1
|
Steiner OM, Johnson RA, Chen X, Simke WC, Li B. Activation of Dithiolopyrrolone Antibiotics by Cellular Reductants. Biochemistry 2025; 64:192-202. [PMID: 39665630 DOI: 10.1021/acs.biochem.4c00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Dithiolopyrrolone (DTP) natural products are broad-spectrum antimicrobial and anticancer prodrugs. The DTP structure contains a unique bicyclic ene-disulfide that once reduced in the cell, chelates metal ions and disrupts metal homeostasis. In this work we investigate the intracellular activation of the DTPs and their resistance mechanisms in bacteria. We show that the prototypical DTP holomycin is reduced by several bacterial reductases and small-molecule thiols in vitro. To understand how bacteria develop resistance to the DTPs, we generate Staphylococcus aureus mutants that exhibit increased resistance to the hybrid DTP antibiotic thiomarinol. From these mutants we identify loss-of-function mutations in redox genes that are involved in DTP activation. This work advances the understanding of how DTPs are activated and informs development of bioreductive disulfide prodrugs.
Collapse
Affiliation(s)
- Olivia M Steiner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Rachel A Johnson
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Xiaoyan Chen
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - William C Simke
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Bo Li
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
2
|
Ge M, Zhou S, Li D, Song D, Yang S, Xu M. Reduction of selenite to selenium nanoparticles by highly selenite-tolerant bacteria isolated from seleniferous soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134491. [PMID: 38703686 DOI: 10.1016/j.jhazmat.2024.134491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
The microbial reduction of selenite to elemental selenium nanoparticles (SeNPs) is thought to be an effective detoxification process of selenite for many bacteria. In this study, Metasolibacillus sp. ES129 and Oceanobacillus sp. ES111 with high selenite reduction efficiency or tolerance were selected for systematic and comparative studies on their performance in selenite removal and valuable SeNPs recovery. The kinetic monitoring of selenite reduction showed that the highest transformation efficiency of selenite to SeNPs was achieved at a concentration of 4.24 mM for ES129 and 4.88 mM for ES111. Ultramicroscopic analysis suggested that the SeNPs produced by ES111 and ES129 had been formed in cytoplasm and subsequently released to extracellular space through cell lysis process. Furthermore, the transcriptome analysis indicated that the expression of genes involved in bacillithiol biosynthesis, selenocompound metabolism and proline metabolism were significantly up-regulated during selenite reduction, suggesting that the transformation of selenite to Se0 may involve multiple pathways. Besides, the up-regulation of genes associated with nucleotide excision repair and antioxidation-related enzymes may enhance the tolerance of bacteria to selenite. Generally, the exploration of selenite reduction and tolerance mechanisms of the highly selenite-tolerant bacteria is of great significance for the effective utilization of microorganisms for environmental remediation.
Collapse
Affiliation(s)
- Meng Ge
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shaofeng Zhou
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Daobo Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Da Song
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Shan Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangdong Provincial Key Laboratory of Environmental Protection Microbiology and Regional Ecological Security, Guangzhou 510070, China.
| |
Collapse
|
3
|
Hu J, Liu N, Fan Q, Gu Y, Chen S, Zhu F, Cheng Y. A Fluorous Peptide Amphiphile with Potent Antimicrobial Activity for the Treatment of MRSA-induced Sepsis and Chronic Wound Infection. Angew Chem Int Ed Engl 2024; 63:e202403140. [PMID: 38393614 DOI: 10.1002/anie.202403140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/25/2024]
Abstract
The rising prevalence of global antibiotic resistance evokes the urgent need for novel antimicrobial candidates. Cationic lipopeptides have attracted much attention due to their strong antimicrobial activity, broad-spectrum and low resistance tendency. Herein, a library of fluoro-lipopeptide amphiphiles was synthesized by tagging a series of cationic oligopeptides with a fluoroalkyl tail via a disulfide spacer. Among the lipopeptide candidates, R6F bearing six arginine moieties and a fluorous tag shows the highest antibacterial activity, and it exhibits an interesting fluorine effect as compared to the non-fluorinated lipopeptides. The high antibacterial activity of R6F is attributed to its excellent bacterial membrane permeability, which further disrupts the respiratory chain redox stress and cell wall biosynthesis of the bacteria. By co-assembling with lipid nanoparticles, R6F showed high therapeutic efficacy and minimal adverse effects in the treatment of MRSA-induced sepsis and chronic wound infection. This work provides a novel strategy to design highly potent antibacterial peptide amphiphiles for the treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jingjing Hu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Nan Liu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Qianqian Fan
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Yunqing Gu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Sijia Chen
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Fang Zhu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| | - Yiyun Cheng
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China, Dongchuan Road, No. 500
| |
Collapse
|
4
|
Tossounian MA, Zhao Y, Yu BYK, Markey SA, Malanchuk O, Zhu Y, Cain A, Gout I. Low-molecular-weight thiol transferases in redox regulation and antioxidant defence. Redox Biol 2024; 71:103094. [PMID: 38479221 PMCID: PMC10950700 DOI: 10.1016/j.redox.2024.103094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 03/24/2024] Open
Abstract
Low-molecular-weight (LMW) thiols are produced in all living cells in different forms and concentrations. Glutathione (GSH), coenzyme A (CoA), bacillithiol (BSH), mycothiol (MSH), ergothioneine (ET) and trypanothione T(SH)2 are the main LMW thiols in eukaryotes and prokaryotes. LMW thiols serve as electron donors for thiol-dependent enzymes in redox-mediated metabolic and signaling processes, protect cellular macromolecules from oxidative and xenobiotic stress, and participate in the reduction of oxidative modifications. The level and function of LMW thiols, their oxidized disulfides and mixed disulfide conjugates in cells and tissues is tightly controlled by dedicated oxidoreductases, such as peroxiredoxins, glutaredoxins, disulfide reductases and LMW thiol transferases. This review provides the first summary of the current knowledge of structural and functional diversity of transferases for LMW thiols, including GSH, BSH, MSH and T(SH)2. Their role in maintaining redox homeostasis in single-cell and multicellular organisms is discussed, focusing in particular on the conjugation of specific thiols to exogenous and endogenous electrophiles, or oxidized protein substrates. Advances in the development of new research tools, analytical methodologies, and genetic models for the analysis of known LMW thiol transferases will expand our knowledge and understanding of their function in cell growth and survival under oxidative stress, nutrient deprivation, and during the detoxification of xenobiotics and harmful metabolites. The antioxidant function of CoA has been recently discovered and the breakthrough in defining the identity and functional characteristics of CoA S-transferase(s) is soon expected.
