1
|
He TY, Li YT, Liu ZD, Cheng H, Bao YF, Zhang JL. Lipid metabolism: the potential targets for toxoplasmosis treatment. Parasit Vectors 2024; 17:111. [PMID: 38448975 PMCID: PMC10916224 DOI: 10.1186/s13071-024-06213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/23/2024] [Indexed: 03/08/2024] Open
Abstract
Toxoplasmosis is a zoonosis caused by Toxoplasma gondii (T. gondii). The current treatment for toxoplasmosis remains constrained due to the absence of pharmaceutical interventions. Thus, the pursuit of more efficient targets is of great importance. Lipid metabolism in T. gondii, including fatty acid metabolism, phospholipid metabolism, and neutral lipid metabolism, assumes a crucial function in T. gondii because those pathways are largely involved in the formation of the membranous structure and cellular processes such as division, invasion, egress, replication, and apoptosis. The inhibitors of T. gondii's lipid metabolism can directly lead to the disturbance of various lipid component levels and serious destruction of membrane structure, ultimately leading to the death of the parasites. In this review, the specific lipid metabolism pathways, correlative enzymes, and inhibitors of lipid metabolism of T. gondii are elaborated in detail to generate novel ideas for the development of anti-T. gondii drugs that target the parasites' lipid metabolism.
Collapse
Affiliation(s)
- Tian-Yi He
- Health Science Center, Ningbo University, Ningbo, China
| | - Ye-Tian Li
- Health Science Center, Ningbo University, Ningbo, China
| | - Zhen-Di Liu
- Health Science Center, Ningbo University, Ningbo, China
| | - Hao Cheng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yi-Feng Bao
- Health Science Center, Ningbo University, Ningbo, China
| | - Ji-Li Zhang
- Health Science Center, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Pietsch E, Ramaprasad A, Bielfeld S, Wohlfarter Y, Maco B, Niedermüller K, Wilcke L, Kloehn J, Keller MA, Soldati-Favre D, Blackman MJ, Gilberger TW, Burda PC. A patatin-like phospholipase is important for mitochondrial function in malaria parasites. mBio 2023; 14:e0171823. [PMID: 37882543 PMCID: PMC10746288 DOI: 10.1128/mbio.01718-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/12/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE For their proliferation within red blood cells, malaria parasites depend on a functional electron transport chain (ETC) within their mitochondrion, which is the target of several antimalarial drugs. Here, we have used gene disruption to identify a patatin-like phospholipase, PfPNPLA2, as important for parasite replication and mitochondrial function in Plasmodium falciparum. Parasites lacking PfPNPLA2 show defects in their ETC and become hypersensitive to mitochondrion-targeting drugs. Furthermore, PfPNPLA2-deficient parasites show differences in the composition of their cardiolipins, a unique class of phospholipids with key roles in mitochondrial functions. Finally, we demonstrate that parasites devoid of PfPNPLA2 have a defect in gametocyte maturation, underlining the importance of a functional ETC for parasite transmission to the mosquito vector.
Collapse
Affiliation(s)
- Emma Pietsch
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Abhinay Ramaprasad
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Sabrina Bielfeld
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Yvonne Wohlfarter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Bohumil Maco
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Korbinian Niedermüller
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Louisa Wilcke
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Joachim Kloehn
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Markus A. Keller
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Dominique Soldati-Favre
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| | - Paul-Christian Burda
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- University of Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Shunmugam S, Quansah N, Flammersfeld A, Islam MM, Sassmannshausen J, Bennink S, Yamaryo-Botté Y, Pradel G, Botté CY. The patatin-like phospholipase PfPNPLA2 is involved in the mitochondrial degradation of phosphatidylglycerol during Plasmodium falciparum blood stage development. Front Cell Infect Microbiol 2023; 13:997245. [PMID: 38089812 PMCID: PMC10711835 DOI: 10.3389/fcimb.2023.997245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Plasmodium falciparum is an Apicomplexa responsible for human malaria, a major disease causing more than ½ million deaths every year, against which there is no fully efficient vaccine. The current rapid emergence of drug resistances emphasizes the need to identify novel drug targets. Increasing evidences show that lipid synthesis and trafficking are essential for parasite survival and pathogenesis, and that these pathways represent potential points of attack. Large amounts of phospholipids are needed for the generation of membrane compartments for newly divided parasites in the host cell. Parasite membrane homeostasis is achieved by an essential combination of parasite de novo lipid synthesis/recycling and massive host lipid scavenging. Latest