1
|
Wang Q, Liu R, Niu Y, Wang Y, Qin J, Huang Y, Qian J, Zheng X, Wang M, Huang D, Liu Y. Regulatory mechanisms of two-component systems in Vibrio cholerae: Enhancing pathogenicity and environmental adaptation. Microbiol Res 2025; 298:128198. [PMID: 40318575 DOI: 10.1016/j.micres.2025.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/07/2025]
Abstract
Cholera, which is caused by the bacterium Vibrio cholerae, is a highly dangerous disease characterized by severe symptoms such as watery diarrhea, dehydration, and even death. V. cholerae can both colonize the host intestine and survive in environmental reservoirs. Two-component systems (TCSs) are essential regulatory mechanisms that allow bacteria to adapt to changing environments. This review focuses on the regulatory mechanisms of TCS-mediated gene expression in V. cholerae. We first summarize the composition and classification of TCSs in V. cholerae N16961. We then discuss the roles of TCSs in facilitating adaptation to diverse environmental stimuli and increasing pathogenicity. Furthermore, we analyze the distribution of TCSs in pandemic and nonpandemic-V. cholerae strains, demonstrating their indispensable role in promoting virulence and facilitating the widespread dissemination of pandemic strains. Elucidation of these mechanisms is crucial for devising new strategies to combat cholera and prevent future outbreaks, ultimately contributing to improved public health outcomes.
Collapse
Affiliation(s)
- Qian Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuanyuan Niu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yuchen Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingling Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Yu Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jiamin Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xiaoyu Zheng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Meng Wang
- Department of Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300457, PR China.
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Nankai University, Tianjin 300457, PR China.
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China.
| |
Collapse
|
2
|
Choi H, Cho SH, Park JH, Seok YJ. Fructose-responsive regulation by FruR in Faecalibacterium prausnitzii for its intestinal colonization. Commun Biol 2025; 8:426. [PMID: 40082586 PMCID: PMC11906611 DOI: 10.1038/s42003-025-07878-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Faecalibacterium prausnitzii, a dominant member of healthy human gut microbiota, exhibits a strong positive correlation with fecal fructose levels, suggesting fructose as a key energy source for its colonization and persistence. This study explores the regulatory mechanisms governing the fru operon in F. prausnitzii, responsible for fructose uptake and metabolism. Here, we demonstrate that FruR, a DeoR family transcriptional regulator, orchestrates fru operon expression through interactions with fructose-1-phosphate (F1P) and HPr2, the histidine-containing phosphocarrier protein. The F1P-HPr2(Ser-P)-FruR complex enhances RNA polymerase binding to the fru promoter, with stronger affinity for specific operator motifs compared to apo-FruR. F1P induces structural modifications in FruR that strengthen its interaction with HPr2 and alter its DNA recognition pattern, facilitating RNA polymerase access to the promoter. In vivo experiments in mice demonstrate increased F. prausnitzii abundance alongside upregulated fru operon expression in fructose-rich environments. This study provides new insights into how fructose availability modulates fru operon regulation and promotes F. prausnitzii colonization in the host intestine.
Collapse
Affiliation(s)
- HyeLim Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyun Cho
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Joo-Hong Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yeong-Jae Seok
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Holley CL, Dhulipala V, Maurakis SA, Greenawalt AN, Read TD, Cornelissen CN, Shafer WM. Transcriptional activation of ompA in Neisseria gonorrhoeae mediated by the XRE family member protein NceR. mBio 2023; 14:e0124423. [PMID: 37387605 PMCID: PMC10470515 DOI: 10.1128/mbio.01244-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 07/01/2023] Open
Abstract
Increasing antibiotic resistance of Neisseria gonorrhoeae, the causative agent of gonorrhea, is a growing global concern that has renewed vaccine development efforts. The gonococcal OmpA protein was previously identified as a vaccine candidate due to its surface exposure, conservation, stable expression, and involvement in host-cell interactions. We previously demonstrated that the transcription of ompA can be activated by the MisR/MisS two-component system. Interestingly, earlier work suggested that the availability of free iron also influences ompA expression, which we confirmed in this study. In the present study, we found that iron regulation of ompA was independent of MisR and searched for additional regulators. A DNA pull-down assay with the ompA promoter from gonococcal lysates obtained from bacteria grown in the presence or absence of iron identified an XRE (Xenobiotic Response Element) family member protein encoded by NGO1982. We found that an NGO1982 null mutant of N. gonorrhoeae strain FA19 displayed a reduced level of ompA expression compared to the wild-type (WT) parent strain. Given this regulation, and the capacity of this XRE-like protein to regulate a gene involved in peptidoglycan biosynthesis (ltgA), along with its presence in other Neisseria sp., we termed the NGO1982-encoded protein as NceR (Neisseria cell envelope regulator). Critically, results from DNA-binding studies indicated that NceR regulates ompA through a direct mechanism. Thus, ompA expression is subject to both iron-dependent (NceR) and -independent (MisR/MisS) pathways. Hence, levels of the vaccine antigen candidate OmpA in circulating gonococcal strains could be influenced by transcriptional regulatory systems and the availability of iron. IMPORTANCE Herein, we report that the gene encoding a conserved gonococcal surface-exposed vaccine candidate (OmpA) is activated by a heretofore undescribed XRE family transcription factor, which we term NceR. We report that NceR regulation of ompA expression in N. gonorrhoeae is mediated by an iron-dependent mechanism, while the previously described MisR regulatory system is iron-independent. Our study highlights the importance of defining the complexity of coordinated genetic and physiologic systems that regulate genes encoding vaccine candidates to better understand their availability during infection.