Collapse
Affiliation(s)
- Maria-Armineh Tossounian
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Yuhan Zhao
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Bess Yi Kun Yu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Samuel A Markey
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Oksana Malanchuk
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine
| | - Yuejia Zhu
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Amanda Cain
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom
| | - Ivan Gout
- Department of Structural and Molecular Biology, University College London, London, WC1E 6BT, United Kingdom; Department of Cell Signaling, Institute of Molecular Biology and Genetics, Kyiv, 143, Ukraine.
| |
Collapse
|
5
|
Loi VV, Busche T, Schnaufer F, Kalinowski J, Antelmann H. The neutrophil oxidant hypothiocyanous acid causes a thiol-specific stress response and an oxidative shift of the bacillithiol redox potential in Staphylococcus aureus. Microbiol Spectr 2023; 11:e0325223. [PMID: 37930020 PMCID: PMC10715087 DOI: 10.1128/spectrum.03252-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/02/2023] [Indexed: 11/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus colonizes the skin and the airways but can also lead to life-threatening systemic and chronic infections. During colonization and phagocytosis by immune cells, S. aureus encounters the thiol-reactive oxidant HOSCN. The understanding of the adaptation mechanisms of S. aureus toward HOSCN stress is important to identify novel drug targets to combat multi-resistant S. aureus isolates. As a defense mechanism, S. aureus uses the flavin disulfide reductase MerA, which functions as HOSCN reductase and protects against HOSCN stress. Moreover, MerA homologs have conserved functions in HOSCN detoxification in other bacteria, including intestinal and respiratory pathogens. In this work, we studied the comprehensive thiol-reactive mode of action of HOSCN and its effect on the reversible shift of the E BSH to discover new defense mechanisms against the neutrophil oxidant. These findings provide new leads for future drug design to fight the pathogen at the sites of colonization and infections.
Collapse
Affiliation(s)
- Vu Van Loi
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Franziska Schnaufer
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Haike Antelmann
- Institute of Biology-Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
6
|
Sadowska-Bartosz I, Bartosz G. Antioxidant defense of Deinococcus radiodurans: how does it contribute to extreme radiation resistance? Int J Radiat Biol 2023; 99:1803-1829. [PMID: 37498212 DOI: 10.1080/09553002.2023.2241895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/28/2023] [Accepted: 07/08/2023] [Indexed: 07/28/2023]
Abstract
PURPOSE Deinococcus radiodurans is an extremely radioresistant bacterium characterized by D10 of 10 kGy, and able to grow luxuriantly under chronic ionizing radiation of 60 Gy/h. The aim of this article is to review the antioxidant system of D. radiodurans and its possible role in the unusual resistance of this bacterium to ionizing radiation. CONCLUSIONS The unusual radiation resistance of D. radiodurans has apparently evolved as a side effect of the adaptation of this extremophile to other damaging environmental factors, especially desiccation. The antioxidant proteins and low-molecular antioxidants (especially low-molecular weight Mn2+ complexes and carotenoids, in particular, deinoxanthin), as well as protein and non-protein regulators, are important for the antioxidant defense of this species. Antioxidant protection of proteins from radiation inactivation enables the repair of DNA damage caused by ionizing radiation.
Collapse
Affiliation(s)
- Izabela Sadowska-Bartosz
- Laboratory of Analytical Biochemistry, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Grzegorz Bartosz
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| |
Collapse
|
7
|
Hampton MB, Dickerhof N. Inside the phagosome: A bacterial perspective. Immunol Rev 2023; 314:197-209. [PMID: 36625601 DOI: 10.1111/imr.13182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The neutrophil phagosome is one of the most hostile environments that bacteria must face and overcome if they are to succeed as pathogens. Targeting bacterial defense mechanisms should lead to new therapies that assist neutrophils to kill pathogens, but this has not yet come to fruition. One of the limiting factors in this effort has been our incomplete knowledge of the complex biochemistry that occurs within the rapidly changing environment of the phagosome. The same compartmentalization that protects host tissue also limits our ability to measure events within the phagosome. In this review, we highlight the limitations in our knowledge, and how the contribution of bacteria to the phagosomal environment is often ignored. There appears to be significant heterogeneity among phagosomes, and it is important to determine whether survivors have more efficient defenses or whether they are ingested into less threatening environments than other bacteria. As part of these efforts, we discuss how monitoring or recovering bacteria from phagosomes can provide insight into the conditions they have faced. We also encourage the use of unbiased screening approaches to identify bacterial genes that are essential for survival inside neutrophil phagosomes.
Collapse
Affiliation(s)
- Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
8
|
Ashby LV, Springer R, Loi VV, Antelmann H, Hampton MB, Kettle AJ, Dickerhof N. Oxidation of bacillithiol during killing of Staphylococcus aureus USA300 inside neutrophil phagosomes. J Leukoc Biol 2022; 112:591-605. [PMID: 35621076 PMCID: PMC9796752 DOI: 10.1002/jlb.4hi1021-538rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/29/2022] [Indexed: 01/07/2023] Open
Abstract
Targeting immune evasion tactics of pathogenic bacteria may hold the key to treating recalcitrant bacterial infections. Staphylococcus aureus produces bacillithiol (BSH), its major low-molecular-weight thiol, which is thought to protect this opportunistic human pathogen against the bombardment of oxidants inside neutrophil phagosomes. Here, we show that BSH was oxidized when human neutrophils phagocytosed S. aureus, but provided limited protection to the bacteria. We used mass spectrometry to measure the oxidation of BSH upon exposure of S. aureus USA300 to either a bolus of hypochlorous acid (HOCl) or a flux generated by the neutrophil enzyme myeloperoxidase. Oxidation of BSH and loss of bacterial viability were strongly correlated (r = 0.99, p < 0.001). BSH was fully oxidized after exposure of S. aureus to lethal doses of HOCl. However, there was no relationship between the initial BSH levels and the dose of HOCl required for bacterial killing. In contrast to the HOCl systems, only 50% of total BSH was oxidized when neutrophils killed the majority of phagocytosed bacteria. Oxidation of BSH was decreased upon inhibition of myeloperoxidase, implicating HOCl in phagosomal BSH oxidation. A BSH-deficient S. aureus USA300 mutant was slightly more susceptible to treatment with either HOCl or ammonia chloramine, or to killing within neutrophil phagosomes. Collectively, our data show that myeloperoxidase-derived oxidants react with S. aureus inside neutrophil phagosomes, leading to partial BSH oxidation, and contribute to bacterial killing. However, BSH offers only limited protection against the neutrophil's multifaceted killing mechanisms.
