mechanisms is poorly understood, we explored the possibility whether the regulatory RNA CrcZ can interfere with riboregulation. We first substantiate that the P. aeruginosa Hfq is proficient and required for riboregulation of the transcriptional activator gene antR by the small RNA PrrF1-2. Our studies further revealed that CrcZ can interfere with PrrF1-2/Hfq-mediated regulation of antR. The competition for Hfq can be rationalized by the higher affinity of Hfq for CrcZ than for antR mRNA.
Collapse
Affiliation(s)
- Elisabeth Sonnleitner
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
- * E-mail:
| | - Konstantin Prindl
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| | - Udo Bläsi
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, Center of Molecular Biology, University of Vienna, Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
27
|
An RpoHI-Dependent Response Promotes Outgrowth after Extended Stationary Phase in the Alphaproteobacterium Rhodobacter sphaeroides. J Bacteriol 2017; 199:JB.00249-17. [PMID: 28507242 DOI: 10.1128/jb.00249-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/05/2017] [Indexed: 12/31/2022] Open
Abstract
Under unfavorable growth conditions, bacteria enter stationary phase and can maintain cell viability over prolonged periods with no increase in cell number. To obtain insights into the regulatory mechanisms that allow bacteria to resume growth when conditions become favorable again (outgrowth), we performed global transcriptome analyses at different stages of growth for the alphaproteobacterium Rhodobacter sphaeroides The majority of genes were not differentially expressed across growth phases. After a short stationary phase (about 20 h after growth starts to slow down), only 7% of the genes showed altered expression (fold change of >1.6 or less than -1.6, corresponding to a log2 fold change of >0.65 or less than -0.65, respectively) compared to expression at exponential phase. Outgrowth induced a distinct response in gene expression which was strongly influenced by the length of the preceding stationary phase. After a long stationary phase (about 64 h after growth starts to slow down), a much larger number of genes (15.1%) was induced in outgrowth than after a short stationary phase (1.7%). Many of those genes are known members of the RpoHI/RpoHII regulons and have established functions in stress responses. A main effect of RpoHI on the transcriptome in outgrowth after a long stationary phase was confirmed. Growth experiments with mutant strains further support an important function in outgrowth after prolonged stationary phase for the RpoHI and RpoHII sigma factors.IMPORTANCE In natural environments, the growth of bacteria is limited mostly by lack of nutrients or other unfavorable conditions. It is important for bacterial populations to efficiently resume growth after being in stationary phase, which may last for long periods. Most previous studies on growth-phase-dependent gene expression did not address outgrowth after stationary phase. This study on growth-phase-dependent gene regulation in a model alphaproteobacterium reveals, for the first time, that the length of the stationary phase strongly impacts the transcriptome during outgrowth. The alternative sigma factors RpoHI and RpoHII, which are important regulators of stress responses in alphaproteobacteria, play a major role during outgrowth following prolonged stationary phase. These findings provide the first insight into the regulatory mechanisms enabling efficient outgrowth.
Collapse
|
28
|
Deng X, Li M, Pan X, Zheng R, Liu C, Chen F, Liu X, Cheng Z, Jin S, Wu W. Fis Regulates Type III Secretion System by Influencing the Transcription of exsA in Pseudomonas aeruginosa Strain PA14. Front Microbiol 2017; 8:669. [PMID: 28469612 PMCID: PMC5395579 DOI: 10.3389/fmicb.2017.00669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 11/21/2022] Open
Abstract
Fis is a versatile DNA binding protein in bacteria. It has been demonstrated in multiple bacteria that Fis plays crucial roles in regulating bacterial virulence factors and optimizing bacterial adaptation to various environments. However, the role of Fis in Pseudomonas aeruginosa virulence as well as gene regulation remains largely unknown. Here, we found that Fis was required for the virulence of P. aeruginosa in a murine acute pneumonia model. Transcriptome analysis revealed that expression of T3SS genes, including master regulator ExsA, was defective in a fis::Tn mutant. We further demonstrate that the continuous transcription of exsC, exsE, exsB, and exsA driven by the exsC promoter was required for the activation of T3SS. Fis was found to specifically bind to the exsB-exsA intergenic region and plays an essential role in the transcription elongation from exsB to exsA. Therefore, we found a novel role of Fis in the regulation of exsA expression.
Collapse
Affiliation(s)
- Xuan Deng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Mei Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Ruiping Zheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Fei Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Xue Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| | - Shouguang Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China.,Department of Molecular Genetics and Microbiology, College of Medicine, University of FloridaGainesville, FL, USA
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai UniversityTianjin, China
| |
Collapse
|
29
|
Cech GM, Szalewska-Pałasz A, Kubiak K, Malabirade A, Grange W, Arluison V, Węgrzyn G. The Escherichia Coli Hfq Protein: An Unattended DNA-Transactions Regulator. Front Mol Biosci 2016; 3:36. [PMID: 27517037 PMCID: PMC4963395 DOI: 10.3389/fmolb.2016.00036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/13/2016] [Indexed: 11/17/2022] Open
Abstract
The Hfq protein was discovered in Escherichia coli as a host factor for bacteriophage Qβ RNA replication. Subsequent studies indicated that Hfq is a pleiotropic regulator of bacterial gene expression. The regulatory role of Hfq is ascribed mainly to its function as an RNA-chaperone, facilitating interactions between bacterial non-coding RNA and its mRNA target. Thus, it modulates mRNA translation and stability. Nevertheless, Hfq is able to interact with DNA as well. Its role in the regulation of DNA-related processes has been demonstrated. In this mini-review, it is discussed how Hfq interacts with DNA and what is the role of this protein in regulation of DNA transactions. Particularly, Hfq has been demonstrated to be involved in the control of ColE1 plasmid DNA replication, transposition, and possibly also transcription. Possible mechanisms of these Hfq-mediated regulations are described and discussed.
Collapse
Affiliation(s)
- Grzegorz M Cech
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| | | | - Krzysztof Kubiak
- Department of Molecular Biology, University of GdańskGdańsk, Poland; Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France
| | - Antoine Malabirade
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA Saclay Gif-sur-Yvette, France
| | - Wilfried Grange
- IPCMS/Centre National de la Recherche ScientifiqueStrasbourg, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Veronique Arluison
- Laboratoire Léon Brillouin, CEA, Centre National de la Recherche Scientifique, Université Paris Saclay, CEA SaclayGif-sur-Yvette, France; Universite Paris Diderot, UFR Science du VivantParis, France
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk Gdańsk, Poland
| |
Collapse
|