1
|
Mohamed MS, Soltane R, Alatwi E, Alasiri A, Almulla N, Abdelkader K, Sayed AM. Niclosamide as a potential antivirulence agent disrupting quorum sensing in Pseudomonas aeruginosa: A molecular and in silico approach. Biochem Biophys Res Commun 2025; 762:151742. [PMID: 40199129 DOI: 10.1016/j.bbrc.2025.151742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/15/2025] [Accepted: 03/31/2025] [Indexed: 04/10/2025]
Abstract
Pseudomonas aeruginosa is a formidable pathogen linked to various challenging infections. Quorum sensing (QS) plays a pivotal role in regulating the virulence factors of P. aeruginosa. Targeting QS represents a promising strategy for mitigating P. aeruginosa virulence. This study explores the potential of niclosamide (NIC) as an antivirulence agent, emphasizing its effects on biofilm formation, pigment production, and its molecular interaction with the QS regulator, LasR. A comprehensive methodology was employed, encompassing in-silico, molecular, and in vitro analyses to assess the antivirulence properties of NIC. Sub-inhibitory concentrations of NIC (64 μg/ml) were evaluated for their capacity to inhibit biofilm formation and pigment production in P. aeruginosa. NIC resulted in a 45.4 % reduction in biofilm formation, a 48.8 % decrease in pyocyanin production, and a 41.3 % reduction in rhamnolipid production. Furthermore, NIC displayed a dose-dependent antagonistic effect on LasR, with an IC50 of 5.82 ± 0.17 μM, without any noted agonistic activity. Molecular modeling and molecular dynamics (MD) simulations indicated that NIC interacts with LasR, hindering its dimerization and destabilizing its structure. These findings were corroborated by sedimentation velocity experiments and thermal shift assays. NIC shows considerable promise as an antivirulence agent against P. aeruginosa by disrupting the LasR-mediated QS system. Through its interaction with LasR, NIC inhibits biofilm formation and diminishes the production of critical virulence factors, making P. aeruginosa less virulent and more vulnerable to conventional antibiotics and immune responses.
Collapse
Affiliation(s)
- Malik Suliman Mohamed
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, 72388, Al-Jouf, Kingdom of Saudi Arabia.
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia.
| | - Eid Alatwi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, 72388, Al-Jouf, Kingdom of Saudi Arabia.
| | - Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia.
| | - Nuha Almulla
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, 21955, Kingdom of Saudi Arabia.
| | - Karim Abdelkader
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511, Beni-Suef, Egypt.
| | - Ahmed M Sayed
- Department of Pharmacognosy, Faculty of Pharmacy, Nahda University, 62511, Beni-Suef, Egypt; Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014, Basrah, Iraq.
| |
Collapse
|
2
|
Dolph L, Santa EE, Stoutland IM, Mesa KM, Dickson CC, Blackwell HE, Franz AK. Silyl-Lipid Functionalized N-Acyl Homoserine Lactones as Modulators of Bacterial Cell-Cell Communication. ACS Chem Biol 2025; 20:412-420. [PMID: 39945376 PMCID: PMC11851432 DOI: 10.1021/acschembio.4c00720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 01/30/2025] [Indexed: 02/22/2025]
Abstract
We report silyl-lipid derivatives of N-acyl l-homoserine lactones (AHLs) that have nanomolar activities in LuxR-type quorum sensing receptors in Gram-negative bacterial pathogens. A collection of silyl-lipid AHLs were designed and synthesized to represent three general structural classes based on native AHL signals and synthetic LuxR-type receptor modulators. The synthetic routes feature straightforward hydrosilylation and aryl silylation reactions to access silyl-lipid groups that are not readily accessible in analogous all-carbon chemistry. Of the 17 compounds evaluated, eight silyl-lipid AHLs were identified with either nanomolar agonistic or submicromolar antagonistic activities in the LasR receptor from the common pathogen Pseudomonas aeruginosa using E. coli reporter gene assays. Several silyl-lipid AHL agonists retained high activities in LasR in a native P. aeruginosa reporter system and also were active in another related LuxR-type receptor, EsaR from Pantoea stewartii. Light scattering and computational experiments indicate that the silyl-lipid group can alter the aggregation capabilities and lipophilicities of AHLs relative to native all-carbon tails, engendering larger aggregate formation in water and higher lipophilicities on average. These properties, along with their strong activity profiles in LuxR-type receptors, suggest silyl-lipid AHLs could provide value as chemical probes to study the mechanisms of quorum sensing in Gram-negative bacteria and the roles of signal lipophilicity in this chemical communication process.
Collapse
Affiliation(s)
- Linnea
S. Dolph
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Emma E. Santa
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Irene M. Stoutland
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kelsey M. Mesa
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Cole C. Dickson
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| | - Helen E. Blackwell
- Department
of Chemistry, University of Wisconsin−Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Annaliese K. Franz
- Department
of Chemistry, University of California,
Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
3
|
Chigozie VU, Saki M, Esimone CO. Molecular structural arrangement in quorum sensing and bacterial metabolic production. World J Microbiol Biotechnol 2025; 41:71. [PMID: 39939401 DOI: 10.1007/s11274-025-04280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025]
Abstract
Quorum sensing (QS) regulates bacterial behaviors such as biofilm formation, virulence, and metabolite production through signaling molecules like acyl-homoserine lactones (AHLs), peptides, and AI-2. These signals are pivotal in bacterial communication, influencing pathogenicity and industrial applications. This review explores the molecular architecture of QS signals and their role in metabolite production, emphasizing structural modifications that disrupt bacterial communication to control virulence and enhance industrial processes. Key findings highlight the development of synthetic QS analogs, engineered inhibitors, and microbial consortia as innovative tools in biotechnology and medicine. The review underscores the potential of molecular engineering in managing microbial behaviors and optimizing applications like biofuel production, bioplastics, and anti-virulence therapies. Additionally, cross-species signaling mechanisms, particularly involving AI-2, reveal new opportunities for regulating interspecies cooperation and competition. This synthesis aims to bridge molecular insights with practical applications, showcasing how QS-based technologies can drive advancements in microbial biotechnology and therapeutic strategies.
Collapse
Affiliation(s)
- Victor U Chigozie
- Department of Pharmaceutical Microbiology and Biotechnology, David Umahi Federal University of Health Sciences, Ohaozara, Ebonyi State, Nigeria.
- International Institute for Pharmaceutical Research (IIPR), Ohaozara, Ebonyi State, Nigeria.
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Charles O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Awka, Nigeria
| |
Collapse
|
4
|
Du J, Li J, Wen J, Liu J, Xiao H, Zhang A, Yang D, Sun P, Zhou H, Xu J. A Systematic Hierarchical Virtual Screening Model for RhlR Inhibitors Based on PCA, Pharmacophore, Docking, and Molecular Dynamics. Int J Mol Sci 2024; 25:8000. [PMID: 39063243 PMCID: PMC11276863 DOI: 10.3390/ijms25148000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
RhlR plays a key role in the quorum sensing of Pseudomonas aeruginosa. The current structure-activity relationship (SAR) studies of RhlR inhibitors mainly focus on elucidating the functional groups. Based on a systematic review of previous research on RhlR inhibitors, this study aims to establish a systematic, hierarchical screening model for RhlR inhibitors. We initially established a database and utilized principal component analysis (PCA) to categorize the inhibitors into two classes. Based on the training set, pharmacophore models were established to elucidate the structural characteristics of ligands. Subsequently, molecular docking, molecular dynamics simulations, and the calculation of binding free energy and strain energy were performed to validate the crucial interactions between ligands and receptors. Then, the screening criteria for RhlR inhibitors were established hierarchically based on ligand structure characteristics, ligand-receptor interaction, and receptor affinity. Test sets were finally employed to validate the hierarchical virtual screening model by comparing it with the current SAR studies of RhlR inhibitors. The hierarchical screening model was confirmed to possess higher accuracy and a true positive rate, which holds promise for subsequent screening and the discovery of active RhlR inhibitors.