Collapse
Affiliation(s)
- Louisa V Ashby
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Reuben Springer
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Vu Van Loi
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Haike Antelmann
- Freie Universität Berlin, Department of Biology, Chemistry, PharmacyInstitute of Biology‐MicrobiologyBerlinGermany
| | - Mark B Hampton
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Anthony J Kettle
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| | - Nina Dickerhof
- Centre for Free Radical Research, Department of Pathology and Biomedical ScienceUniversity of Otago ChristchurchChristchurchNew Zealand
| |
Collapse
|
9
|
Staphylococcus aureus Small RNAs Possess Dephospho-CoA 5′-Caps, but No CoAlation Marks. Noncoding RNA 2022; 8:ncrna8040046. [PMID: 35893229 PMCID: PMC9326634 DOI: 10.3390/ncrna8040046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Novel features of coenzyme A (CoA) and its precursor, 3′-dephospho-CoA (dpCoA), recently became evident. dpCoA was found to attach to 5′-ends of small ribonucleic acids (dpCoA-RNAs) in two bacterial species (Escherichia coli and Streptomyces venezuelae). Furthermore, CoA serves, in addition to its well-established coenzymatic roles, as a ubiquitous posttranslational protein modification (‘CoAlation’), thought to prevent the irreversible oxidation of cysteines. Here, we first identified and quantified dpCoA-RNAs in the small RNA fraction of the human pathogen Staphylococcus aureus, using a newly developed enzymatic assay. We found that the amount of dpCoA caps was similar to that of the other two bacteria. We furthermore tested the hypothesis that, in the environment of a cell, the free thiol of the dpCoA-RNAs, as well as other sulfur-containing RNA modifications, may be oxidized by disulfide bond formation, e.g., with CoA. While we could not find evidence for such an ‘RNA CoAlation’, we observed that CoA disulfide reductase, the enzyme responsible for reducing CoA homodisulfides in S. aureus, did efficiently reduce several synthetic dpCoA-RNA disulfides to dpCoA-RNAs in vitro. This activity may imply a role in reversing RNA CoAlation.
Collapse
|
10
|
Cengher L, Manna AC, Cho J, Theprungsirikul J, Sessions K, Rigby W, Cheung AL. Regulation of neutrophil myeloperoxidase inhibitor SPIN by the small RNA Teg49 in Staphylococcus aureus. Mol Microbiol 2022; 117:1447-1463. [PMID: 35578788 PMCID: PMC9880452 DOI: 10.1111/mmi.14919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/04/2022] [Accepted: 05/11/2022] [Indexed: 01/31/2023]
Abstract
Teg49 is a Staphylococcus aureus trans-acting regulatory sRNA derived from cleavage of the sarA P3 transcript. We showed by RNA-Seq here that the 5' trident-like structure in Teg49 regulates transcriptionally (direct and indirect) 22 genes distinct from sarA. Among these, Teg49 was noted to repress spn, encoding a 102 residue preprotein which yields the mature 73 residue peptide which inhibits the catalytic activity of myeloperoxidase in human neutrophils. Teg49 was found to regulate spn mRNA post-transcriptionally in strain SH1000 through 9-nt base-pairing between hairpin loop 2 of Teg49 and an exposed bulge of the spn mRNA. Mutations of the Teg49 binding site disrupted the repression of spn, leading to reduced degradation, and increased half-life of spn mRNA in the Teg49 mutant. The spn-Teg49 interaction was also confirmed with a synonymous spn mutation to yield enhanced spn expression in the mutant vs. the parent. The Teg49 mutant with increased spn expression exhibited enhanced resistance to MPO activity in vitro. Killing assays with human neutrophils showed that the Teg49 mutant was more resistant to killing after phagocytosis. Altogether, this study shows that Teg49 in S. aureus has a distinct and important regulatory profile whereby this sRNA modulates resistance to myeloperoxidase-mediated killing by human neutrophils.
Collapse
Affiliation(s)
- Liviu Cengher
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Adhar C. Manna
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Junho Cho
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Katherine Sessions
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - William Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| | - Ambrose L. Cheung
- Department of Microbiology and Immunology, Geisel School of Medicine Dartmouth College Hanover New Hampshire USA
| |
Collapse
|
11
|
Thiol Reductases in Deinococcus Bacteria and Roles in Stress Tolerance. Antioxidants (Basel) 2022; 11:antiox11030561. [PMID: 35326211 PMCID: PMC8945050 DOI: 10.3390/antiox11030561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/11/2022] [Accepted: 03/13/2022] [Indexed: 12/10/2022] Open
Abstract
Deinococcus species possess remarkable tolerance to extreme environmental conditions that generate oxidative damage to macromolecules. Among enzymes fulfilling key functions in metabolism regulation and stress responses, thiol reductases (TRs) harbour catalytic cysteines modulating the redox status of Cys and Met in partner proteins. We present here a detailed description of Deinococcus TRs regarding gene occurrence, sequence features, and physiological functions that remain poorly characterised in this genus. Two NADPH-dependent thiol-based systems are present in Deinococcus. One involves thioredoxins, disulfide reductases providing electrons to protein partners involved notably in peroxide scavenging or in preserving protein redox status. The other is based on bacillithiol, a low-molecular-weight redox molecule, and bacilliredoxin, which together protect Cys residues against overoxidation. Deinococcus species possess various types of thiol peroxidases whose electron supply depends either on NADPH via thioredoxins or on NADH via lipoylated proteins. Recent data gained on deletion mutants confirmed the importance of TRs in Deinococcus tolerance to oxidative treatments, but additional investigations are needed to delineate the redox network in which they operate, and their precise physiological roles. The large palette of Deinococcus TR representatives very likely constitutes an asset for the maintenance of redox homeostasis in harsh stress conditions.