data suggest that the mobilization and channeling of lipid resources is key for asexual parasite survival within the host red blood cell, but the molecular actors allowing lipid acquisition are poorly characterized. Enzymes remodeling lipids such as phospholipases are likely involved in these mechanisms. P. falciparum possesses an unusually large set of phospholipases, whose functions are largely unknown. Here we focused on the putative patatin-like phospholipase PfPNPLA2, for which we generated an glmS-inducible knockdown line and investigated its role during blood stages malaria. Disruption of the mitochondrial PfPNPLA2 in the asexual blood stages affected mitochondrial morphology and further induced a significant defect in parasite replication and survival, in particular under low host lipid availability. Lipidomic analyses revealed that PfPNPLA2 specifically degrades the parasite membrane lipid phosphatidylglycerol to generate lysobisphosphatidic acid. PfPNPLA2 knockdown further resulted in an increased host lipid scavenging accumulating in the form of storage lipids and free fatty acids. These results suggest that PfPNPLA2 is involved in the recycling of parasite phosphatidylglycerol to sustain optimal intraerythrocytic development when the host resources are scarce. This work strengthens our understanding of the complex lipid homeostasis pathways to acquire lipids and allow asexual parasite survival.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| | - Nyamekye Quansah
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| | - Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Md Muzahidul Islam
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Juliane Sassmannshausen
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Sandra Bennink
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Yoshiki Yamaryo-Botté
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Avanced Biosciences, Centre National pour la Recherche Scientifique (CNRS) UMR5309, Institut National de la Santé et de la Recherche Médicale, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
4
|
Hervé P, Monic S, Bringaud F, Rivière L. Phospholipases A and Lysophospholipases in protozoan parasites. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:204-216. [PMID: 37786811 PMCID: PMC10513453 DOI: 10.15698/mic2023.10.805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 10/04/2023]
Abstract
Phospholipases (PLs) and Lysophospholipases (LysoPLs) are a diverse group of esterases responsible for phospholipid or lysophospholipid hydrolysis. They are involved in several biological processes, including lipid catabolism, modulation of the immune response and membrane maintenance. PLs are classified depending on their site of hydrolysis as PLA1, PLA2, PLC and PLD. In many pathogenic microorganisms, from bacteria to fungi, PLAs and LysoPLs have been described as critical virulence and/or pathogenicity factors. In protozoan parasites, a group containing major human and animal pathogens, growing literature show that PLAs and LysoPLs are also involved in the host infection. Their ubiquitous presence and role in host-pathogen interactions make them particularly interesting to study. In this review, we summarize the literature on PLAs and LysoPLs in several protozoan parasites of medical relevance, and discuss the growing interest for them as potential drug and vaccine targets.
Collapse
Affiliation(s)
- Perrine Hervé
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Sarah Monic
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Frédéric Bringaud
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| | - Loïc Rivière
- Université de Bordeaux, Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Bordeaux, France
| |
Collapse
|
5
|
Disrupting a Plasmodium berghei putative phospholipase impairs efficient egress of merosomes. Int J Parasitol 2022; 52:547-558. [DOI: 10.1016/j.ijpara.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 01/23/2023]
|
6
|
Shunmugam S, Arnold CS, Dass S, Katris NJ, Botté CY. The flexibility of Apicomplexa parasites in lipid metabolism. PLoS Pathog 2022; 18:e1010313. [PMID: 35298557 PMCID: PMC8929637 DOI: 10.1371/journal.ppat.1010313] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Apicomplexa are obligate intracellular parasites responsible for major human infectious diseases such as toxoplasmosis and malaria, which pose social and economic burdens around the world. To survive and propagate, these parasites need to acquire a significant number of essential biomolecules from their hosts. Among these biomolecules, lipids are a key metabolite required for parasite membrane biogenesis, signaling events, and energy storage. Parasites can either scavenge lipids from their host or synthesize them de novo in a relict plastid, the apicoplast. During their complex life cycle (sexual/asexual/dormant), Apicomplexa infect a large variety of cells and their metabolic flexibility allows them to adapt to different host environments such as low/high fat content or low/high sugar levels. In this review, we discuss the role of lipids in Apicomplexa parasites and summarize recent findings on the metabolic mechanisms in host nutrient adaptation.