Collapse
Affiliation(s)
- Jiarui Du
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Jiahao Li
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Juqi Wen
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jun Liu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Haichuan Xiao
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Antian Zhang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Dongdong Yang
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
| | - Pinghua Sun
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization, Ministry of Education, School of Pharmacy, Shihezi University, Shihezi 832003, China
| | - Haibo Zhou
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou 511436, China; (J.D.); (J.L.); (J.W.); (J.L.); (H.X.); (A.Z.); (D.Y.); (P.S.)
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Manisha Y, Srinivasan M, Jobichen C, Rosenshine I, Sivaraman J. Sensing for survival: specialised regulatory mechanisms of Type III secretion systems in Gram-negative pathogens. Biol Rev Camb Philos Soc 2024; 99:837-863. [PMID: 38217090 DOI: 10.1111/brv.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
For centuries, Gram-negative pathogens have infected the human population and been responsible for numerous diseases in animals and plants. Despite advancements in therapeutics, Gram-negative pathogens continue to evolve, with some having developed multi-drug resistant phenotypes. For the successful control of infections caused by these bacteria, we need to widen our understanding of the mechanisms of host-pathogen interactions. Gram-negative pathogens utilise an array of effector proteins to hijack the host system to survive within the host environment. These proteins are secreted into the host system via various secretion systems, including the integral Type III secretion system (T3SS). The T3SS spans two bacterial membranes and one host membrane to deliver effector proteins (virulence factors) into the host cell. This multifaceted process has multiple layers of regulation and various checkpoints. In this review, we highlight the multiple strategies adopted by these pathogens to regulate or maintain virulence via the T3SS, encompassing the regulation of small molecules to sense and communicate with the host system, as well as master regulators, gatekeepers, chaperones, and other effectors that recognise successful host contact. Further, we discuss the regulatory links between the T3SS and other systems, like flagella and metabolic pathways including the tricarboxylic acid (TCA) cycle, anaerobic metabolism, and stringent cell response.
Collapse
Affiliation(s)
- Yadav Manisha
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Mahalashmi Srinivasan
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Ein Kerem, Jerusalem, 91120, Israel
| | - J Sivaraman
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
6
|
Bendary MM, Ali MAM, Abdel Halim AS, Boufahja F, Chaudhary AA, Elkelish A, Soliman RHM, Hegazy WAH. Investigating Sulforaphane's anti-virulence and anti-quorum sensing properties against Pseudomonas aeruginosa. Front Pharmacol 2024; 15:1406653. [PMID: 38835668 PMCID: PMC11148281 DOI: 10.3389/fphar.2024.1406653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background P. aeruginosa, a significant bacterium, can cause severe illness and resistance to antibiotics. Quorum sensing (QS) systems regulate virulence factors production. Targeting QS could reduce bacteria pathogenicity and prevent antibiotic resistance. Cruciferous vegetables contain sulforaphane, known for its anti-inflammatory, antioxidant, anticancer, and antimicrobial properties. Aim We aimed to examine the inhibitory influences of sulforaphane, at a sub-inhibitory concentration (¼ minimum inhibitory concentration, MIC), on virulence and QS in P. aeruginosa. Materials and methods The sulforaphane's anti-virulence actions at sub-inhibitory concentrations were explored in vitro and in vivo. A sub-MIC concentration of sulforaphane was combined with anti-pseudomonal drugs, and the results of this combination were assessed. The virtual affinity of sulforaphane for the receptors of QS was studied, and its effect on the expression of QS genes was quantified. Results Sulforaphane significantly decreased the biofilm formation, motility, ability to withstand oxidative stress, and the synthesis of virulence extracellular enzymes such as proteases, hemolysins, and elastase, as well as other virulence factors like pyocyanin. In addition, sulforaphane lessened the severity of P. aeruginosa infection in mice. Sulforaphane reduced the antipseudomonal antibiotics' MICs when used together, resulting in synergistic effects. The observed anti-virulence impacts were attributed to the ability of sulforaphane to inhibit QS via suppressing the QS genes' expression. Conclusion Sulforaphane shows promise as a potent anti-virulence and anti-QS agent that can be used alongside conventional antimicrobials to manage severe infections effectively. Furthermore, this study paves the way for further investigation of sulforaphane and similar structures as pharmacophores for anti-QS candidates.
Collapse
Affiliation(s)
- Mahmoud M Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohamed A M Ali
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fehmi Boufahja
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Amr Elkelish
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
- Department of Botany and Microbiology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania H M Soliman
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat, Oman
| |
Collapse
|
7
|
Alasiri A, Soltane R, Taha MN, Abd El-Aleam RH, Alshehri F, Sayed AM. Bakuchiol inhibits Pseudomonas aeruginosa's quorum sensing-dependent biofilm formation by selectively inhibiting its transcriptional activator protein LasR. Int J Biol Macromol 2024; 255:128025. [PMID: 37979739 DOI: 10.1016/j.ijbiomac.2023.128025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
In the present study, we characterized Bakuchiol (Bak) as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm formation. Upon extensive in vitro investigations, Bak was found to suppress the P. aeruginosa biofilm formation (75.5 % inhibition) and its associated virulence factor e.g., pyocyanin and rhamnolipids (% of inhibition = 71.5 % and 66.9 %, respectively). Upon LuxR-type receptors assay, Bak was found to selectively inhibit P. aeruginosa's LasR in a dose-dependent manner. Further in-depth molecular investigations (e.g., sedimentation velocity and thermal shift assays) revealed that Bak destabilized LasR upon binding and disrupted its functioning quaternary structure (i.e., the functioning dimeric form). The subsequent modeling and molecular dynamics (MD) simulations explained in more molecular detail how Bak interacts with LasR and how it can induce its dimeric form disruption. In conclusion, our study identified Bak as a potent and specific LasR antagonist that should be widely used as a chemical probe of QS in P. aeruginosa, offering new insights into LasR antagonism processes. The new findings shed light on the cryptic world of LuxR-type QS in this important opportunistic pathogen.
Collapse
Affiliation(s)
- Ahlam Alasiri
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Raya Soltane
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Mostafa N Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt.
| | - Rehab H Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information MTI, Cairo 11571, Egypt.
| | - Fatma Alshehri
- Department of Biology, College of Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Ahmed M Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni Suef, Egypt; Department of Pharmacognosy, College of Pharmacy, Almaaqal University, 61014 Basra, Iraq.
| |
Collapse
|
8
|
Soltane R, Alasiri A, Taha MN, Abd El-Aleam RH, Alghamdi KS, Ghareeb MA, Keshek DEG, Cardoso SM, Sayed AM. Norlobaridone Inhibits Quorum Sensing-Dependent Biofilm Formation and Some Virulence Factors in Pseudomonas aeruginosa by Disrupting Its Transcriptional Activator Protein LasR Dimerization. Biomolecules 2023; 13:1573. [PMID: 38002255 PMCID: PMC10669572 DOI: 10.3390/biom13111573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/26/2023] Open
Abstract
In the present study, norlobaridone (NBD) was isolated from Parmotrema and then evaluated as a new potent quorum sensing (QS) inhibitor against Pseudomonas aeruginosa biofilm development. This phenolic natural product was found to reduce P. aeruginosa biofilm formation (64.6% inhibition) and its related virulence factors, such as pyocyanin and rhamnolipids (% inhibition = 61.1% and 55%, respectively). In vitro assays inhibitory effects against a number of known LuxR-type receptors revealed that NBD was able to specifically block P. aeruginosa's LasR in a dose-dependent manner. Further molecular studies (e.g., sedimentation velocity and thermal shift assays) demonstrated that NBD destabilized LasR upon binding and damaged its functional quaternary structure (i.e., the functional dimeric form). The use of modelling and molecular dynamics (MD) simulations also allowed us to further understand its interaction with LasR, and how this can disrupt its dimeric form. Finally, our findings show that NBD is a powerful and specific LasR antagonist that should be widely employed as a chemical probe in QS of P. aeruginosa, providing new insights into LasR antagonism processes. The new discoveries shed light on the mysterious world of LuxR-type QS in this key opportunistic pathogen.