Collapse
|
12
|
Lewis AD, Riedel TM, Kesler MBA, Varney ME, Long TE. Pharmacological evaluation of disulfiram analogs as antimicrobial agents and their application as inhibitors of fosB-mediated fosfomycin resistance. J Antibiot (Tokyo) 2022; 75:146-154. [PMID: 35058577 PMCID: PMC8852335 DOI: 10.1038/s41429-022-00500-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 12/29/2021] [Indexed: 11/26/2022]
Abstract
Disulfide analogs of the alcohol sobriety medication disulfiram (Antabuse™) were evaluated for antimicrobial activity. Structure-activity relationship analyses of MIC data obtained for MRSA and other pathogenic organisms revealed correlations between the lipophilicity and bulkiness of the substituents. Analogs conferring optimal anti-MRSA activity contained S-octyl disulfides and either N,N-dimethyl- or N-pyrrolidine dithiocarbamate substituents. Additional testing revealed that both disulfiram and its S-octyl derivative are capable of sensitizing MRSA to the bactericidal effects of fosfomycin. Mechanistic studies established that the compounds decrease intracellular levels of the fosB cofactor bacillithiol through a thiol-disulfide exchange reaction. The altered MRSA susceptibility was thereby attributed to a depleted cellular bacillithiol pool available for fosB inactivation of fosfomycin.
Collapse
|
13
|
Buvelot H, Roth M, Jaquet V, Lozkhin A, Renzoni A, Bonetti EJ, Gaia N, Laumay F, Mollin M, Stasia MJ, Schrenzel J, François P, Krause KH. Hydrogen Peroxide Affects Growth of S. aureus Through Downregulation of Genes Involved in Pyrimidine Biosynthesis. Front Immunol 2021; 12:673985. [PMID: 34557184 PMCID: PMC8454235 DOI: 10.3389/fimmu.2021.673985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
Reactive oxygen species (ROS) play a crucial role in the cellular defense against S. aureus, as evidenced by the importance of this pathogen in patients lacking the ROS-generating phagocyte NADPH oxidase NOX2. ROS concentrations required to kill S. aureus in vitro are much higher than those found in the phagosome. We therefore hypothesized that sublethal ROS concentrations may play a role in S. aureus gene dysregulation and investigated the in vitro transcriptomic response of S. aureus to sublethal concentrations of hydrogen peroxide (H2O2). A striking observation of these experiments was a coordinated and massive downregulation of genes involved in pyrimidine metabolism. Using transposon insertion mutants, we demonstrated that deletion of carA, a gene involved in pyrimidine synthesis, led to a significant growth defect and to an increased sensitivity of S. aureus to added H2O2. The phenotype of the carA mutant could be reversed through supplementation with the pyrimidine precursor uracil, or with a multicopy vector encoding carA. As opposed to the impact of ROS on extracellular survival, carA deletion did not affect the intracellular survival in neutrophils. Our results raise the possibility that ROS-dependent downregulation of pyrimidine metabolism might be a survival strategy of S. aureus, allowing colonization through intracellular survival, while decreasing the risk of killing the host through dampened extracellular growth.
Collapse
Affiliation(s)
- Hélène Buvelot
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Myriam Roth
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Andrey Lozkhin
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Adriana Renzoni
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Eve-Julie Bonetti
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nadia Gaia
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Floriane Laumay
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Michéle Mollin
- Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Pôle Biologie, Centre Hospitaliser Universitaire (CHU) de Grenoble, Grenoble, France
| | - Marie-José Stasia
- Chronic Granulomatous Disease Diagnosis and Research Centre (CDiReC), Pôle Biologie, Centre Hospitaliser Universitaire (CHU) de Grenoble, Grenoble, France.,Université Grenoble Alpes, Comissariat à l'energie atomique (CEA), Centre National de la Recherche Scientifique (CNRS) and Institut de Biologie Structurale (IBS), Grenoble, France
| | - Jacques Schrenzel
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Genomic Research Laboratory, Department of Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Patrice François
- Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Service of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
14
|
Shoor M, Gudim I, Hersleth HP, Hammerstad M. Thioredoxin reductase from Bacillus cereus exhibits distinct reduction and NADPH-binding properties. FEBS Open Bio 2021; 11:3019-3031. [PMID: 34492167 PMCID: PMC8564101 DOI: 10.1002/2211-5463.13289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/23/2022] Open
Abstract
Low‐molecular‐weight (low Mr) thioredoxin reductases (TrxRs) are homodimeric NADPH‐dependent dithiol flavoenzymes that reduce thioredoxins (Trxs) or Trx‐like proteins involved in the activation networks of enzymes, such as the bacterial class Ib ribonucleotide reductase (RNR). During the last few decades, TrxR‐like ferredoxin/flavodoxin NADP+ oxidoreductases (FNRs) have been discovered and characterized in several types of bacteria, including those not encoding the canonical plant‐type FNR. In Bacillus cereus, a TrxR‐like FNR has been shown to reduce the flavodoxin‐like protein NrdI in the activation of class Ib RNR. However, some species only encode TrxR and lack the homologous TrxR‐like FNR. Due to the structural similarity between TrxRs and TrxR‐like FNRs, as well as variations in their occurrence in different microorganisms, we hypothesized that low Mr TrxR may be able to replace TrxR‐like FNR in, for example, the reduction of NrdI. In this study, characterization of TrxR from B. cereus has revealed a weak FNR activity toward NrdI reduction. Additionally, the crystal structure shows that only one out of two binding sites of the B. cereus TrxR homodimer is occupied with NADPH, indicating a possible asymmetric co‐substrate binding in TrxR.
Collapse
Affiliation(s)
- Marita Shoor
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway
| | - Ingvild Gudim
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway.,Department of Chemistry, Section for Chemical Life Sciences, University of Oslo, Norway
| | - Marta Hammerstad
- Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Norway
| |
Collapse
|
15
|
Ku JWK, Gan YH. New roles for glutathione: Modulators of bacterial virulence and pathogenesis. Redox Biol 2021; 44:102012. [PMID: 34090244 PMCID: PMC8182430 DOI: 10.1016/j.redox.2021.102012] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/29/2021] [Accepted: 05/12/2021] [Indexed: 01/02/2023] Open
Abstract
Low molecular weight (LMW) thiols contain reducing sulfhydryl groups that are important for maintaining antioxidant defense in the cell. Aside from the traditional roles of LMW thiols as redox regulators in bacteria, glutathione (GSH) has been reported to affect virulence and bacterial pathogenesis. The role of GSH in virulence is diverse, including the activation of virulence gene expression and contributing to optimal biofilm formation. GSH can also be converted to hydrogen sulfide (H2S) which is important for the pathogenesis of certain bacteria. Besides GSH, some bacteria produce other LMW thiols such as mycothiol and bacillithiol that affect bacterial virulence. We discuss these newer reported functions of LMW thiols modulating bacterial pathogenesis either directly or indirectly and via modulation of the host immune system.