Collapse
Affiliation(s)
- Serena Shunmugam
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Christophe-Sébastien Arnold
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sheena Dass
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J. Katris
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Y. Botté
- Apicolipid Team, Institute for Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| |
Collapse
|
7
|
Gao G, Zhang X, Zhao K, Zhao K, Cao D, Ma Q, Zhu S, Qu C, Ma Y, Gong F, Li Z, Ren R, Ma X, Yin D. Genome wide identification and expression analysis of patatin-like protein family members in peanut (Arachis hypogaea L.). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
8
|
Bansal P, Antil N, Kumar M, Yamaryo-Botté Y, Rawat RS, Pinto S, Datta KK, Katris NJ, Botté CY, Prasad TSK, Sharma P. Protein kinase TgCDPK7 regulates vesicular trafficking and phospholipid synthesis in Toxoplasma gondii. PLoS Pathog 2021; 17:e1009325. [PMID: 33635921 PMCID: PMC7909640 DOI: 10.1371/journal.ppat.1009325] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/20/2021] [Indexed: 02/06/2023] Open
Abstract
Apicomplexan parasites are causative agents of major human diseases. Calcium Dependent Protein Kinases (CDPKs) are crucial components for the intracellular development of apicomplexan parasites and are thus considered attractive drug targets. CDPK7 is an atypical member of this family, which initial characterization suggested to be critical for intracellular development of both Apicomplexa Plasmodium falciparum and Toxoplasma gondii. However, the mechanisms via which it regulates parasite replication have remained unknown. We performed quantitative phosphoproteomics of T. gondii lacking TgCDPK7 to identify its parasitic targets. Our analysis lead to the identification of several putative TgCDPK7 substrates implicated in critical processes like phospholipid (PL) synthesis and vesicular trafficking. Strikingly, phosphorylation of TgRab11a via TgCDPK7 was critical for parasite intracellular development and protein trafficking. Lipidomic analysis combined with biochemical and cellular studies confirmed that TgCDPK7 regulates phosphatidylethanolamine (PE) levels in T. gondii. These studies provide novel insights into the regulation of these processes that are critical for parasite development by TgCDPK7. In this study, we demonstrate that protein kinase TgCDPK7 regulates cellular processes like vesicular trafficking and the synthesis of phospholipids, which are critical for the development of the parasite Toxoplasma gondii. It regulates the localization of a small GTPase TgRab11a by phosphorylating it at a specific site, which is critical for trafficking of important parasite proteins and is important for parasite division. TgCDPK7 may regulate key enzymes involved biogenesis of phosphatidylethanolamine, which may contribute to the synthesis of this important phospholipid. These and other studies shed light on a novel signaling pathway in apicomplexan parasite Toxoplasma gondii.
Collapse
Affiliation(s)
- Priyanka Bansal
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
| | - Neelam Antil
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Manish Kumar
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Rahul Singh Rawat
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
| | - Sneha Pinto
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Keshava K. Datta
- Institute of Bioinformatics, International Tech Park, Bangalore, India
| | - Nicholas J. Katris
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - Cyrille Y. Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, INSERM U1209, Université Grenoble Alpes, Grenoble, France
| | - T. S. Keshava Prasad
- Institute of Bioinformatics, International Tech Park, Bangalore, India
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
- NIMHANS IOB Proteomics and Bioinformatics Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, India
| | - Pushkar Sharma
- Eukaryotic Gene Expression laboratory, National Institute of Immunology, New Delhi, India
- * E-mail:
| |
Collapse
|
9
|
Wilson SK, Heckendorn J, Martorelli Di Genova B, Koch LL, Rooney PJ, Morrissette N, Lebrun M, Knoll LJ. A Toxoplasma gondii patatin-like phospholipase contributes to host cell invasion. PLoS Pathog 2020; 16:e1008650. [PMID: 32628723 PMCID: PMC7365478 DOI: 10.1371/journal.ppat.1008650] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 07/16/2020] [Accepted: 05/22/2020] [Indexed: 11/23/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can invade any nucleated cell of any warm-blooded animal. In a previous screen to identify virulence determinants, disruption of gene TgME49_305140 generated a T. gondii mutant that could not establish a chronic infection in mice. The protein product of TgME49_305140, here named TgPL3, is a 277 kDa protein with a patatin-like phospholipase (PLP) domain and a microtubule binding domain. Antibodies generated against TgPL3 show that it is localized to the apical cap. Using a rapid selection FACS-based CRISPR/Cas-9 method, a TgPL3 deletion strain (ΔTgPL3) was generated. ΔTgPL3 parasites have defects in host cell invasion, which may be caused by reduced rhoptry secretion. We generated complementation clones with either wild type TgPL3 or an active site mutation in the PLP domain by converting the catalytic serine to an alanine, ΔTgPL3::TgPL3S1409A (S1409A). Complementation of ΔTgPL3 with wild type TgPL3 restored all phenotypes, while S1409A did not, suggesting that phospholipase activity is necessary for these phenotypes. ΔTgPL3 and S1409A parasites are also virtually avirulent in vivo but induce a robust antibody response. Vaccination with ΔTgPL3 and S1409A parasites protected mice against subsequent challenge with a lethal dose of Type I T. gondii parasites, making ΔTgPL3 a compelling vaccine candidate. These results demonstrate that TgPL3 has a role in rhoptry secretion, host cell invasion and survival of T. gondii during acute mouse infection.