Collapse
Affiliation(s)
- Raya Soltane
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Ahlam Alasiri
- Department of Basic Sciences, Adham University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Mostafa N. Taha
- Microbiology and Immunology Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62764, Egypt;
| | - Rehab H. Abd El-Aleam
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo 11571, Egypt;
| | - Kawthar Saad Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al Batin 39511, Saudi Arabia;
| | - Mosad A. Ghareeb
- Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba, P.O. Box 30, Giza 12411, Egypt;
| | - Doaa El-Ghareeb Keshek
- Department of Biology, Jumum College University, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
- Agriculture Genetic Engineering Research Institute (AGERI), Agriculture Research Center, Giza 11571, Egypt
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Ahmed M. Sayed
- Pharmacognosy Department, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt
| |
Collapse
|
9
|
Khayat MT, Abbas HA, Ibrahim TS, Elbaramawi SS, Khayyat AN, Alharbi M, Hegazy WAH, Yehia FAZA. Synergistic Benefits: Exploring the Anti-Virulence Effects of Metformin/Vildagliptin Antidiabetic Combination against Pseudomonas aeruginosa via Controlling Quorum Sensing Systems. Biomedicines 2023; 11:biomedicines11051442. [PMID: 37239113 DOI: 10.3390/biomedicines11051442] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The repurposing of drugs is one of the most competent strategies for discovering new antimicrobial agents. Vildagliptin is a dipeptidyl peptidase-4 inhibitor (DPI-4) that is used effectively in combination with metformin to control blood glucose levels in diabetic patients. This study was designed to evaluate the anti-virulence activities of this combination against one of the most clinically important pathogens, Pseudomonas aeruginosa. The current findings show a significant ability of the vildagliptin-metformin combination to diminish biofilm formation, bacterial motility, and the production of virulent extracellular enzymes and pyocyanin pigment. Furthermore, this drug combination significantly increased the susceptibility of P. aeruginosa to oxidative stress, indicating immunity enhancement in the eradication of bacterial cells. In compliance with the in vitro findings, the histopathological photomicrographs of mice showed a considerable protective effect of the metformin-vildagliptin combination against P. aeruginosa, revealing relief of inflammation due to P. aeruginosa-induced pathogenesis. P. aeruginosa mainly employs quorum sensing (QS) systems to control the production of its huge arsenal of virulence factors. The anti-virulence activities of the metformin-vildagliptin combination can be interrupted by the anti-QS activities of both metformin and vildagliptin, as both exhibited a considerable affinity to QS receptors. Additionally, the metformin-vildagliptin combination significantly downregulated the expression of the main three QS-encoding genes in P. aeruginosa. These findings show the significant anti-virulence activities of metformin-vildagliptin at very low concentrations (10, 1.25 mg/mL, respectively) compared to the concentrations (850, 50 mg/mL, respectively) used to control diabetes.
Collapse
Affiliation(s)
- Maan T Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Hisham A Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Samar S Elbaramawi
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahdab N Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Wael A H Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
- Pharmacy Program, Department of Pharmaceutical Sciences, Oman College of Health Sciences, Muscat 113, Oman
| | - Fatma Al-Zahraa A Yehia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Goel N, Ghosh M, Jain D, Sinha R, Khare SK. Inhibition and eradication of Pseudomonas aeruginosa biofilms by secondary metabolites of Nocardiopsis lucentensis EMB25. RSC Med Chem 2023; 14:745-756. [PMID: 37122537 PMCID: PMC10131674 DOI: 10.1039/d2md00439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Millions of people worldwide have been impacted by biofilm-associated disorders, which are impregnable owing to frequent changes in surface antigens and gene expression. Globally, about 11% of nosocomial infections, including cystic fibrosis, chronic wound infections, and post-surgical infections, are caused by Pseudomonas aeruginosa, the most prevalent Gram-negative bacterial species. Moreover, biofilms are highly resistant to the host's immune system, and exhibit increased tolerance to stress factors such as starvation, dehydration, and antimicrobials. Here, we have isolated a rare halophilic actinobacteria, Nocardiopsis lucentensis EMB25, and utilized the secondary metabolites for inhibition and eradication of P. aeruginosa biofilm. For the first time, N. lucentensis EMB25 bacteria was explored to study the anti-effect of secondary metabolites on pre-established biofilm. The secondary metabolites targeted the quorum sensing pathway and were found to bind to LasR and RhlR, as confirmed via molecular docking. Also, the reduction in virulence factors, rhamnolipids and pyocyanin further supported the study as these two are regulated by LasR and RhlR. In addition, the downregulation of various QS system genes lasA, lasB, rhlA, rhlB, and pqsA confirmed that the secondary metabolites act on two main regulators of the quorum sensing pathway, LasR, and RhlR. The findings of this study support the bioprospecting of previously unknown and extreme-condition actinobacteria as a rich source of novel bioactives against infections caused by bacterial biofilms.
Collapse
Affiliation(s)
- Nikky Goel
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Moumita Ghosh
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3 Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 India
| | - Deepti Jain
- Transcription Regulation Lab, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3 Milestone, Faridabad-Gurgaon Expressway Faridabad 121001 India
| | - Rajeshwari Sinha
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| |
Collapse
|
11
|
Emergence of an Auxin Sensing Domain in Plant-Associated Bacteria. mBio 2023; 14:e0336322. [PMID: 36602305 PMCID: PMC9973260 DOI: 10.1128/mbio.03363-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bacteria have evolved a sophisticated array of signal transduction systems that allow them to adapt their physiology and metabolism to changing environmental conditions. Typically, these systems recognize signals through dedicated ligand binding domains (LBDs) to ultimately trigger a diversity of physiological responses. Nonetheless, an increasing number of reports reveal that signal transduction receptors also bind antagonists to inhibit responses mediated by agonists. The mechanisms by which antagonists block the downstream signaling cascade remain largely unknown. To advance our knowledge in this field, we used the LysR-type transcriptional regulator AdmX as a model. AdmX activates the expression of an antibiotic biosynthetic cluster in the rhizobacterium Serratia plymuthica. AdmX specifically recognizes the auxin phytohormone indole-3-acetic acid (IAA) and its biosynthetic intermediate indole-3-pyruvic acid (IPA) as signals. However, only IAA, but not IPA, was shown to regulate antibiotic production in S. plymuthica. Here, we report the high-resolution structures of the LBD of AdmX in complex with IAA and IPA. We found that IAA and IPA compete for binding to AdmX. Although IAA and IPA binding does not alter the oligomeric state of AdmX, IPA binding causes a higher degree of compactness in the protein structure. Molecular dynamics simulations revealed significant differences in the binding modes of IAA and IPA by AdmX, and the inspection of the three-dimensional structures evidenced differential agonist- and antagonist-mediated structural changes. Key residues for auxin binding were identified and an auxin recognition motif defined. Phylogenetic clustering supports the recent evolutionary emergence of this motif specifically in plant-associated enterobacteria. IMPORTANCE Although antagonists were found to bind different bacterial signal transduction receptors, we are still at the early stages of understanding the molecular details by which these molecules exert their inhibitory effects. Here, we provide insight into the structural changes resulting from the binding of an agonist and an antagonist to a sensor protein. Our data indicate that agonist and antagonist recognition is characterized by small conformational differences in the LBDs that can be efficiently transmitted to the output domain to modulate the final response. LBDs are subject to strong selective pressures and are rapidly evolving domains. An increasing number of reports support the idea that environmental factors drive the evolution of sensor domains. Given the recent evolutionary history of AdmX homologs, as well as their narrow phyletic distribution within plant-associated bacteria, our results are in accordance with a plant-mediated evolutionary process that resulted in the emergence of receptor proteins that specifically sense auxin phytohormones.