Collapse
Affiliation(s)
- Joanne Wei Kay Ku
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore
| | - Yunn-Hwen Gan
- Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, National University of Singapore, 8 Medical Drive, 117596, Singapore.
| |
Collapse
|
16
|
Alqurashi A, Alfs L, Swann J, Butt JN, Kelly DJ. The flavodoxin FldA activates the class Ia ribonucleotide reductase of Campylobacter jejuni. Mol Microbiol 2021; 116:343-358. [PMID: 33721378 DOI: 10.1111/mmi.14715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/11/2021] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a microaerophilic zoonotic pathogen with an atypical respiratory Complex I that oxidizes a flavodoxin (FldA) instead of NADH. FldA is essential for viability and is reduced via pyruvate and 2-oxoglutarate oxidoreductases (POR/OOR). Here, we show that FldA can also be reduced by FqrB (Cj0559), an NADPH:FldA reductase. An fqrB deletion mutant was viable but displayed a significant growth defect. FqrB is related to flavoprotein reductases from Gram-positive bacteria that can reduce NrdI, a specialized flavodoxin that is needed for tyrosyl radical formation in NrdF, the beta subunit of class 1b-type (Mn) ribonucleotide reductase (RNR). However, C. jejuni possesses a single class Ia-type (Fe) RNR (NrdAB) that would be expected to be ferredoxin dependent. We show that CjFldA is an unusually high potential flavodoxin unrelated to NrdI, yet growth of the fqrB mutant, but not the wild-type or a complemented strain, was stimulated by low deoxyribonucleoside (dRNS) concentrations, suggesting FldA links FqrB and RNR activity. Using purified proteins, we confirmed the NrdB tyrosyl radical could be regenerated in an NADPH, FqrB, and FldA dependent manner, as evidenced by both optical and electron paramagnetic resonance (EPR) spectroscopy. Thus, FldA activates RNR in C. jejuni, partly explaining its essentiality.
Collapse
Affiliation(s)
- Abdulmajeed Alqurashi
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| | - Laura Alfs
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Jordan Swann
- School of Chemistry, University of East Anglia, Norwich, UK
| | - Julea N Butt
- School of Chemistry, University of East Anglia, Norwich, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Gaballa A, Su TT, Helmann JD. The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins. Redox Biol 2021; 42:101935. [PMID: 33722570 PMCID: PMC8113031 DOI: 10.1016/j.redox.2021.101935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 12/03/2022] Open
Abstract
The bacterial cytosol is generally a reducing environment with protein cysteine residues maintained in their thiol form. The low molecular weight thiol bacillithiol (BSH) serves as a general thiol reductant, analogous to glutathione, in a wide range of bacterial species. Proteins modified by disulfide bond formation with BSH (S-bacillithiolation) are reduced by the action of bacilliredoxins, BrxA and BrxB. Here, the YtxJ protein is identified as a monothiol bacilliredoxin, renamed BrxC, and is implicated in BSH removal from oxidized cytosolic proteins, including the glyceraldehyde 3-phosphate dehydrogenases GapA and GapB. BrxC can also debacillithiolate the mixed disulfide form of the bacilliredoxin BrxB. Bdr is a thioredoxin reductase-like flavoprotein with bacillithiol-disulfide (BSSB) reductase activity. Here, Bdr is shown to additionally function as a bacilliredoxin reductase. Bdr and BrxB function cooperatively to debacillithiolate OhrR, a transcription factor regulated by S-bacillithiolation on its sole cysteine residue. Collectively, these results expand our understanding of the BSH redox network comprised of three bacilliredoxins and a BSSB reductase that serve to counter the widespread protein S-bacillithiolation that results from conditions of disulfide stress. Bacillithiol is the major low molecular weight thiol in Bacillus subtilis. Oxidative stress leads to protein S-bacillithiolation. BrxC functions as a monothiol class bacilliredoxin. The Bdr bacillithiol disulfide reductase is also a bacilliredoxin.
Collapse
Affiliation(s)
- Ahmed Gaballa
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - Tina Tianjiao Su
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
18
|
Overview of structurally homologous flavoprotein oxidoreductases containing the low M r thioredoxin reductase-like fold - A functionally diverse group. Arch Biochem Biophys 2021; 702:108826. [PMID: 33684359 DOI: 10.1016/j.abb.2021.108826] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/23/2021] [Accepted: 02/27/2021] [Indexed: 01/12/2023]
Abstract
Structural studies show that enzymes have a limited number of unique folds, although structurally related enzymes have evolved to perform a large variety of functions. In this review, we have focused on enzymes containing the low molecular weight thioredoxin reductase (low Mr TrxR) fold. This fold consists of two domains, both containing a three-layer ββα sandwich Rossmann-like fold, serving as flavin adenine dinucleotide (FAD) and, in most cases, pyridine nucleotide (NAD(P)H) binding-domains. Based on a search of the Protein Data Bank for all published structures containing the low Mr TrxR-like fold, we here present a comprehensive overview of enzymes with this structural architecture. These range from TrxR-like ferredoxin/flavodoxin NAD(P)+ oxidoreductases, through glutathione reductase, to NADH peroxidase. Some enzymes are solely composed of the low Mr TrxR-like fold, while others contain one or two additional domains. In this review, we give a detailed description of selected enzymes containing only the low Mr TrxR-like fold, however, catalyzing a diversity of chemical reactions. Our overview of this structurally similar, yet functionally distinct group of flavoprotein oxidoreductases highlights the fascinating and increasing number of studies describing the diversity among these enzymes, especially during the last decade(s).