Collapse
Affiliation(s)
- Concerta L. Holley
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Vijaya Dhulipala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Stavaros A. Maurakis
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | | | - Timothy D. Read
- Department of Medicine (Division of Infectious Diseases), Emory University School of Medicine, Atlanta, Georgia, USA
- The Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Medicine (Division of Infectious Diseases), Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
5
|
Boas Lichty KE, Gregory GJ, Boyd EF. NhaR, LeuO, and H-NS Are Part of an Expanded Regulatory Network for Ectoine Biosynthesis Expression. Appl Environ Microbiol 2023; 89:e0047923. [PMID: 37278653 PMCID: PMC10304999 DOI: 10.1128/aem.00479-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023] Open
Abstract
Bacteria accumulate compatible solutes to maintain cellular turgor pressure when exposed to high salinity. In the marine halophile Vibrio parahaemolyticus, the compatible solute ectoine is biosynthesized de novo, which is energetically more costly than uptake; therefore, tight regulation is required. To uncover novel regulators of the ectoine biosynthesis ectABC-asp_ect operon, a DNA affinity pulldown of proteins interacting with the ectABC-asp_ect regulatory region was performed. Mass spectrometry analysis identified, among others, 3 regulators: LeuO, NhaR, and the nucleoid associated protein H-NS. In-frame non-polar deletions were made for each gene and PectA-gfp promoter reporter assays were performed in exponential and stationary phase cells. PectA-gfp expression was significantly repressed in the ΔleuO mutant and significantly induced in the ΔnhaR mutant compared to wild type, suggesting positive and negative regulation, respectively. In the Δhns mutant, PectA-gfp showed increased expression in exponential phase cells, but no change compared to wild type in stationary phase cells. To examine whether H-NS interacts with LeuO or NhaR at the ectoine regulatory region, double deletion mutants were created. In a ΔleuO/Δhns mutant, PectA-gfp showed reduced expression, but significantly more than ΔleuO, suggesting H-NS and LeuO interact to regulate ectoine expression. However, ΔnhaR/Δhns had no additional effect compared to ΔnhaR, suggesting NhaR regulation is independent of H-NS. To examine leuO regulation further, a PleuO-gfp reporter analysis was examined that showed significantly increased expression in the ΔleuO, Δhns, and ΔleuO/Δhns mutants compared to wild type, indicating both are repressors. Growth pattern analysis of the mutants in M9G 6%NaCl showed growth defects compared to wild type, indicating that these regulators play an important physiological role in salinity stress tolerance outside of regulating ectoine biosynthesis gene expression. IMPORTANCE Ectoine is a commercially used compatible solute that acts as a biomolecule stabilizer because of its additional role as a chemical chaperone. A better understanding of how the ectoine biosynthetic pathway is regulated in natural bacterial producers can be used to increase efficient industrial production. The de novo biosynthesis of ectoine is essential for bacteria to survive osmotic stress when exogenous compatible solutes are absent. This study identified LeuO as a positive regulator and NhaR as a negative regulator of ectoine biosynthesis and showed that, similar to enteric species, LeuO is an anti-silencer of H-NS. In addition, defects in growth in high salinity among all the mutants suggest that these regulators play a broader role in the osmotic stress response beyond ectoine biosynthesis regulation.
Collapse
Affiliation(s)
| | - Gwendolyn J. Gregory
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - E. Fidelma Boyd
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
6
|
Yoon CK, Lee SH, Zhang J, Lee HY, Kim MK, Seok YJ. HPr prevents FruR-mediated facilitation of RNA polymerase binding to the fru promoter in Vibrio cholerae. Nucleic Acids Res 2023; 51:5432-5448. [PMID: 36987873 PMCID: PMC10287919 DOI: 10.1093/nar/gkad220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/17/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Phosphorylation state-dependent interactions of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS) components with transcription factors play a key role in carbon catabolite repression (CCR) by glucose in bacteria. Glucose inhibits the PTS-dependent transport of fructose and is preferred over fructose in Vibrio cholerae, but the mechanism is unknown. We have recently shown that, contrary to Escherichia coli, the fructose-dependent transcriptional regulator FruR acts as an activator of the fru operon in V. cholerae and binding of the FruR-fructose 1-phosphate (F1P) complex to an operator facilitates RNA polymerase (RNAP) binding to the fru promoter. Here we show that, in the presence of glucose, dephosphorylated HPr, a general PTS component, binds to FruR. Whereas HPr does not affect DNA-binding affinity of FruR, regardless of the presence of F1P, it prevents the FruR-F1P complex from facilitating the binding of RNAP to the fru promoter. Structural and biochemical analyses of the FruR-HPr complex identify key residues responsible for the V. cholerae-specific FruR-HPr interaction not observed in E. coli. Finally, we reveal how the dephosphorylated HPr interacts with FruR in V. cholerae, whereas the phosphorylated HPr binds to CcpA, which is a global regulator of CCR in Bacillus subtilis and shows structural similarity to FruR.