Collapse
|
12
|
Hiring of the Anti-Quorum Sensing Activities of Hypoglycemic Agent Linagliptin to Alleviate the Pseudomonas aeruginosa Pathogenesis. Microorganisms 2022; 10:microorganisms10122455. [PMID: 36557708 PMCID: PMC9783625 DOI: 10.3390/microorganisms10122455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/27/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria communicate with each other using quorum sensing (QS) which works in an inducer/receptor manner. QS plays the main role in orchestrating diverse bacterial virulence factors. Pseudomonas aeruginosa is one of the most clinically important bacterial pathogens that can cause infection in almost all body tissues. Besides its efficient capability to develop resistance to different antibiotics, P. aeruginosa acquires a huge arsenal of virulence factors that are controlled mainly by QS. Challenging QS with FDA-approved drugs and natural products was proposed as a promising approach to mitigate bacterial virulence enabling the host immunity to complete the eradication of bacterial infection. The present study aims to evaluate the dipeptidase inhibitor-4 inhibitor hypoglycemic linagliptin anti-QS and anti-virulence activities against P. aeruginosa in vitro, in vivo, and in silico. The current results revealed the significant ability to diminish the production of protease and pyocyanin, motility, and biofilm formation in P. aeruginosa. Furthermore, the histopathological examination of liver and kidney tissues of mice injected with linagliptin-treated bacteria showed an obvious reduction of pathogenesis. Linagliptin downregulation to QS-encoding genes, besides the virtual ability to interact with QS receptors, indicates its anti-QS activities. In conclusion, linagliptin is a promising anti-virulence and anti-QS candidate that can be used solely or in combination with traditional antimicrobial agents in the treatment of P. aeruginosa aggressive infections.
Collapse
|
13
|
El-Aleam RHA, Sayed AM, Taha MN, George RF, Georgey HH, Abdel-Rahman HM. New benzimidazole derivatives targeting LasR with antibiofilm efficacy against Pseudomonas aeruginosa: An integrated in vitro and molecular dynamics simulation- based investigation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Molecular Mechanisms and Applications of N-Acyl Homoserine Lactone-Mediated Quorum Sensing in Bacteria. Molecules 2022; 27:molecules27217584. [PMID: 36364411 PMCID: PMC9654057 DOI: 10.3390/molecules27217584] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Microbial biodiversity includes biotic and abiotic components that support all life forms by adapting to environmental conditions. Climate change, pollution, human activity, and natural calamities affect microbial biodiversity. Microbes have diverse growth conditions, physiology, and metabolism. Bacteria use signaling systems such as quorum sensing (QS) to regulate cellular interactions via small chemical signaling molecules which also help with adaptation under undesirable survival conditions. Proteobacteria use acyl-homoserine lactone (AHL) molecules as autoinducers to sense population density and modulate gene expression. The LuxI-type enzymes synthesize AHL molecules, while the LuxR-type proteins (AHL transcriptional regulators) bind to AHLs to regulate QS-dependent gene expression. Diverse AHLs have been identified, and the diversity extends to AHL synthases and AHL receptors. This review comprehensively explains the molecular diversity of AHL signaling components of Pseudomonas aeruginosa, Chromobacterium violaceum, Agrobacterium tumefaciens, and Escherichia coli. The regulatory mechanism of AHL signaling is also highlighted in this review, which adds to the current understanding of AHL signaling in Gram-negative bacteria. We summarize molecular diversity among well-studied QS systems and recent advances in the role of QS proteins in bacterial cellular signaling pathways. This review describes AHL-dependent QS details in bacteria that can be employed to understand their features, improve environmental adaptation, and develop broad biomolecule-based biotechnological applications.
Collapse
|
15
|
Styles MJ, Boursier ME, McEwan MA, Santa EE, Mattmann ME, Slinger BL, Blackwell HE. Autoinducer-fluorophore conjugates enable FRET in LuxR proteins in vitro and in cells. Nat Chem Biol 2022; 18:1115-1124. [PMID: 35927585 PMCID: PMC9529866 DOI: 10.1038/s41589-022-01089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 06/21/2022] [Indexed: 11/09/2022]
Abstract
Cell-to-cell signaling, or quorum sensing (QS), in many Gram-negative bacteria is governed by small molecule signals (N-acyl-L-homoserine lactones, AHLs) and their cognate receptors (LuxR-type proteins). The mechanistic underpinnings of QS in these bacteria are severely limited due to the challenges of isolating and manipulating most LuxR-type proteins. Reports of quantitative direct-binding experiments on LuxR-type proteins are scarce, and robust and generalizable methods that provide such data are largely nonexistent. We report herein a Förster resonance energy transfer (FRET) assay that leverages (1) conserved tryptophans located in the LuxR-type protein ligand-binding site and synthetic fluorophore-AHL conjugates, and (2) isolation of the proteins bound to weak agonists. The FRET assay permits straightforward measurement of ligand-binding affinities with receptor-either in vitro or in cells-and was shown to be compatible with six LuxR-type proteins. These methods will advance fundamental investigations of LuxR-type protein mechanism and the development of small molecule QS modulators.
Collapse
Affiliation(s)
- Matthew J Styles
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Emma E Santa
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Betty L Slinger
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Helen E Blackwell
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Abd El-Aleam RH, Sayed AM, Taha MN, George RF, Georgey HH, Abdel-Rahman HM. Design and synthesis of novel benzimidazole derivatives as potential Pseudomonas aeruginosa anti-biofilm agents inhibiting LasR: Evidence from comprehensive molecular dynamics simulation and in vitro investigation. Eur J Med Chem 2022; 241:114629. [DOI: 10.1016/j.ejmech.2022.114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/10/2022] [Accepted: 07/21/2022] [Indexed: 11/04/2022]
|
17
|
Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022; 10:biomedicines10051169. [PMID: 35625906 PMCID: PMC9138634 DOI: 10.3390/biomedicines10051169] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/24/2022] Open
Abstract
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins’ binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.
Collapse
|
18
|
Khayat MT, Abbas HA, Ibrahim TS, Khayyat AN, Alharbi M, Darwish KM, Elhady SS, Khafagy ES, Safo MK, Hegazy WAH. Anti-Quorum Sensing Activities of Gliptins against Pseudomonas aeruginosa and Staphylococcus aureus. Biomedicines 2022; 10:1169. [PMID: 35625906 PMCID: PMC9138634 DOI: 10.3389/fmolb.2023.1203672activities 10.3390/biomedicines10051169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 07/07/2024] Open
Abstract
The development of bacterial resistance to traditional antibiotics constitutes an emerging public health issue. Promising approaches have been innovated to conquer bacterial resistance, and targeting bacterial virulence is one of these approaches. Bacterial virulence mitigation offers several merits, as antivirulence agents do not affect the growth of bacteria and hence do not induce bacteria to develop resistance. In this direction, numerous drugs have been repurposed as antivirulence agents prior to their clinical use alone or in combination with traditional antibiotics. Quorum sensing (QS) plays a key role in controlling bacterial virulence. In the current study, dipeptidase inhibitor-4 (DPI-4) antidiabetic gliptins were screened for their antivirulence and anti-quorum sensing (anti-QS) activities against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus. Upon assessing their antibiofilm activities, the ten tested gliptins significantly diminished biofilm formation. In particular, sitagliptin exhibited the most efficient antibiofilm activity, so it was chosen as a representative of all gliptins to further investigate its antivirulence activity. Sitagliptin significantly protected mice from P. aeruginosa and S. aureus pathogenesis. Furthermore, sitagliptin downregulated QS-encoding genes in P. aeruginosa and S. aureus. To test the anti-QS activities of gliptins, a detailed molecular docking study was conducted to evaluate the gliptins' binding affinities to P. aeruginosa and S. aureus QS receptors, which helped explain the anti-QS activities of gliptins, particularly sitagliptin and omarigliptin. In conclusion, this study evaluates the possible antivirulence and anti-QS activities of gliptins that could be promising novel candidates for the treatment of aggressive Gram-negative or -positive bacterial infections either alone or as adjuvants to other antibiotics.