Collapse
|
19
|
Hammerstad M, Gudim I, Hersleth HP. The Crystal Structures of Bacillithiol Disulfide Reductase Bdr (YpdA) Provide Structural and Functional Insight into a New Type of FAD-Containing NADPH-Dependent Oxidoreductase. Biochemistry 2020; 59:4793-4798. [PMID: 33326741 PMCID: PMC7774306 DOI: 10.1021/acs.biochem.0c00745] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Low
G+C Gram-positive Firmicutes, such as the clinically important
pathogens Staphylococcus aureus and Bacillus
cereus, use the low-molecular weight thiol bacillithiol (BSH)
as a defense mechanism to buffer the intracellular redox environment
and counteract oxidative stress encountered by human neutrophils during
infections. The protein YpdA has recently been shown to function as
an essential NADPH-dependent reductase of oxidized bacillithiol disulfide
(BSSB) resulting from stress responses and is crucial for maintaining
the reduced pool of BSH and cellular redox balance. In this work,
we present the first crystallographic structures of YpdAs, namely,
those from S. aureus and B. cereus. Our analyses reveal a uniquely organized biological tetramer; however,
the structure of the monomeric subunit is highly similar to those
of other flavoprotein disulfide reductases. The absence of a redox
active cysteine in the vicinity of the FAD isoalloxazine ring implies
a new direct disulfide reduction mechanism, which is backed by the
presence of a potentially gated channel, serving as a putative binding
site for BSSB in the proximity of the FAD cofactor. We also report
enzymatic activities for both YpdAs, which along with the structures
presented in this work provide important structural and functional
insight into a new class of FAD-containing NADPH-dependent oxidoreductases,
related to the emerging fight against pathogenic bacteria.
Collapse
Affiliation(s)
- Marta Hammerstad
- Department of Biosciences, University of Oslo, Section for Biochemistry and Molecular Biology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Ingvild Gudim
- Department of Biosciences, University of Oslo, Section for Biochemistry and Molecular Biology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway
| | - Hans-Petter Hersleth
- Department of Biosciences, University of Oslo, Section for Biochemistry and Molecular Biology, P.O. Box 1066, Blindern, NO-0316 Oslo, Norway.,Department of Chemistry, University of Oslo, Section for Chemical Life Sciences, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| |
Collapse
|
20
|
Fritsch VN, Loi VV, Busche T, Tung QN, Lill R, Horvatek P, Wolz C, Kalinowski J, Antelmann H. The alarmone (p)ppGpp confers tolerance to oxidative stress during the stationary phase by maintenance of redox and iron homeostasis in Staphylococcus aureus. Free Radic Biol Med 2020; 161:351-364. [PMID: 33144262 PMCID: PMC7754856 DOI: 10.1016/j.freeradbiomed.2020.10.322] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/18/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Slow growing stationary phase bacteria are often tolerant to multiple stressors and antimicrobials. Here, we show that the pathogen Staphylococcus aureus develops a non-specific tolerance towards oxidative stress during the stationary phase, which is mediated by the nucleotide second messenger (p)ppGpp. The (p)ppGpp0 mutant was highly susceptible to HOCl stress during the stationary phase. Transcriptome analysis of the (p)ppGpp0 mutant revealed an increased expression of the PerR, SigB, QsrR, CtsR and HrcA regulons during the stationary phase, indicating an oxidative stress response. The (p)ppGpp0 mutant showed a slight oxidative shift in the bacillithiol (BSH) redox potential (EBSH) and an impaired H2O2 detoxification due to higher endogenous ROS levels. The increased ROS levels in the (p)ppGpp0 mutant were shown to be caused by higher respiratory chain activity and elevated total and free iron levels. Consistent with these results, N-acetyl cysteine and the iron-chelator dipyridyl improved the growth and survival of the (p)ppGpp0 mutant under oxidative stress. Elevated free iron levels caused 8 to 31-fold increased transcription of Fe-storage proteins ferritin (ftnA) and miniferritin (dps) in the (p)ppGpp0 mutant, while Fur-regulated uptake systems for iron, heme or siderophores (efeOBU, isdABCDEFG, sirABC and sstADBCD) were repressed. Finally, the susceptibility of the (p)ppGpp0 mutant towards the bactericidal action of the antibiotics ciprofloxacin and tetracycline was abrogated with N-acetyl cysteine and dipyridyl. Taken together, (p)ppGpp confers tolerance to ROS and antibiotics by down-regulation of respiratory chain activity and free iron levels, lowering ROS formation to ensure redox homeostasis in S. aureus.
Collapse
Affiliation(s)
- Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Roland Lill
- Institute of Cytobiology, Philipps-University of Marburg, D-35037, Marburg, Germany; Research Center for Synthetic Microbiology SynMikro, Hans-Meerwein-Str., D-35043, Marburg, Germany
| | - Petra Horvatek
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, D-72076, Tübingen, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
21
|
Linzner N, Loi VV, Fritsch VN, Antelmann H. Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol Chem 2020; 402:333-361. [PMID: 33544504 DOI: 10.1515/hsz-2020-0272] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which encounters reactive oxygen, nitrogen, chlorine, electrophile and sulfur species (ROS, RNS, RCS, RES and RSS) by the host immune system, during cellular metabolism or antibiotics treatments. To defend against redox active species and antibiotics, S. aureus is equipped with redox sensing regulators that often use thiol switches to control the expression of specific detoxification pathways. In addition, the maintenance of the redox balance is crucial for survival of S. aureus under redox stress during infections, which is accomplished by the low molecular weight (LMW) thiol bacillithiol (BSH) and the associated bacilliredoxin (Brx)/BSH/bacillithiol disulfide reductase (YpdA)/NADPH pathway. Here, we present an overview of thiol-based redox sensors, its associated enzymatic detoxification systems and BSH-related regulatory mechanisms in S. aureus, which are important for the defense under redox stress conditions. Application of the novel Brx-roGFP2 biosensor provides new insights on the impact of these systems on the BSH redox potential. These thiol switches of S. aureus function in protection against redox active desinfectants and antimicrobials, including HOCl, the AGXX® antimicrobial surface coating, allicin from garlic and the naphthoquinone lapachol. Thus, thiol switches could be novel drug targets for the development of alternative redox-based therapies to combat multi-drug resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, Königin-Luise-Straße 12-16, D-14195Berlin, Germany
| |
Collapse
|
22
|
Kostyuk AI, Panova AS, Kokova AD, Kotova DA, Maltsev DI, Podgorny OV, Belousov VV, Bilan DS. In Vivo Imaging with Genetically Encoded Redox Biosensors. Int J Mol Sci 2020; 21:E8164. [PMID: 33142884 PMCID: PMC7662651 DOI: 10.3390/ijms21218164] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/13/2022] Open
Abstract
Redox reactions are of high fundamental and practical interest since they are involved in both normal physiology and the pathogenesis of various diseases. However, this area of research has always been a relatively problematic field in the context of analytical approaches, mostly because of the unstable nature of the compounds that are measured. Genetically encoded sensors allow for the registration of highly reactive molecules in real-time mode and, therefore, they began a new era in redox biology. Their strongest points manifest most brightly in in vivo experiments and pave the way for the non-invasive investigation of biochemical pathways that proceed in organisms from different systematic groups. In the first part of the review, we briefly describe the redox sensors that were used in vivo as well as summarize the model systems to which they were applied. Next, we thoroughly discuss the biological results obtained in these studies in regard to animals, plants, as well as unicellular eukaryotes and prokaryotes. We hope that this work reflects the amazing power of this technology and can serve as a useful guide for biologists and chemists who work in the field of redox processes.