Collapse
Affiliation(s)
- Chang-Kyu Yoon
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Seung-Hwan Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| | - Jing Zhang
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Hye-Young Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
- Research Institute of Basic Science, Seoul National University, Seoul, 08826, Korea
| | - Min-Kyu Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Korea
| | - Yeong-Jae Seok
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
7
|
Tai JSB, Ferrell MJ, Yan J, Waters CM. New Insights into Vibrio cholerae Biofilms from Molecular Biophysics to Microbial Ecology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:17-39. [PMID: 36792869 PMCID: PMC10726288 DOI: 10.1007/978-3-031-22997-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
With the discovery that 48% of cholera infections in rural Bangladesh villages could be prevented by simple filtration of unpurified waters and the detection of Vibrio cholerae aggregates in stools from cholera patients it was realized V. cholerae biofilms had a central function in cholera pathogenesis. We are currently in the seventh cholera pandemic, caused by O1 serotypes of the El Tor biotypes strains, which initiated in 1961. It is estimated that V. cholerae annually causes millions of infections and over 100,000 deaths. Given the continued emergence of cholera in areas that lack access to clean water, such as Haiti after the 2010 earthquake or the ongoing Yemen civil war, increasing our understanding of cholera disease remains a worldwide public health priority. The surveillance and treatment of cholera is also affected as the world is impacted by the COVID-19 pandemic, raising significant concerns in Africa. In addition to the importance of biofilm formation in its life cycle, V. cholerae has become a key model system for understanding bacterial signal transduction networks that regulate biofilm formation and discovering fundamental principles about bacterial surface attachment and biofilm maturation. This chapter will highlight recent insights into V. cholerae biofilms including their structure, ecological role in environmental survival and infection, regulatory systems that control them, and biomechanical insights into the nature of V. cholerae biofilms.
Collapse
Affiliation(s)
- Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Micah J Ferrell
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Christopher M Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
Ma R, Liu Y, Gan J, Qiao H, Ma J, Zhang Y, Bu Y, Shao S, Zhang Y, Wang Q. OUP accepted manuscript. Nucleic Acids Res 2022; 50:3777-3798. [PMID: 35325196 PMCID: PMC9023278 DOI: 10.1093/nar/gkac180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
| | | | | | - Haoxian Qiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiabao Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifan Bu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuai Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- To whom correspondence should be addressed. Tel: +86 21 64253306; Fax: +86 21 64253306;
| |
Collapse
|
9
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6570571. [DOI: 10.1093/femsle/fnac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/21/2022] [Accepted: 04/15/2022] [Indexed: 11/14/2022] Open
|
10
|
Gao H, Ma L, Qin Q, Qiu Y, Zhang J, Li J, Lou J, Diao B, Zhao H, Shi Q, Zhang Y, Kan B. Fur Represses Vibrio cholerae Biofilm Formation via Direct Regulation of vieSAB, cdgD, vpsU, and vpsA-K Transcription. Front Microbiol 2020; 11:587159. [PMID: 33193241 PMCID: PMC7641913 DOI: 10.3389/fmicb.2020.587159] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022] Open
Abstract
Attached Vibrio cholerae biofilms are essential for environmental persistence and infectivity. The vps loci (vpsU, vpsA-K, and vpsL-Q) are required for mature biofilm formation and are responsible for the synthesis of exopolysaccharide. Transcription of vps genes is activated by the signaling molecule bis-(3'-5')-cyclic di-GMP (c-di-GMP), whose metabolism is controlled by the proteins containing the GGDEF and/or EAL domains. The ferric uptake regulator (Fur) plays key roles in the transcription of many genes involved in iron metabolism and non-iron functions. However, roles for Fur in Vibrio biofilm production have not been documented. In this study, phenotypic assays demonstrated that Fur, independent of iron, decreases in vivo c-di-GMP levels and inhibits in vitro biofilm formation by Vibrio cholerae. The Fur box-like sequences were detected within the promoter-proximal DNA regions of vpsU, vpsA-K, vieSAB, and cdgD, suggesting that transcription of these genes may be under the direct control of Fur. Indeed, the results of luminescence, quantitative PCR (qPCR), electrophoretic mobility shift assay (EMSA), and DNase I footprinting assays demonstrated Fur to bind to the promoter-proximal DNA regions of vpsU, vpsA-K, and cdgD to repress their transcription. In contrast, Fur activates the transcription of vieSAB in a direct manner. The cdgD and vieSAB encode proteins with GGDEF and EAL domains, respectively. Thus, data presented here highlight a new physiological role for Fur wherein it acts as a repressor of V. cholerae biofilm formation mediated by decreasing the production of exopolysaccharide and the intracellular levels of c-di-GMP.