Collapse
Affiliation(s)
- Maan T. Khayat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Hisham A. Abbas
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
| | - Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Ahdab N. Khayyat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Majed Alharbi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (T.S.I.); (A.N.K.); (M.A.)
| | - Khaled M. Darwish
- Department of Medicinal Chemistry, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Sameh S. Elhady
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41552, Egypt
| | - Martin K. Safo
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23219, USA;
| | - Wael A. H. Hegazy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt;
- Department of Pharmaceutical Sciences, Pharmacy Program, Oman College of Health Sciences, Muscat 113, Oman
| |
Collapse
|
19
|
Refactoring transcription factors for metabolic engineering. Biotechnol Adv 2022; 57:107935. [PMID: 35271945 DOI: 10.1016/j.biotechadv.2022.107935] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/04/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022]
Abstract
Due to the ability to regulate target metabolic pathways globally and dynamically, metabolic regulation systems composed of transcription factors have been widely used in metabolic engineering and synthetic biology. This review introduced the categories, action principles, prediction strategies, and related databases of transcription factors. Then, the application of global transcription machinery engineering technology and the transcription factor-based biosensors and quorum sensing systems are overviewed. In addition, strategies for optimizing the transcriptional regulatory tools' performance by refactoring transcription factors are summarized. Finally, the current limitations and prospects of constructing various regulatory tools based on transcription factors are discussed. This review will provide theoretical guidance for the rational design and construction of transcription factor-based metabolic regulation systems.
Collapse
|
20
|
Jothipandiyan S, Suresh D, Sankaran SV, Thamotharan S, Shanmugasundaram K, Vincent P, Sekaran S, Gowrishankar S, Pandian SK, Paramasivam N. Heteroleptic pincer palladium(II) complex coated orthopedic implants impede the AbaI/AbaR quorum sensing system and biofilm development by Acinetobacter baumannii. BIOFOULING 2022; 38:55-70. [PMID: 34961388 DOI: 10.1080/08927014.2021.2015336] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Implant-associated infections mediated by Acinetobacter baumannii biofilms have become a major concern in the healthcare sector. As biofilm formation by this important pathogen is mediated by quorum sensing, quorum sensing inhibitors (QSI) have gained much attention. The present study confirms that novel thiazolinyl-picolinamide based palladium(II) complexes had good biofilm disruptive and QSI properties against A. baumannii. Key QS-mediated virulence factors like pili mediated surface motility and polysaccharide production were inhibited by the best Pd(II) complex (E). This also showed potent inhibitory activity against both the standard and clinical strains of A. baumannii. Molecular docking analysis also proved the potent binding affinity of Pd(II)-E with the virulence targets. The Pd(II) complex also disrupted preformed biofilms and down-regulated the expression of QS mediated virulence genes in the biofilms established on implant material (titanium plates). As a whole, the present study showed that the novel thiazolinyl-picolinamide based Pd(II) complexes offer a promising anti-infective strategy to combat biofilm-mediated implant infections.
Collapse
Affiliation(s)
- Sowndarya Jothipandiyan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Devarajan Suresh
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Sankaran Venkatachalam Sankaran
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Subbiah Thamotharan
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | | | - Preethi Vincent
- Bone Biology and Repair laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| | - Saravanan Sekaran
- Bone Biology and Repair laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
- Department of Pharmacology, Saveetha Dental college and hospitals, Saveetha institute for medical and Technical sciences, Saveetha University, Chennai, India
| | | | | | - Nithyanand Paramasivam
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
21
|
Chadha J, Harjai K, Chhibber S. Repurposing phytochemicals as anti-virulent agents to attenuate quorum sensing-regulated virulence factors and biofilm formation in Pseudomonas aeruginosa. Microb Biotechnol 2021; 15:1695-1718. [PMID: 34843159 PMCID: PMC9151347 DOI: 10.1111/1751-7915.13981] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 11/14/2021] [Indexed: 12/18/2022] Open
Abstract
Unregulated consumption and overexploitation of antibiotics have paved the way for emergence of antibiotic‐resistant strains and ‘superbugs’. Pseudomonas aeruginosa is among the opportunistic nosocomial pathogens causing devastating infections in clinical set‐ups globally. Its artillery equipped with diversified virulence elements, extensive antibiotic resistance and biofilms has made it a ‘hard‐to‐treat’ pathogen. The pathogenicity of P. aeruginosa is modulated by an intricate cell density‐dependent mechanism called quorum sensing (QS). The virulence artillery of P. aeruginosa is firmly controlled by QS genes, and their expression drives the aggressiveness of the infection. Attempts to identify and develop novel antimicrobials have seen a sharp rise in the past decade. Among different proposed mechanisms, a novel anti‐virulence approach to target pseudomonal infections by virtue of anti‐QS and anti‐biofilm drugs appears to occupy the centre stage. In this respect, bioactive phytochemicals have gained prominence among the scientific community owing to their significant quorum quenching (QQ) properties. Recent studies have shed light on the QQ activities of various phytochemicals and other drugs in perturbing the QS‐dependent virulence in P. aeruginosa. This review highlights the recent evidences that reinforce the application of plant bioactives for combating pseudomonal infections, their advantages and shortcomings in anti‐virulence therapy.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
22
|
Chadha J, Harjai K, Chhibber S. Revisiting the virulence hallmarks of Pseudomonas aeruginosa: a chronicle through the perspective of quorum sensing. Environ Microbiol 2021; 24:2630-2656. [PMID: 34559444 DOI: 10.1111/1462-2920.15784] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/15/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen and the leading cause of mortality among immunocompromised patients in clinical setups. The hallmarks of virulence in P. aeruginosa encompass six biologically competent attributes that cumulatively drive disease progression in a multistep manner. These multifaceted hallmarks lay the principal foundation for rationalizing the complexities of pseudomonal infections. They include factors for host colonization and bacterial motility, biofilm formation, production of destructive enzymes, toxic secondary metabolites, iron-chelating siderophores and toxins. This arsenal of virulence hallmarks is fostered and stringently regulated by the bacterial signalling system called quorum sensing (QS). The central regulatory functions of QS in controlling the timely expression of these virulence hallmarks for adaptation and survival drive the disease outcome. This review describes the intricate mechanisms of QS in P. aeruginosa and its role in shaping bacterial responses, boosting bacterial fitness. We summarize the virulence hallmarks of P. aeruginosa, relating them with the QS circuitry in clinical infections. We also examine the role of QS in the development of drug resistance and propose a novel antivirulence therapy to combat P. aeruginosa infections. This can prove to be a next-generation therapy that may eventually become refractory to the use of conventional antimicrobial treatments.