Collapse
Affiliation(s)
- Alexander I. Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Anastasiya S. Panova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Aleksandra D. Kokova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Daria A. Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Dmitry I. Maltsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
| | - Oleg V. Podgorny
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, 117997 Moscow, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 117997 Moscow, Russia; (A.I.K.); (A.S.P.); (A.D.K.); (D.A.K.); (D.I.M.); (O.V.P.); (V.V.B.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
| |
Collapse
|
23
|
Linzner N, Fritsch VN, Busche T, Tung QN, Loi VV, Bernhardt J, Kalinowski J, Antelmann H. The plant-derived naphthoquinone lapachol causes an oxidative stress response in Staphylococcus aureus. Free Radic Biol Med 2020; 158:126-136. [PMID: 32712193 DOI: 10.1016/j.freeradbiomed.2020.07.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus is a major human pathogen, which causes life-threatening systemic and chronic infections and rapidly acquires resistance to multiple antibiotics. Thus, new antimicrobial compounds are required to combat infections with drug resistant S. aureus isolates. The 2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone lapachol was previously shown to exert antimicrobial effects. In this study, we investigated the antimicrobial mode of action of lapachol in S. aureus using RNAseq transcriptomics, redox biosensor measurements, S-bacillithiolation assays and phenotype analyses of mutants. In the RNA-seq transcriptome, lapachol caused an oxidative and quinone stress response as well as protein damage as revealed by induction of the PerR, HypR, QsrR, MhqR, CtsR and HrcA regulons. Lapachol treatment further resulted in up-regulation of the SigB and GraRS regulons, which is indicative for cell wall and general stress responses. The redox-cycling mode of action of lapachol was supported by an elevated bacillithiol (BSH) redox potential (EBSH), higher endogenous ROS levels, a faster H2O2 detoxification capacity and increased thiol-oxidation of GapDH and the HypR repressor in vivo. The ROS scavenger N-acetyl cysteine and microaerophilic growth conditions improved the survival of lapachol-treated S. aureus cells. Phenotype analyses revealed an involvement of the catalase KatA and the Brx/BSH/YpdA pathway in protection against lapachol-induced ROS-formation in S. aureus. However, no evidence for irreversible protein alkylation and aggregation was found in lapachol-treated S. aureus cells. Thus, the antimicrobial mode of action of lapachol in S. aureus is mainly caused by ROS formation resulting in an oxidative stress response, an oxidative shift of the EBSH and increased protein thiol-oxidation. As ROS-generating compound, lapachol is an attractive alternative antimicrobial to combat multi-resistant S. aureus isolates.
Collapse
Affiliation(s)
- Nico Linzner
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Verena Nadin Fritsch
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany; Center for Biotechnology, University Bielefeld, 33615, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany
| | - Jörg Bernhardt
- Institute for Microbiology, University of Greifswald, 17489, Greifswald, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, University Bielefeld, 33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, 14195, Berlin, Germany.
| |
Collapse
|
24
|
Rawat M, Maupin-Furlow JA. Redox and Thiols in Archaea. Antioxidants (Basel) 2020; 9:antiox9050381. [PMID: 32380716 PMCID: PMC7278568 DOI: 10.3390/antiox9050381] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 12/11/2022] Open
Abstract
Low molecular weight (LMW) thiols have many functions in bacteria and eukarya, ranging from redox homeostasis to acting as cofactors in numerous reactions, including detoxification of xenobiotic compounds. The LMW thiol, glutathione (GSH), is found in eukaryotes and many species of bacteria. Analogues of GSH include the structurally different LMW thiols: bacillithiol, mycothiol, ergothioneine, and coenzyme A. Many advances have been made in understanding the diverse and multiple functions of GSH and GSH analogues in bacteria but much less is known about distribution and functions of GSH and its analogues in archaea, which constitute the third domain of life, occupying many niches, including those in extreme environments. Archaea are able to use many energy sources and have many unique metabolic reactions and as a result are major contributors to geochemical cycles. As LMW thiols are major players in cells, this review explores the distribution of thiols and their biochemistry in archaea.
Collapse
Affiliation(s)
- Mamta Rawat
- Biology Department, California State University, Fresno, CA 93740, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| | - Julie A. Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
- Genetics Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (M.R.); (J.A.M.-F.)
| |
Collapse
|
25
|
The Disulfide Stress Response and Protein S-thioallylation Caused by Allicin and Diallyl Polysulfanes in Bacillus subtilis as Revealed by Transcriptomics and Proteomics. Antioxidants (Basel) 2019; 8:antiox8120605. [PMID: 31795512 PMCID: PMC6943732 DOI: 10.3390/antiox8120605] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/25/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Garlic plants (Allium sativum L.) produce antimicrobial compounds, such as diallyl thiosulfinate (allicin) and diallyl polysulfanes. Here, we investigated the transcriptome and protein S-thioallylomes under allicin and diallyl tetrasulfane (DAS4) exposure in the Gram-positive bacterium Bacillus subtilis. Allicin and DAS4 caused a similar thiol-specific oxidative stress response, protein and DNA damage as revealed by the induction of the OhrR, PerR, Spx, YodB, CatR, HypR, AdhR, HxlR, LexA, CymR, CtsR, and HrcA regulons in the transcriptome. At the proteome level, we identified, in total, 108 S-thioallylated proteins under allicin and/or DAS4 stress. The S-thioallylome includes enzymes involved in the biosynthesis of surfactin (SrfAA, SrfAB), amino acids (SerA, MetE, YxjG, YitJ, CysJ, GlnA, YwaA), nucleotides (PurB, PurC, PyrAB, GuaB), translation factors (EF-Tu, EF-Ts, EF-G), antioxidant enzymes (AhpC, MsrB), as well as redox-sensitive MarR/OhrR and DUF24-family regulators (OhrR, HypR, YodB, CatR). Growth phenotype analysis revealed that the low molecular weight thiol bacillithiol, as well as the OhrR, Spx, and HypR regulons, confer protection against allicin and DAS4 stress. Altogether, we show here that allicin and DAS4 cause a strong oxidative, disulfide and sulfur stress response in the transcriptome and widespread S-thioallylation of redox-sensitive proteins in B. subtilis. The results further reveal that allicin and polysulfanes have similar modes of actions and thiol-reactivities and modify a similar set of redox-sensitive proteins by S-thioallylation.