Collapse
Affiliation(s)
- Sarah K. Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | | | - Bruno Martorelli Di Genova
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Lindsey L. Koch
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| | - Peggy J. Rooney
- Stratatech Corporation, Charmany Drive, Madison, Wisconsin, United States of America
| | - Naomi Morrissette
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, United States of America
| | | | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin—Madison, Linden Drive, Madison, Wisconsin, United States of America
| |
Collapse
|
10
|
Flammersfeld A, Panyot A, Yamaryo-Botté Y, Aurass P, Przyborski JM, Flieger A, Botté C, Pradel G. A patatin-like phospholipase functions during gametocyte induction in the malaria parasite Plasmodium falciparum. Cell Microbiol 2019; 22:e13146. [PMID: 31734953 DOI: 10.1111/cmi.13146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 12/25/2022]
Abstract
Patatin-like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1-deficiency due to gene disruption or conditional gene-knockdown had no effect on intraerythrocytic growth, gametocyte development and gametogenesis. However, parasites lacking PNPLA1 were impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional down-regulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2-G. Additionally, lipidomics of PNPLA1-deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA2 . PC synthesis is known to be pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis; we thus hypothesize that the higher PC levels due to PNPLA1-deficiency prevent the blood stage parasites from entering the sexual pathway.
Collapse
Affiliation(s)
- Ansgar Flammersfeld
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Atscharah Panyot
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Philipp Aurass
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Jude M Przyborski
- Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institute, Wernigerode, Germany
| | - Antje Flieger
- Centre for Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Cyrille Botté
- ApicoLipid Team, Institute for Advanced Biosciences, Université Grenoble Alpes, La Tronche, France
| | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology, Institute of Zoology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Dubois D, Fernandes S, Amiar S, Dass S, Katris NJ, Botté CY, Yamaryo-Botté Y. Toxoplasma gondii acetyl-CoA synthetase is involved in fatty acid elongation (of long fatty acid chains) during tachyzoite life stages. J Lipid Res 2018; 59:994-1004. [PMID: 29678960 DOI: 10.1194/jlr.m082891] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/30/2018] [Indexed: 12/20/2022] Open
Abstract
Apicomplexan parasites are pathogens responsible for major human diseases such as toxoplasmosis caused by Toxoplasma gondii and malaria caused by Plasmodium spp. Throughout their intracellular division cycle, the parasites require vast and specific amounts of lipids to divide and survive. This demand for lipids relies on a fine balance between de novo synthesized lipids and scavenged lipids from the host. Acetyl-CoA is a major and central precursor for many metabolic pathways, especially for lipid biosynthesis. T. gondii possesses a single cytosolic acetyl-CoA synthetase (TgACS). Its role in the parasite lipid synthesis is unclear. Here, we generated an inducible TgACS KO parasite line and confirmed the cytosolic localization of the protein. We conducted 13C-stable isotope labeling combined with mass spectrometry-based lipidomic analyses to unravel its putative role in the parasite lipid synthesis pathway. We show that its disruption has a minor effect on the global FA composition due to the metabolic changes induced to compensate for its loss. However, we could demonstrate that TgACS is involved in providing acetyl-CoA for the essential fatty elongation pathway to generate FAs used for membrane biogenesis. This work provides novel metabolic insight to decipher the complex lipid synthesis in T. gondii.