Collapse
Affiliation(s)
- He Gao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lizhi Ma
- Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Qin Qin
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yue Qiu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jingyun Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jie Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jing Lou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Baowei Diao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hongqun Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qiannan Shi
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yiquan Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
11
|
A MARTX Toxin rtxA Gene Is Controlled by Host Environmental Signals through a CRP-Coordinated Regulatory Network in Vibrio vulnificus. mBio 2020; 11:mBio.00723-20. [PMID: 32723914 PMCID: PMC7387792 DOI: 10.1128/mbio.00723-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A MARTX toxin, RtxA, is an essential virulence factor of many pathogens, including Vibrio species. H-NS and HlyU repress and derepress, respectively, rtxA expression of a life-threatening pathogen, Vibrio vulnificus. We found that Lrp directly activates rtxA independently of H-NS and HlyU, and leucine inhibits the Lrp-mediated activation of rtxA. Furthermore, we demonstrated that CRP represses rtxA but derepresses in the presence of exogenous glucose. CRP represses rtxA not only directly by binding to upstream of rtxA but also indirectly by repressing lrp and hlyU. This is the first report of a regulatory network comprising CRP, Lrp, H-NS, and HlyU, which coordinates the rtxA expression in response to environmental signals such as leucine and glucose during infection. This elaborate regulatory network will enhance the fitness of V. vulnificus and contribute to its successful infection within the host. A multifunctional autoprocessing repeats-in-toxin (MARTX) toxin plays an essential role in the virulence of many pathogens, including a fulminating human pathogen Vibrio vulnificus. H-NS and HlyU repress and derepress expression of the MARTX toxin gene rtxA in V. vulnificus, respectively. However, little is known about other regulatory proteins and environmental signals involved in rtxA regulation. In this study, we found that a leucine-responsive regulatory protein (Lrp) activates rtxA by binding directly and specifically to the rtxA promoter, PrtxA. Phased hypersensitivity resulting from DNase I cleavage of the PrtxA regulatory region suggests that Lrp probably induces DNA bending in PrtxA. Lrp activates PrtxA independently of H-NS and HlyU, and leucine inhibits Lrp binding to PrtxA and reduces the Lrp-mediated activation. Furthermore, a cyclic AMP receptor protein (CRP) represses PrtxA, and exogenous glucose relieves the CRP-mediated repression. Biochemical and mutational analyses demonstrated that CRP binds directly and specifically to the upstream region of PrtxA, which presumably alters the DNA conformation in PrtxA and thus represses rtxA. Moreover, CRP represses expression of lrp and hlyU by binding directly to their upstream regions, forming coherent feed-forward loops with Lrp and HlyU. In conclusion, expression of rtxA is controlled by a regulatory network comprising CRP, Lrp, H-NS, and HlyU in response to changes in host environmental signals such as leucine and glucose. This collaborative regulation enables the elaborate expression of rtxA, thereby enhancing the fitness and pathogenesis of V. vulnificus during the course of infection.
Collapse
|
12
|
Baranova DE, Willsey GG, Levinson KJ, Smith C, Wade J, Mantis NJ. Transcriptional profiling of Vibrio cholerae O1 following exposure to human anti- lipopolysaccharide monoclonal antibodies. Pathog Dis 2020; 78:ftaa029. [PMID: 32589220 PMCID: PMC7371154 DOI: 10.1093/femspd/ftaa029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/22/2020] [Indexed: 02/04/2023] Open
Abstract
Following an episode of cholera, a rapidly dehydrating, watery diarrhea caused by the Gram-negative bacterium, Vibrio cholerae O1, humans mount a robust anti-lipopolysaccharide (LPS) antibody response that is associated with immunity to subsequent re-infection. In neonatal mouse and rabbit models of cholera, passively administered anti-LPS polyclonal and monoclonal (MAb) antibodies reduce V. cholerae colonization of the intestinal epithelia by inhibiting bacterial motility and promoting vibrio agglutination. Here we demonstrate that human anti-LPS IgG MAbs also arrest V. cholerae motility and induce bacterial paralysis. A subset of those MAbs also triggered V. cholerae to secrete an extracellular matrix (ECM). To identify changes in gene expression that accompany antibody exposure and that may account for motility arrest and ECM production, we subjected V. cholerae O1 El Tor to RNA-seq analysis after treatment with ZAC-3 IgG, a high affinity MAb directed against the core/lipid A region of LPS. We identified > 160 genes whose expression was altered following ZAC-3 IgG treatment, although canonical outer membrane stress regulons were not among them. ompS (VCA1028), a porin associated with virulence and indirectly regulated by ToxT, and norR (VCA0182), a σ54-dependent transcription factor involved in late stages of infection, were two upregulated genes worth noting.