Collapse
Affiliation(s)
- Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Sanjay Chhibber
- Department of Microbiology, Panjab University, Chandigarh, India
| |
Collapse
|
23
|
Matilla MA, Velando F, Martín-Mora D, Monteagudo-Cascales E, Krell T. A catalogue of signal molecules that interact with sensor kinases, chemoreceptors and transcriptional regulators. FEMS Microbiol Rev 2021; 46:6356564. [PMID: 34424339 DOI: 10.1093/femsre/fuab043] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Bacteria have evolved many different signal transduction systems that sense signals and generate a variety of responses. Generally, most abundant are transcriptional regulators, sensor histidine kinases and chemoreceptors. Typically, these systems recognize their signal molecules with dedicated ligand-binding domains (LBDs), which, in turn, generate a molecular stimulus that modulates the activity of the output module. There are an enormous number of different LBDs that recognize a similarly diverse set of signals. To give a global perspective of the signals that interact with transcriptional regulators, sensor kinases and chemoreceptors, we manually retrieved information on the protein-ligand interaction from about 1,200 publications and 3D structures. The resulting 811 proteins were classified according to the Pfam family into 127 groups. These data permit a delineation of the signal profiles of individual LBD families as well as distinguishing between families that recognize signals in a promiscuous manner and those that possess a well-defined ligand range. A major bottleneck in the field is the fact that the signal input of many signaling systems is unknown. The signal repertoire reported here will help the scientific community design experimental strategies to identify the signaling molecules for uncharacterised sensor proteins.
Collapse
Affiliation(s)
- Miguel A Matilla
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Félix Velando
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - David Martín-Mora
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Elizabet Monteagudo-Cascales
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Prof. Albareda 1, 18008 Granada, Spain
| |
Collapse
|
24
|
Wang ZJ, Chen F, Xu YQ, Huang P, Liu SS. Protein Model and Function Analysis in Quorum-Sensing Pathway of Vibrio qinghaiensis sp.-Q67. BIOLOGY 2021; 10:638. [PMID: 34356493 PMCID: PMC8301110 DOI: 10.3390/biology10070638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023]
Abstract
Bioluminescent bacteria are mainly found in marine habitats. Vibrio qinghaiensis sp.-Q67 (Q67), a nonpathogenic freshwater bacterium, has been a focus due to its wide use in the monitoring of environmental pollution and the assessment of toxicity. However, the lack of available crystal structures limits the elucidation of the structures of the functional proteins of the quorum-sensing (QS) system that regulates bacterial luminescence in Q67. In this study, 19 functional proteins were built through monomer and oligomer modeling based on their coding proteins in the QS system of Q67 using MODELLER. Except for the failure to construct LuxM due to the lack of a suitable template, 18 functional proteins were successfully constructed. Furthermore, the relationships between the function and predicted structures of 19 functional proteins were explored one by one according to the three functional classifications: autoinducer synthases and receptors, signal transmission proteins (phosphotransferases, an RNA chaperone, and a transcriptional regulator), and enzymes involved in bacterial bioluminescence reactions. This is the first analysis of the whole process of bioluminescence regulation from the perspective of nonpathogenic freshwater bacteria at the molecular level. It provides a theoretical basis for the explanation of applications of Q67 in which luminescent inhibition is used as the endpoint.
Collapse
Affiliation(s)
- Ze-Jun Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
| | - Fu Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Ya-Qian Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Peng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai 200234, China;
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; (Z.-J.W.); (Y.-Q.X.)
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China;
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
25
|
Friends or Foes-Microbial Interactions in Nature. BIOLOGY 2021; 10:biology10060496. [PMID: 34199553 PMCID: PMC8229319 DOI: 10.3390/biology10060496] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022]
Abstract
Simple Summary Microorganisms like bacteria, archaea, fungi, microalgae, and viruses mostly form complex interactive networks within the ecosystem rather than existing as single planktonic cells. Interactions among microorganisms occur between the same species, with different species, or even among entirely different genera, families, or even domains. These interactions occur after environmental sensing, followed by converting those signals to molecular and genetic information, including many mechanisms and classes of molecules. Comprehensive studies on microbial interactions disclose key strategies of microbes to colonize and establish in a variety of different environments. Knowledge of the mechanisms involved in the microbial interactions is essential to understand the ecological impact of microbes and the development of dysbioses. It might be the key to exploit strategies and specific agents against different facing challenges, such as chronic and infectious diseases, hunger crisis, pollution, and sustainability. Abstract Microorganisms are present in nearly every niche on Earth and mainly do not exist solely but form communities of single or mixed species. Within such microbial populations and between the microbes and a eukaryotic host, various microbial interactions take place in an ever-changing environment. Those microbial interactions are crucial for a successful establishment and maintenance of a microbial population. The basic unit of interaction is the gene expression of each organism in this community in response to biotic or abiotic stimuli. Differential gene expression is responsible for producing exchangeable molecules involved in the interactions, ultimately leading to community behavior. Cooperative and competitive interactions within bacterial communities and between the associated bacteria and the host are the focus of this review, emphasizing microbial cell–cell communication (quorum sensing). Further, metagenomics is discussed as a helpful tool to analyze the complex genomic information of microbial communities and the functional role of different microbes within a community and to identify novel biomolecules for biotechnological applications.
Collapse
|
26
|
Gu Y, Zhi SX, Yang N, Yang WS. Understanding the mechanism of asymmetric gene regulation determined by the VqmA of vibriophage. Biochem Biophys Res Commun 2021; 558:51-56. [PMID: 33895551 DOI: 10.1016/j.bbrc.2021.04.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
The quorum-sensing (QS) system between the phages and their hosts is important for the phage lysis-lysogeny decision. In Vibrio cholerae, the QS system consists of a LuxR-type receptor VqmA (VqmAVc) and an autoinducer molecule 3,5-dimethylpyrazin-2-ol (DPO). A VqmA homolog encoded by vibriophage VP882 (VqmAPhage) can intervene the host QS system via binding to both the host-produced DPO and its cognate promoter (Pqtip) to induce the phage lysogeny-to-lysis transition, whereas VqmAVc cannot influence the VqmAPhage-induced pathway, suggesting an asymmetry regulation. In this study, we report the crystal structure of VqmAPhage-DPO complex at 2.65 Å and reveal that the mechanism of DPO recognition is conserved in VqmA homologs. Besides, we identify a non-classical palindrome sequence in Pqtip, which can be effectively recognized by VqmAPhage but not VqmAVc. The sequence contains an interval longer than that in the vqmR promoter recognized by VqmAVc. In addition, the two DBD regions in the VqmAPhage dimer exhibit more relaxed architecture than that of the reported VqmAVc, which is likely to be in the conformation that may easily bind to target promoter containing a longer interval. In summary, our findings provide a structural and biochemical basis for the DBD-dependent DNA recognition in different promoter regions in the phage lysogeny-to-lysis decision communication system, and provide clues for developing phage therapies against Vibrio cholerae infection.