Collapse
|
26
|
Loi VV, Huyen NTT, Busche T, Tung QN, Gruhlke MCH, Kalinowski J, Bernhardt J, Slusarenko AJ, Antelmann H. Staphylococcus aureus responds to allicin by global S-thioallylation - Role of the Brx/BSH/YpdA pathway and the disulfide reductase MerA to overcome allicin stress. Free Radic Biol Med 2019; 139:55-69. [PMID: 31121222 DOI: 10.1016/j.freeradbiomed.2019.05.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 12/12/2022]
Abstract
The prevalence of methicillin-resitant Staphylococcus aureus (MRSA) in hospitals and the community poses an increasing health burden, which requires the discovery of alternative antimicrobials. Allicin (diallyl thiosulfinate) from garlic exhibits broad-spectrum antimicrobial activity against many multidrug resistant bacteria. The thiol-reactive mode of action of allicin involves its S-thioallylations of low molecular weight (LMW) thiols and protein thiols. To investigate the mode of action and stress response caused by allicin in S. aureus, we analyzed the transcriptome signature, the targets for S-thioallylation in the proteome and the changes in the bacillithiol (BSH) redox potential (EBSH) under allicin stress. Allicin caused a strong thiol-specific oxidative and sulfur stress response and protein damage as revealed by the induction of the PerR, HypR, QsrR, MhqR, CstR, CtsR, HrcA and CymR regulons in the RNA-seq transcriptome. Allicin also interfered with metal and cell wall homeostasis and caused induction of the Zur, CsoR and GraRS regulons. Brx-roGFP2 biosensor measurements revealed a strongly increased EBSH under allicin stress. In the proteome, 57 proteins were identified with S-thioallylations under allicin treatment, including translation factors (EF-Tu, EF-Ts), metabolic and redox enzymes (AldA, GuaB, Tpx, KatA, BrxA, MsrB) as well as redox-sensitive MarR/SarA-family regulators (MgrA, SarA, SarH1, SarS). Phenotype and biochemical analyses revealed that BSH and the HypR-controlled disulfide reductase MerA are involved in allicin detoxification in S. aureus. The reversal of protein S-thioallylation was catalyzed by the Brx/BSH/YpdA pathway. Finally, the BSSB reductase YpdA was shown to use S-allylmercaptobacillithiol (BSSA) as substrate to regenerate BSH in S. aureus. In conclusion, allicin results in an oxidative shift of EBSH and protein S-thioallylation, which can be reversed by YpdA and the Brx/BSH/YpdA electron pathways in S. aureus to regenerate thiol homeostasis.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany
| | - Nguyen Thi Thu Huyen
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany; Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Quach Ngoc Tung
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany
| | | | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, D-33594, Bielefeld, Germany
| | - Jörg Bernhardt
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany; Institute for Microbiology, University of Greifswald, D-17489, Greifswald, Germany
| | - Alan John Slusarenko
- Department of Plant Physiology, RWTH Aachen University, D-52056, Aachen, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute for Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
27
|
Linzner N, Loi VV, Fritsch VN, Tung QN, Stenzel S, Wirtz M, Hell R, Hamilton CJ, Tedin K, Fulde M, Antelmann H. Staphylococcus aureus Uses the Bacilliredoxin (BrxAB)/Bacillithiol Disulfide Reductase (YpdA) Redox Pathway to Defend Against Oxidative Stress Under Infections. Front Microbiol 2019; 10:1355. [PMID: 31275277 PMCID: PMC6591457 DOI: 10.3389/fmicb.2019.01355] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/31/2019] [Indexed: 11/22/2022] Open
Abstract
Staphylococcus aureus is a major human pathogen and has to cope with reactive oxygen and chlorine species (ROS, RCS) during infections. The low molecular weight thiol bacillithiol (BSH) is an important defense mechanism of S. aureus for detoxification of ROS and HOCl stress to maintain the reduced state of the cytoplasm. Under HOCl stress, BSH forms mixed disulfides with proteins, termed as S-bacillithiolations, which are reduced by bacilliredoxins (BrxA and BrxB). The NADPH-dependent flavin disulfide reductase YpdA is phylogenetically associated with the BSH synthesis and BrxA/B enzymes and was recently suggested to function as BSSB reductase (Mikheyeva et al., 2019). Here, we investigated the role of the complete bacilliredoxin BrxAB/BSH/YpdA pathway in S. aureus COL under oxidative stress and macrophage infection conditions in vivo and in biochemical assays in vitro. Using HPLC thiol metabolomics, a strongly enhanced BSSB level and a decreased BSH/BSSB ratio were measured in the S. aureus COL ΔypdA deletion mutant under control and NaOCl stress. Monitoring the oxidation degree (OxD) of the Brx-roGFP2 biosensor revealed that YpdA is required for regeneration of the reduced BSH redox potential (EBSH) upon recovery from oxidative stress. In addition, the ΔypdA mutant was impaired in H2O2 detoxification as measured with the novel H2O2-specific Tpx-roGFP2 biosensor. Phenotype analyses further showed that BrxA and YpdA are required for survival under NaOCl and H2O2 stress in vitro and inside murine J-774A.1 macrophages in infection assays in vivo. Finally, NADPH-coupled electron transfer assays provide evidence for the function of YpdA in BSSB reduction, which depends on the conserved Cys14 residue. YpdA acts together with BrxA and BSH in de-bacillithiolation of S-bacillithiolated GapDH. In conclusion, our results point to a major role of the BrxA/BSH/YpdA pathway in BSH redox homeostasis in S. aureus during recovery from oxidative stress and under infections.
Collapse
Affiliation(s)
- Nico Linzner
- Institute for Biology - Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Vu Van Loi
- Institute for Biology - Microbiology, Freie Universität Berlin, Berlin, Germany
| | | | - Quach Ngoc Tung
- Institute for Biology - Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Saskia Stenzel
- Institute for Biology - Microbiology, Freie Universität Berlin, Berlin, Germany
| | - Markus Wirtz
- Plant Molecular Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Rüdiger Hell
- Plant Molecular Biology, Centre for Organismal Studies Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Chris J Hamilton
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Marcus Fulde
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Haike Antelmann
- Institute for Biology - Microbiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|