Collapse
Affiliation(s)
- Danielle E Baranova
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Graham G Willsey
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Kara J Levinson
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Carol Smith
- Division of Molecular Genetics, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Joseph Wade
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Molecular Genetics, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| | - Nicholas J Mantis
- Department of Biomedical Sciences, University at Albany, 1400 Washington Ave, Albany NY 12222
- Division of Infectious Diseases, Wadsworth Center, NYS Department of Health, 120 New Scotland Ave, Albany NY 12208
| |
Collapse
|
13
|
Naha A, Mandal RS, Samanta P, Saha RN, Shaw S, Ghosh A, Chatterjee NS, Dutta P, Okamoto K, Dutta S, Mukhopadhyay AK. Deciphering the possible role of ctxB7 allele on higher production of cholera toxin by Haitian variant Vibrio cholerae O1. PLoS Negl Trop Dis 2020; 14:e0008128. [PMID: 32236098 PMCID: PMC7112172 DOI: 10.1371/journal.pntd.0008128] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
Cholera continues to be an important public health concern in developing countries where proper hygiene and sanitation are compromised. This severe diarrheal disease is caused by the Gram-negative pathogen Vibrio cholerae belonging to serogroups O1 and O139. Cholera toxin (CT) is the prime virulence factor and is directly responsible for the disease manifestation. The ctxB gene encodes cholera toxin B subunit (CTB) whereas the A subunit (CTA) is the product of ctxA gene. Enzymatic action of CT depends on binding of B pentamers to the lipid-based receptor ganglioside GM1. In recent years, emergence of V. cholerae Haitian variant strains with ctxB7 allele and their rapid spread throughout the globe has been linked to various cholera outbreaks in Africa and Asia. These strains produce classical type (WT) CTB except for an additional mutation in the signal sequence region where an asparagine (N) residue replaces a histidine (H) at the 20th amino acid position (H20N) of CTB precursor (pre-CTB). Here we report that Haitian variant V. cholerae O1 strains isolated in Kolkata produced higher amount of CT compared to contemporary O1 El Tor variant strains under in vitro virulence inducing conditions. We observed that the ctxB7 allele, itself plays a pivotal role in higher CT production. Based on our in silico analysis, we hypothesized that higher accumulation of toxin subunits from ctxB7 allele might be attributed to the structural alteration at the CTB signal peptide region of pre-H20N CTB. Overall, this study provides plausible explanation regarding the hypertoxigenic phenotype of the Haitian variant strains which have spread globally, possibly through positive selection for increased pathogenic traits.
Collapse
Affiliation(s)
- Arindam Naha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rahul Shubhra Mandal
- Biomedical Informatics Center, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Prosenjit Samanta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rudra Narayan Saha
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sreeja Shaw
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | | | - Pujarini Dutta
- Division of Clinical Medicine, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Keinosuke Okamoto
- Collaborative Research Center of Okayama University for Infectious Diseases at NICED, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish Kumar Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
- * E-mail:
| |
Collapse
|
14
|
Chaparian RR, Tran MLN, Miller Conrad LC, Rusch DB, van Kessel JC. Global H-NS counter-silencing by LuxR activates quorum sensing gene expression. Nucleic Acids Res 2020; 48:171-183. [PMID: 31745565 PMCID: PMC7145609 DOI: 10.1093/nar/gkz1089] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/15/2019] [Accepted: 11/18/2019] [Indexed: 01/03/2023] Open
Abstract
Bacteria coordinate cellular behaviors using a cell-cell communication system termed quorum sensing. In Vibrio harveyi, the master quorum sensing transcription factor LuxR directly regulates >100 genes in response to changes in population density. Here, we show that LuxR derepresses quorum sensing loci by competing with H-NS, a global transcriptional repressor that oligomerizes on DNA to form filaments and bridges. We first identified H-NS as a repressor of bioluminescence gene expression, for which LuxR is a required activator. In an hns deletion strain, LuxR is no longer necessary for transcription activation of the bioluminescence genes, suggesting that the primary role of LuxR is to displace H-NS to derepress gene expression. Using RNA-seq and ChIP-seq, we determined that H-NS and LuxR co-regulate and co-occupy 28 promoters driving expression of 63 genes across the genome. ChIP-PCR assays show that as autoinducer concentration increases, LuxR protein accumulates at co-occupied promoters while H-NS protein disperses. LuxR is sufficient to evict H-NS from promoter DNA in vitro, which is dependent on LuxR DNA binding activity. From these findings, we propose a model in which LuxR serves as a counter-silencer at H-NS-repressed quorum sensing loci by disrupting H-NS nucleoprotein complexes that block transcription.