Collapse
Affiliation(s)
- Yue Gu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353, Tianjin, China
| | - Shu-Xin Zhi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353, Tianjin, China
| | - Na Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Medical Data Analysis and Statistical Research of Tianjin, Nankai University, 300353, Tianjin, China.
| | - Wen-Si Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
27
|
Wang T, Sun W, Fan L, Hua C, Wu N, Fan S, Zhang J, Deng X, Yan J. An atlas of the binding specificities of transcription factors in Pseudomonas aeruginosa directs prediction of novel regulators in virulence. eLife 2021; 10:61885. [PMID: 33779544 PMCID: PMC8041468 DOI: 10.7554/elife.61885] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/26/2021] [Indexed: 12/14/2022] Open
Abstract
A high-throughput systematic evolution of ligands by exponential enrichment assay was applied to 371 putative TFs in Pseudomonas aeruginosa, which resulted in the robust enrichment of 199 unique sequence motifs describing the binding specificities of 182 TFs. By scanning the genome, we predicted in total 33,709 significant interactions between TFs and their target loci, which were more than 11-fold enriched in the intergenic regions but depleted in the gene body regions. To further explore and delineate the physiological and pathogenic roles of TFs in P. aeruginosa, we constructed regulatory networks for nine major virulence-associated pathways and found that 51 TFs were potentially significantly associated with these virulence pathways, 32 of which had not been characterized before, and some were even involved in multiple pathways. These results will significantly facilitate future studies on transcriptional regulation in P. aeruginosa and other relevant pathogens, and accelerate to discover effective treatment and prevention strategies for the associated infectious diseases.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Wenju Sun
- School of Medicine, Northwest University, Xi'an, China
| | - Ligang Fan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| | - Canfeng Hua
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Nan Wu
- School of Medicine, Northwest University, Xi'an, China
| | - Shaorong Fan
- School of Medicine, Northwest University, Xi'an, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Solna, Sweden
| | - Xin Deng
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Jian Yan
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,School of Medicine, Northwest University, Xi'an, China
| |
Collapse
|
28
|
Sarkar S. Release mechanisms and molecular interactions of Pseudomonas aeruginosa extracellular DNA. Appl Microbiol Biotechnol 2020; 104:6549-6564. [PMID: 32500267 DOI: 10.1007/s00253-020-10687-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 12/18/2022]
Abstract
Pseudomonas aeruginosa infection is a significant threat for clinicians. Increasing incidents of resistant biofilm infection result in high mortality rates worldwide. There is a considerable current interest in the field of extracellular DNA (eDNA)-mediated P. aeruginosa biofilm formation. eDNA acts as a glue to make biofilm more stable. This review focuses on the diverse mechanisms and factors, which enhance the eDNA release into the extracellular milieu. Furthermore, eDNA-mediated molecular interactions within the biofilm are emphasized. In addition, drug resistance mechanisms due to the versatility of eDNA are discussed. Spatial physiological diversity is expected due to different metabolic activity of bacterial subpopulation present in P. aeruginosa biofilm layers. In P. aeruginosa, eDNA release is accomplished by cell lysis and OMVs (outer membrane vesicles). eDNA release is a spontaneous and multifactorial process, which may be accomplished by PQS, pyocyanin, and lambda prophage induction. Hydrogen peroxide and pyocin trigger cell death, which may facilitate eDNA release. Lung mucosa of cystic fibrosis patients is enriched with eDNA, which acidifies biofilm and develops P. aeruginosa resistance to aminoglycosides. Further studies on spatial and molecular characterization of bacterial subpopulation in biofilm will shed light on eDNA-biofilm interaction more precisely.Key Points• Extracellular DNA (eDNA) is a key component of Pseudomonas aeruginosa biofilm.• P. aeruginosa eDNA acts as a glue to make biofilm more stronger.• Bacterial cell death or lysis may be the potential way to release P. aeruginosa eDNA into extracellular milieu.• P. aeruginosa eDNA contributes to develop resistance to antimicrobials.
Collapse
Affiliation(s)
- Subendu Sarkar
- Department of Surgery, University School of Medicine, Indiana University, Indianapolis, IN, 46202, USA. .,Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
29
|
Manson DE, O’Reilly MC, Nyffeler KE, Blackwell HE. Design, Synthesis, and Biochemical Characterization of Non-Native Antagonists of the Pseudomonas aeruginosa Quorum Sensing Receptor LasR with Nanomolar IC 50 Values. ACS Infect Dis 2020; 6:649-661. [PMID: 32037806 DOI: 10.1021/acsinfecdis.9b00518] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS), a bacterial cell-to-cell communication system mediated by small molecules and peptides, has received significant interest as a potential target to block infection. The common pathogen Pseudomonas aeruginosa uses QS to regulate many of its virulence phenotypes at high cell densities, and the LasR QS receptor plays a critical role in this process. Small molecule tools that inhibit LasR activity would serve to illuminate its role in P. aeruginosa virulence, but we currently lack highly potent and selective LasR antagonists, despite considerable research in this area. V-06-018, an abiotic small molecule discovered in a high-throughput screen, represents one of the most potent known LasR antagonists but has seen little study since its initial report. Herein, we report a systematic study of the structure-activity relationships (SARs) that govern LasR antagonism by V-06-018. We synthesized a focused library of V-06-018 derivatives and evaluated the library for bioactivity using a variety of cell-based LasR reporter systems. The SAR trends revealed by these experiments allowed us to design probes with 10-fold greater potency than that of V-06-018 and 100-fold greater potency than other commonly used N-acyl-l-homoserine lactone (AHL)-based LasR antagonists, along with high selectivities for LasR. Biochemical experiments to probe the mechanism of antagonism by V-06-018 and its analogues support these compounds interacting with the native ligand-binding site in LasR and, at least in part, stabilizing an inactive form of the protein. The compounds described herein are the most potent and efficacious antagonists of LasR known and represent robust probes both for characterizing the mechanisms of LuxR-type QS and for chemical biology research in general in the growing QS field.
Collapse
Affiliation(s)
- Daniel E. Manson
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| | - Matthew C. O’Reilly
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| | - Kayleigh E. Nyffeler
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| | - Helen E. Blackwell
- Department of Chemistry, University of Wisconsin−Madison, 110 University Ave., Madison, Wisconsin 53706 United States
| |
Collapse
|
30
|
Large conformation shifts of Vibrio cholerae VqmA dimer in the absence of target DNA provide insight into DNA-binding mechanisms of LuxR-type receptors. Biochem Biophys Res Commun 2019; 520:399-405. [DOI: 10.1016/j.bbrc.2019.10.063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 11/16/2022]
|
31
|
Potent modulation of the CepR quorum sensing receptor and virulence in a Burkholderia cepacia complex member using non-native lactone ligands. Sci Rep 2019; 9:13449. [PMID: 31530834 PMCID: PMC6748986 DOI: 10.1038/s41598-019-49693-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/29/2019] [Indexed: 12/13/2022] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a family of closely related bacterial pathogens that are the causative agent of deadly human infections. Virulence in Bcc species has been shown to be controlled by the CepI/CepR quorum sensing (QS) system, which is mediated by an N-acyl L-homoserine lactone (AHL) signal (C8-AHL) and its cognate LuxR-type receptor (CepR). Chemical strategies to block QS in Bcc members would represent an approach to intercept this bacterial communication process and further delineate its role in infection. In the current study, we sought to identify non-native AHLs capable of agonizing or antagonizing CepR, and thereby QS, in a Bcc member. We screened a library of AHL analogs in cell-based reporters for CepR, and identified numerous highly potent CepR agonists and antagonists. These compounds remain active in a Bcc member, B. multivorans, with one agonist 250-fold more potent than the native ligand C8-AHL, and can affect QS-controlled motility. Further, the CepR antagonists prolong C. elegans survival in an infection model. These AHL analogs are the first reported non-native molecules that both directly modulate CepR and impact QS-controlled phenotypes in a Bcc member, and represent valuable chemical tools to assess the role of QS in Bcc infections.