Collapse
Affiliation(s)
- David Dubois
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Stella Fernandes
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Souad Amiar
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Sheena Dass
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Nicholas J Katris
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France
| | - Cyrille Y Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| | - Yoshiki Yamaryo-Botté
- ApicoLipid Team, Institute of Advanced Biosciences, CNRS UMR5309, Université Grenoble Alpes, INSERM U1209, Grenoble, France.
| |
Collapse
|
12
|
VdPLP, A Patatin-Like Phospholipase in Verticillium dahliae, Is Involved in Cell Wall Integrity and Required for Pathogenicity. Genes (Basel) 2018. [PMID: 29534051 PMCID: PMC5867883 DOI: 10.3390/genes9030162] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The soil-borne ascomycete fungus Verticillium dahliae causes vascular wilt disease and can seriously diminish the yield and quality of important crops. Functional analysis of growth- and pathogenicity-related genes is essential for revealing the pathogenic molecular mechanism of V. dahliae. Phospholipase is an important virulence factor in fungi that hydrolyzes phospholipids into fatty acid and other lipophilic substances and is involved in hyphal development. Thus far, only a few V. dahliae phospholipases have been identified, and their involvement in V. dahliae development and pathogenicity remains unknown. In this study, the function of the patatin-like phospholipase gene in V. dahliae (VdPLP, VDAG_00942) is characterized by generating gene knockout and complementary mutants. Vegetative growth and conidiation of VdPLP deletion mutants (ΔVdPLP) were significantly reduced compared with wild type and complementary strains, but more microsclerotia formed. The ΔVdPLP mutants were very sensitive to the cell-wall-perturbing agents: calcofluor white (CFW) and Congo red (CR). The transcriptional level of genes related to the cell wall integrity (CWI) pathway and chitin synthesis were downregulated, suggesting that VdPLP has a pivotal role in the CWI pathway and chitin synthesis in V. dahliae. ΔVdPLP strains were distinctly impaired in in their virulence and ability to colonize Nicotiana benthamiana roots. Our results demonstrate that VdPLP regulates hyphal growth and conidial production and is involved in stabilizing the cell wall, thus mediating the pathogenicity of V. dahliae.
Collapse
|
13
|
Wilson SK, Knoll LJ. Patatin-like phospholipases in microbial infections with emerging roles in fatty acid metabolism and immune regulation by Apicomplexa. Mol Microbiol 2017; 107:34-46. [PMID: 29090840 DOI: 10.1111/mmi.13871] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/22/2022]
Abstract
Emerging lipidomic technologies have enabled researchers to dissect the complex roles of phospholipases in lipid metabolism, cellular signaling and immune regulation. Host phospholipase products are involved in stimulating and resolving the inflammatory response to pathogens. While many pathogen-derived phospholipases also manipulate the immune response, they have recently been shown to be involved in lipid remodeling and scavenging during replication. Animal and plant hosts as well as many pathogens contain a family of patatin-like phospholipases, which have been shown to have phospholipase A2 activity. Proteins containing patatin-like phospholipase domains have been identified in protozoan parasites within the Apicomplexa phylum. These parasites are the causative agents of some of the most widespread human diseases. Malaria, caused by Plasmodium spp., kills nearly half a million people worldwide each year. Toxoplasma and Cryptosporidium infect millions of people each year with lethal consequences in immunocompromised populations. Parasite-derived patatin-like phospholipases are likely effective drug targets and progress in the tools available to the Apicomplexan field will allow for a closer look at the interplay of lipid metabolism and immune regulation during host infection.
Collapse
Affiliation(s)
- Sarah K Wilson
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Laura J Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
14
|
Phospholipases during membrane dynamics in malaria parasites. Int J Med Microbiol 2017; 308:129-141. [PMID: 28988696 DOI: 10.1016/j.ijmm.2017.09.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium parasites, the causative agents of malaria, display a well-regulated lipid metabolism required to ensure their survival in the human host as well as in the mosquito vector. The fine-tuning of lipid metabolic pathways is particularly important for the parasites during the rapid erythrocytic infection cycles, and thus enzymes involved in lipid metabolic processes represent prime targets for malaria chemotherapeutics. While plasmodial enzymes involved in lipid synthesis and acquisition have been studied in the past, to date not much is known about the roles of phospholipases for proliferation and transmission of the malaria parasite. These phospholipid-hydrolyzing esterases are crucial for membrane dynamics during host cell infection and egress by the parasite as well as for replication and cell signaling, and thus they are considered important virulence factors. In this review, we provide a comprehensive bioinformatic analysis of plasmodial phospholipases identified to date. We further summarize previous findings on the lipid metabolism of Plasmodium, highlight the roles of phospholipases during parasite life-cycle progression, and discuss the plasmodial phospholipases as potential targets for malaria therapy.
Collapse
|