Collapse
Affiliation(s)
| | - Minh L N Tran
- Department of Chemistry, San Jose State University, San Jose, CA, USA
| | | | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | |
Collapse
|
15
|
Park NY, Kim IH, Wen Y, Lee KW, Lee S, Kim JA, Jung KH, Lee KH, Kim KS. Multi-Factor Regulation of the Master Modulator LeuO for the Cyclic-(Phe-Pro) Signaling Pathway in Vibrio vulnificus. Sci Rep 2019; 9:20135. [PMID: 31882984 PMCID: PMC6934829 DOI: 10.1038/s41598-019-56855-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022] Open
Abstract
LeuO plays the role of a master regulator in the cyclic-L-phenylalanine-L-proline (cFP)-dependent signaling pathway in Vibrio vulnificus. cFP, as shown through isothermal titration calorimetry analysis, binds specifically to the periplasmic domain of ToxR. Binding of cFP triggers a change in the cytoplasmic domain of ToxR, which then activates transcription of leuO encoding a LysR-type regulator. LeuO binds to the region upstream of its own coding sequence, inhibiting its own transcription and maintaining a controlled level of expression. A five-bp deletion in this region abolished expression of LeuO, but a ten-bp deletion did not, suggesting that a DNA bending mechanism is involved in the regulation. Furthermore, binding of RNA polymerase was significantly lower both in the deletion of the ToxR binding site and in the five-bp deletion, but not in the ten-bp deletion, as shown in pull-down assays using an antibody against RNA polymerase subunit α. In summary, multiple factors are involved in control of the expression of LeuO, a master regulator that orchestrates downstream regulators to modulate factors required for survival and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Na-Young Park
- Department of Life Science, Sogang University, Seoul, Korea
| | - In Hwang Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Yancheng Wen
- Department of Life Science, Sogang University, Seoul, Korea.,Key Laboratory of Ministry of Education for Gastrointestinal Cancer Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, Fujian, People's Republic of China
| | - Keun-Woo Lee
- Department of Life Science, Sogang University, Seoul, Korea
| | - Sora Lee
- Department of Life Science, Sogang University, Seoul, Korea
| | - Jeong-A Kim
- Department of Life Science, Sogang University, Seoul, Korea
| | - Kwang-Hwan Jung
- Department of Life Science, Sogang University, Seoul, Korea.,Institute of Biological Interfaces3, Sogang University, Seoul, Korea
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, Seoul, Korea
| | - Kun-Soo Kim
- Department of Life Science, Sogang University, Seoul, Korea. .,Interdisciplinary Program of Integrated Biotechnology, Sogang University, Seoul, Korea.
| |
Collapse
|
16
|
Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease). PLoS Pathog 2019; 15:e1008233. [PMID: 31860664 PMCID: PMC6957213 DOI: 10.1371/journal.ppat.1008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
GdhR is a GntR-type regulator of Neisseria gonorrhoeae encoded by a gene (gdhR) belonging to the MtrR regulon, which comprises multiple genes required for antibiotic resistance such as the mtrCDE efflux pump genes. In previous work we showed that loss of gdhR results in enhanced gonococcal fitness in a female mouse model of lower genital tract infection. Here, we used RNA-Seq to perform a transcriptional profiling study to determine the GdhR regulon. GdhR was found to regulate the expression of 2.3% of all the genes in gonococcal strain FA19, of which 39 were activated and 11 were repressed. Within the GdhR regulon we found that lctP, which encodes a unique L-lactate transporter and has been associated with gonococcal pathogenesis, was the highest of GdhR-repressed genes. By using in vitro transcription and DNase I footpriting assays we mapped the lctP transcriptional start site (TSS) and determined that GdhR directly inhibits transcription by binding to an inverted repeat sequence located 9 bases downstream of the lctP TSS. Epistasis analysis revealed that, while loss of lctP increased susceptibility of gonococci to hydrogen peroxide (H2O2) the loss of gdhR enhanced resistance; however, this GdhR-endowed property was reversed in a double gdhR lctP null mutant. We assessed the effect of different carbon sources on lctP expression and found that D-glucose, but not L-lactate or pyruvate, repressed lctP expression within a physiological concentration range but in a GdhR-independent manner. Moreover, we found that adding glucose to the medium enhanced susceptibility of gonococci to hydrogen peroxide. We propose a model for the role of lctP regulation via GdhR and glucose in the pathogenesis of N. gonorrhoeae.