Collapse
|
32
|
Hansen MJ, Hille JI, Szymanski W, Driessen AJ, Feringa BL. Easily Accessible, Highly Potent, Photocontrolled Modulators of Bacterial Communication. Chem 2019. [DOI: 10.1016/j.chempr.2019.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
33
|
Wellington S, Greenberg EP. Quorum Sensing Signal Selectivity and the Potential for Interspecies Cross Talk. mBio 2019; 10:e00146-19. [PMID: 30837333 PMCID: PMC6401477 DOI: 10.1128/mbio.00146-19] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/03/2023] Open
Abstract
Many species of proteobacteria communicate with kin and coordinate group behaviors through a form of cell-cell signaling called acyl-homoserine lactone (AHL) quorum sensing (QS). Most AHL receptors are thought to be specific for their cognate signal, ensuring that bacteria cooperate and share resources only with closely related kin cells. Although specificity is considered fundamental to QS, there are reports of "promiscuous" receptors that respond broadly to nonself signals. These promiscuous responses expand the function of QS systems to include interspecies interactions and have been implicated in both interspecies competition and cooperation. Because bacteria are frequently members of polymicrobial communities, AHL cross talk between species could have profound impacts. To better understand the prevalence of QS promiscuity, we measured the activity of seven QS receptors in their native host organisms. To facilitate comparison of our results to previous studies, we also measured receptor activity using heterologous expression in Escherichia coli We found that the standard E. coli methods consistently overestimate receptor promiscuity and sensitivity and that overexpression of the receptors is sufficient to account for the discrepancy between native and E. coli reporters. Additionally, receptor overexpression resulted in AHL-independent activity in Pseudomonas aeruginosa Using our activation data, we developed a quantitative score of receptor selectivity. We find that the receptors display a wide range of selectivity and that most receptors respond sensitively and strongly to at least one nonself signal, suggesting a broad potential for cross talk between QS systems.IMPORTANCE Specific recognition of cognate signals is considered fundamental to cell signaling circuits as it creates fidelity in the communication system. In bacterial quorum sensing (QS), receptor specificity ensures that bacteria cooperate only with kin. There are examples, however, of QS receptors that respond promiscuously to multiple signals. "Eavesdropping" by these promiscuous receptors can be beneficial in both interspecies competition and cooperation. Despite their potential significance, we know little about the prevalence of promiscuous QS receptors. Further, many studies rely on methods requiring receptor overexpression, which is known to increase apparent promiscuity. By systematically studying QS receptors in their natural parent strains, we find that the receptors display a wide range of selectivity and that there is potential for significant cross talk between QS systems. Our results provide a basis for hypotheses about the evolution and function of promiscuous signal receptors and for predictions about interspecies interactions in complex microbial communities.
Collapse
Affiliation(s)
- Samantha Wellington
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
34
|
Wu H, Li M, Guo H, Zhou H, Li B, Xu Q, Xu C, Yu F, He J. Crystal structure of the Vibrio cholerae VqmA-ligand-DNA complex provides insight into ligand-binding mechanisms relevant for drug design. J Biol Chem 2019; 294:2580-2592. [PMID: 30610119 DOI: 10.1074/jbc.ra118.006082] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/03/2019] [Indexed: 12/12/2022] Open
Abstract
VqmA is a highly conserved transcriptional regulator of the quorum-sensing system of Vibrio cholerae, a major human pathogen that continues to imperil human health. VqmA represses biofilm formation and plays an important role in V. cholerae pathogenicity in the human host. Although VqmA's biological function is well understood, the molecular mechanisms by which its specific ligand (and effector), 3,5-dimethylpyrazine-2-ol (DPO), controls transcription of the target gene, vqmR, remain obscure. To elucidate the molecular mechanism of DPO binding, we used structural analyses and biochemical assays to study the V. cholerae VqmA-DPO-DNA complex. These analyses revealed that VqmA contains an N-terminal homodimer domain (PAS) and a C-terminal DNA-binding domain (DBD). We observed that VqmA directly binds to a DPO molecule via a compact hydrophobic pocket, consisting of a six-stranded antiparallel β-sheet and several α-helices. We also found that the VqmA dimer interacts with the quasi-palindromic sequence of the vqmR promoter through its DBD. The results of the biochemical studies indicated that a water atom and VqmA residues Phe-67 and Lys-101 play a key role in effector recognition, which is also assisted by Tyr-36 and Phe-99. This is the first molecular level view of the VqmA dimer bound to DPO and DNA. The structure-function analyses presented here improve our understanding of the complex mechanisms in the transcriptional regulation of VqmA in Vibrio spp. and may inform the design of drugs to manage V. cholerae infections.
Collapse
Affiliation(s)
- Hai Wu
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minjun Li
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and
| | - Haojie Guo
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhou
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and
| | - Bing Li
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qin Xu
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and.,the University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyan Xu
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and
| | - Feng Yu
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and
| | - Jianhua He
- From the Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 and
| |
Collapse
|
35
|
Parrino B, Schillaci D, Carnevale I, Giovannetti E, Diana P, Cirrincione G, Cascioferro S. Synthetic small molecules as anti-biofilm agents in the struggle against antibiotic resistance. Eur J Med Chem 2019; 161:154-178. [PMID: 30347328 DOI: 10.1016/j.ejmech.2018.10.036] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/15/2018] [Indexed: 01/24/2023]
Abstract
Biofilm formation significantly contributes to microbial survival in hostile environments and it is currently considered a key virulence factor for pathogens responsible for serious chronic infections. In the last decade many efforts have been made to identify new agents able to modulate bacterial biofilm life cycle, and many compounds have shown interesting activities in inhibiting biofilm formation or in dispersing pre-formed biofilms. However, only a few of these compounds were tested using in vivo models for their clinical significance. Contrary to conventional antibiotics, most of the anti-biofilm compounds act as anti-virulence agents as they do not affect bacterial growth. In this review we selected the most relevant literature of the last decade, focusing on the development of synthetic small molecules able to prevent bacterial biofilm formation or to eradicate pre-existing biofilms of clinically relevant Gram-positive and Gram-negative pathogens. In addition, we provide a comprehensive list of the possible targets to counteract biofilm formation and development, as well as a detailed discussion the advantages and disadvantages of the different current biofilm-targeting strategies.
Collapse
Affiliation(s)
- Barbara Parrino
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Domenico Schillaci
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ilaria Carnevale
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, via Paradisa, 56100, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, VU University Medical Center, Cancer Center Amsterdam, De Boelelaan 1117, 1081HV, Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start-Up Unit, University of Pisa, via Paradisa, 56100, Pisa, Italy
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Girolamo Cirrincione
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Stella Cascioferro
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche, Sezione di Chimica e Tecnologie Farmaceutiche, Università degli Studi di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
36
|
Structural determinants driving homoserine lactone ligand selection in the Pseudomonas aeruginosa LasR quorum-sensing receptor. Proc Natl Acad Sci U S A 2018; 116:245-254. [PMID: 30559209 DOI: 10.1073/pnas.1817239116] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quorum sensing is a cell-cell communication process that bacteria use to orchestrate group behaviors. Quorum sensing is mediated by signal molecules called autoinducers. Autoinducers are often structurally similar, raising questions concerning how bacteria distinguish among them. Here, we use the Pseudomonas aeruginosa LasR quorum-sensing receptor to explore signal discrimination. The cognate autoinducer, 3OC12 homoserine lactone (3OC12HSL), is a more potent activator of LasR than other homoserine lactones. However, other homoserine lactones can elicit LasR-dependent quorum-sensing responses, showing that LasR displays ligand promiscuity. We identify mutants that alter which homoserine lactones LasR detects. Substitution at residue S129 decreases the LasR response to 3OC12HSL, while enhancing discrimination against noncognate autoinducers. Conversely, the LasR L130F mutation increases the potency of 3OC12HSL and other homoserine lactones. We solve crystal structures of LasR ligand-binding domains complexed with noncognate autoinducers. Comparison with existing structures reveals that ligand selectivity/sensitivity is mediated by a flexible loop near the ligand-binding site. We show that LasR variants with modified ligand preferences exhibit altered quorum-sensing responses to autoinducers in vivo. We suggest that possessing some ligand promiscuity endows LasR with the ability to optimally regulate quorum-sensing traits.
Collapse
|