Collapse
|
17
|
Fragel SM, Montada A, Heermann R, Baumann U, Schacherl M, Schnetz K. Characterization of the pleiotropic LysR-type transcription regulator LeuO of Escherichia coli. Nucleic Acids Res 2019; 47:7363-7379. [PMID: 31184713 PMCID: PMC6698644 DOI: 10.1093/nar/gkz506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/22/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022] Open
Abstract
LeuO is a pleiotropic LysR-type transcriptional regulator (LTTR) and co-regulator of the abundant nucleoid-associated repressor protein H-NS in Gammaproteobacteria. As other LTTRs, LeuO is a tetramer that is formed by dimerization of the N-terminal DNA-binding domain (DBD) and C-terminal effector-binding domain (EBD). To characterize the Escherichia coli LeuO protein, we screened for LeuO mutants that activate the cas (CRISPR-associated/Cascade) promoter more effectively than wild-type LeuO. This yielded nine mutants carrying amino acid substitutions in the dimerization interface of the regulatory EBD, as shown by solving the EBD’s crystal structure. Superimposing of the crystal structures of LeuO-EBD and LeuO-S120D-EBD suggests that the Ser120 to Asp substitution triggers a structural change that is related to effector-induced structural changes of LTTRs. Corresponding functional analyses demonstrated that LeuO-S120D has a higher DNA-binding affinity than wild-type LeuO. Further, a palindromic DNA-binding core-site and a consensus sequence were identified by DNase I footprinting with LeuO-S120D as well as with the dimeric DBD. The data suggest that LeuO-S120D mimics an effector-induced form of LeuO regulating a distinct set of target loci. In general, constitutive mutants and determining the DNA-binding specificity of the DBD-dimer are feasible approaches to characterize LTTRs of unknown function.
Collapse
Affiliation(s)
- Susann M Fragel
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| | - Anna Montada
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Ralf Heermann
- Department of Microbiology, Ludwig-Maximilians-Universität Munich, Großhaderner Str. 2-4, 82152 Martinsried, Germany.,Institute for Molecular Physiology, Microbiology, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128 Mainz, Germany
| | - Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Magdalena Schacherl
- Institute of Biochemistry, University of Cologne, Zülpicher Str. 47, 50674 Cologne, Germany
| | - Karin Schnetz
- Institute for Genetics, University of Cologne, Zülpicher Str. 47a, 50674 Cologne, Germany
| |
Collapse
|
18
|
Bridges AA, Bassler BL. The intragenus and interspecies quorum-sensing autoinducers exert distinct control over Vibrio cholerae biofilm formation and dispersal. PLoS Biol 2019; 17:e3000429. [PMID: 31710602 PMCID: PMC6872173 DOI: 10.1371/journal.pbio.3000429] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/21/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
Vibrio cholerae possesses multiple quorum-sensing (QS) systems that control virulence and biofilm formation among other traits. At low cell densities, when QS autoinducers are absent, V. cholerae forms biofilms. At high cell densities, when autoinducers have accumulated, biofilm formation is repressed, and dispersal occurs. Here, we focus on the roles of two well-characterized QS autoinducers that function in parallel. One autoinducer, called cholerae autoinducer-1 (CAI-1), is used to measure Vibrio abundance, and the other autoinducer, called autoinducer-2 (AI-2), is widely produced by different bacterial species and presumed to enable V. cholerae to assess the total bacterial cell density of the vicinal community. The two V. cholerae autoinducers funnel information into a shared signal relay pathway. This feature of the QS system architecture has made it difficult to understand how specific information can be extracted from each autoinducer, how the autoinducers might drive distinct output behaviors, and, in turn, how the bacteria use QS to distinguish kin from nonkin in bacterial communities. We develop a live-cell biofilm formation and dispersal assay that allows examination of the individual and combined roles of the two autoinducers in controlling V. cholerae behavior. We show that the QS system works as a coincidence detector in which both autoinducers must be present simultaneously for repression of biofilm formation to occur. Within that context, the CAI-1 QS pathway is activated when only a few V. cholerae cells are present, whereas the AI-2 pathway is activated only at much higher cell density. The consequence of this asymmetry is that exogenous sources of AI-2, but not CAI-1, contribute to satisfying the coincidence detector to repress biofilm formation and promote dispersal. We propose that V. cholerae uses CAI-1 to verify that some of its kin are present before committing to the high-cell–density QS mode, but it is, in fact, the broadly made autoinducer AI-2 that sets the pace of the V. cholerae QS program. This first report of unique roles for the different V. cholerae autoinducers suggests that detection of kin fosters a distinct outcome from detection of nonkin. The pathogenic bacterium Vibrio cholerae uses both kin and nonkin quorum-sensing autoinducer molecules to control its biofilm life cycle; this study shows that each autoinducer plays a unique role in regulating biofilm formation and dispersal.
Collapse
Affiliation(s)
- Andrew A. Bridges
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bonnie L. Bassler
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Ayala JC, Benitez JA, Silva AJ. A proteome-wide screen to identify transcription factors interacting with the Vibrio cholerae rpoS promoter. J Microbiol Methods 2019; 165:105702. [PMID: 31454505 DOI: 10.1016/j.mimet.2019.105702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 11/26/2022]
Abstract
We describe a proteomic approach to identify transcription factors binding to a target promoter. The method's usefulness was tested by identifying proteins binding to the Vibrio cholerae rpoS promoter in response to cell density. Proteins identified in this screen included the nucleoid-associated protein Fis and the quorum sensing regulator HapR.
Collapse
Affiliation(s)
- Julio C Ayala
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA
| | - Jorge A Benitez
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| | - Anisia J Silva
- Morehouse School of Medicine, Department of Microbiology, Biochemistry and Immunology, 720 Westview Dr., SW, Atlanta, GA 30310, USA.
| |
Collapse
|
20
|
Dorman MJ, Dorman CJ. Regulatory Hierarchies Controlling Virulence Gene Expression in Shigella flexneri and Vibrio cholerae. Front Microbiol 2018; 9:2686. [PMID: 30473684 PMCID: PMC6237886 DOI: 10.3389/fmicb.2018.02686] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022] Open
Abstract
Gram-negative enteropathogenic bacteria use a variety of strategies to cause disease in the human host and gene regulation in some form is typically a part of the strategy. This article will compare the toxin-based infection strategy used by the non-invasive pathogen Vibrio cholerae, the etiological agent in human cholera, with the invasive approach used by Shigella flexneri, the cause of bacillary dysentery. Despite the differences in the mechanisms by which the two pathogens cause disease, they use environmentally-responsive regulatory hierarchies to control the expression of genes that have some features, and even some components, in common. The involvement of AraC-like transcription factors, the integration host factor, the Factor for inversion stimulation, small regulatory RNAs, the RNA chaperone Hfq, horizontal gene transfer, variable DNA topology and the need to overcome the pervasive silencing of transcription by H-NS of horizontally acquired genes are all shared features. A comparison of the regulatory hierarchies in these two pathogens illustrates some striking cross-species similarities and differences among mechanisms coordinating virulence gene expression. S. flexneri, with its low infectious dose, appears to use a strategy that is centered on the individual bacterial cell, whereas V. cholerae, with a community-based, quorum-dependent approach and an infectious dose that is several orders of magnitude higher, seems to rely more on the actions of a bacterial collective.
Collapse
Affiliation(s)
- Matthew J Dorman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Charles J Dorman
- Department of Microbiology, Moyne Institute of Preventive Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Dong Y, Wang Y, Liu J, Ma S, Awan F, Lu C, Liu Y. Discovery of lahS as a Global Regulator of Environmental Adaptation and Virulence in Aeromonas hydrophila. Int J Mol Sci 2018; 19:E2709. [PMID: 30208624 PMCID: PMC6163582 DOI: 10.3390/ijms19092709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
Aeromonas hydrophila is an important aquatic microorganism that can cause fish hemorrhagic septicemia. In this study, we identified a novel LysR family transcriptional regulator (LahS) in the A. hydrophila Chinese epidemic strain NJ-35 from a library of 947 mutant strains. The deletion of lahS caused bacteria to exhibit significantly decreased hemolytic activity, motility, biofilm formation, protease production, and anti-bacterial competition ability when compared to the wild-type strain. In addition, the determination of the fifty percent lethal dose (LD50) in zebrafish demonstrated that the lahS deletion mutant (ΔlahS) was highly attenuated in virulence, with an approximately 200-fold increase in LD50 observed as compared with that of the wild-type strain. However, the ΔlahS strain exhibited significantly increased antioxidant activity (six-fold). Label-free quantitative proteome analysis resulted in the identification of 34 differentially expressed proteins in the ΔlahS strain. The differentially expressed proteins were involved in flagellum assembly, metabolism, redox reactions, and cell density induction. The data indicated that LahS might act as a global regulator to directly or indirectly regulate various biological processes in A. hydrophila NJ-35, contributing to a greater understanding the pathogenic mechanisms of A. hydrophila.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
22
|
Russell R, Wang H, Benitez JA, Silva AJ. Deletion of gene encoding the nucleoid-associated protein H-NS unmasks hidden regulatory connections in El Tor biotype Vibrio cholerae. MICROBIOLOGY-SGM 2018; 164:998-1003. [PMID: 29813015 DOI: 10.1099/mic.0.000672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypervirulent atypical El Tor biotype Vibrio cholerae O1 isolates harbour mutations in the DNA-binding domain of the nucleoid-associated protein H-NS and the receiver domain of the response regulator VieA. Here, we provide two examples in which inactivation of H-NS in El Tor biotype vibrios unmasks hidden regulatory connections. First, deletion of the helix-turn-helix domain of VieA in an hns mutant background diminished biofilm formation and exopolysaccharide gene expression, a function that phenotypically opposes its phosphodiesterase activity. Second, deletion of vieA in an hns mutant diminished the expression of σE, a virulence determinant that mediates the envelope stress response. hns mutants were highly sensitive to envelope stressors compared to wild-type. However, deletion of vieA in the hns mutant restored or exceeded wild-type resistance. These findings suggest an evolutionary path for the emergence of hypervirulent strains starting from nucleotide sequence diversification affecting the interaction of H-NS with DNA.
Collapse
Affiliation(s)
- Raedeen Russell
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Hongxia Wang
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA.,Present address: Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jorge A Benitez
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Anisia J Silva
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|