1
|
Dudley EG. The E. coli CRISPR-Cas conundrum: are they functional immune systems or genomic singularities? EcoSal Plus 2025:eesp00402020. [PMID: 40202350 DOI: 10.1128/ecosalplus.esp-0040-2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
The discovery and subsequent characterization and applications of CRISPR-Cas is one of the most fascinating scientific stories from the past two decades. While first identified in Escherichia coli, this microbial workhorse often took a back seat to other bacteria during the early race to detail CRISPR-Cas function as an adaptive immune system. This was not a deliberate slight, but the result of early observations that the CRISPR-Cas systems found in E. coli were not robust phage defense systems as first described in Streptococcus thermophilus. This apparent lack of activity was discovered to result from transcriptional repression by the nucleoid protein H-NS. Despite extensive evidence arguing against such roles, some studies still present E. coli CRISPR-Cas systems in the context of anti-phage and/or anti-plasmid activities. Here, the studies that led to our understanding of its cryptic nature are highlighted, along with ongoing research to uncover potential alternative functions in E. coli.
Collapse
Affiliation(s)
- Edward G Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- The Penn State E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Xie Y, Liu X, Wu T, Luo Y. Harnessing the Streptomyces-originating type I-E CRISPR/Cas system for efficient genome editing in Streptomyces. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1174-1182. [PMID: 39821831 DOI: 10.1007/s11427-024-2677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/04/2024] [Indexed: 01/19/2025]
Abstract
Since their discovery, CRISPR/Cas systems have significantly expanded the genetic toolbox, aiding in the exploration and enhanced production of natural products across various microbes. Among these, class 2 CRISPR/Cas systems are simpler and more broadly used, but they frequently fail to function effectively in many Streptomyces strains. In this study, we present an engineered class 1 type I CRISPR/Cas system derived from Streptomyces avermitilis, which enables efficient gene editing in phylogenetically distant Streptomyces strains. Through a plasmid interference assay, we identified the effective protospacer adjacent motif as 5'-AAN-3'. Utilizing this system, we achieved targeted chromosomal deletions ranging from 8 bp to 100 kb, with efficiencies exceeding 92%. We further utilized this system to insert DNA fragments into different Streptomyces genomes, facilitating the heterologous expression of exogenous genes and the activation of endogenous natural product biosynthetic gene clusters. Overall, we established a type I CRISPR/Cas-based gene-editing methodology that significantly advances the exploration of Streptomyces, known for their rich natural product resources. This is the first report of a gene editing tool developed based on the endogenous class 1 type I CRISPR/Cas system in Streptomyces spp. Our work enriches the Streptomyces gene manipulation toolbox and advances the discovery of valuable natural products within these organisms.
Collapse
Affiliation(s)
- Yuhui Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoyan Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Tingting Wu
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunzi Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China.
- Department of Gastroenterology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
3
|
Kozlova S, Morozova N, Ispolatov Y, Severinov K. Dependence of post-segregational killing mediated by Type II restriction-modification systems on the lifetime of restriction endonuclease effective activity. mBio 2024; 15:e0140824. [PMID: 38980007 PMCID: PMC11324026 DOI: 10.1128/mbio.01408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Plasmid-borne Type II restriction-modification (RM) systems mediate post-segregational killing (PSK). PSK is thought to be caused by the dilution of restriction and modification enzymes during cell division, resulting in accumulation of unmethylated DNA recognition sites and their cleavage by restriction endonucleases. PSK is the likely reason for stabilization of plasmids carrying RM systems in the absence of selection for plasmid maintenance. In this study, we developed a CRISPR interference-based method to eliminate RM-carrying plasmids and study PSK-related phenomena with minimal perturbation to the Escherichia coli host. Plasmids carrying the EcoRV, Eco29kI, and EcoRI RM systems were highly stable, and their loss resulted in SOS response and PSK. In contrast, plasmids carrying the Esp1396I system were poorly stabilized; their loss led to a temporary cessation of growth, followed by full recovery. We demonstrate that this unusual behavior is due to a limited lifetime of the Esp1396I restriction endonuclease activity, which, upon Esp1396I plasmid loss, disappears approximately after two cycles of cell division, i.e., before unmethylated sites appear in significant numbers. Our results indicate that whenever PSK induced by a loss of RM systems, and, possibly, other toxin-antitoxin systems, is considered, the lifetimes of individual system components and the growth rate of host cells shall be taken in account. Mathematical modeling shows, that unlike the situation with classical toxin-antitoxin systems, RM system-mediated PSK is possible when the lifetimes of restriction endonuclease and methyltransferase activities are similar, as long as the toxic restriction endonuclease activity persists for more than two chromosome replication cycles.IMPORTANCEIt is widely accepted that many Type II restriction-modification (RM) systems mediate post-segregational killing (PSK) if plasmids that encode them are lost. In this study, we harnessed an inducible CRISPR-Cas system to remove RM plasmids from Escherichia coli cells to study PSK while minimally perturbing cell physiology. We demonstrate that PSK depends on restriction endonuclease activity lifetime and is not observed when it is less than two replication cycles. We present a mathematical model that explains experimental data and shows that unlike the case of toxin-antitoxin-mediated PSK, the loss of an RM system induced PSK even when the RM enzymes have identical lifetimes.
Collapse
Affiliation(s)
- Svetlana Kozlova
- Skolkovo Institute of
Science and Technology, Center for Molecular and Cellular
Biology, Moscow,
Russia
| | - Natalia Morozova
- Peter the Great St.
Petersburg Polytechnic University,
St. Petersburg, Russia
| | - Yaroslav Ispolatov
- Physics Department,
University of Santiago of Chile, Center for Interdisciplinary Research
in Astrophysics and Space Science,
Santiago, Chile
| | - Konstantin Severinov
- Waksman Institute for
Microbiology and Department of Molecular Biology and Biochemistry,
Rutgers, State University of New
Jersey, Piscataway, New
Jersey, USA
- Institute of Gene
Biology, Moscow,
Russia
| |
Collapse
|
4
|
Lu M, Yu C, Zhang Y, Ju W, Ye Z, Hua C, Mao J, Hu C, Yang Z, Xiao Y. Structure and genome editing of type I-B CRISPR-Cas. Nat Commun 2024; 15:4126. [PMID: 38750051 PMCID: PMC11096372 DOI: 10.1038/s41467-024-48598-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/07/2024] [Indexed: 05/18/2024] Open
Abstract
Type I CRISPR-Cas systems employ multi-subunit effector Cascade and helicase-nuclease Cas3 to target and degrade foreign nucleic acids, representing the most abundant RNA-guided adaptive immune systems in prokaryotes. Their ability to cause long fragment deletions have led to increasing interests in eukaryotic genome editing. While the Cascade structures of all other six type I systems have been determined, the structure of the most evolutionarily conserved type I-B Cascade is still missing. Here, we present two cryo-EM structures of the Synechocystis sp. PCC 6714 (Syn) type I-B Cascade, revealing the molecular mechanisms that underlie RNA-directed Cascade assembly, target DNA recognition, and local conformational changes of the effector complex upon R-loop formation. Remarkably, a loop of Cas5 directly intercalated into the major groove of the PAM and facilitated PAM recognition. We further characterized the genome editing profiles of this I-B Cascade-Cas3 in human CD3+ T cells using mRNA-mediated delivery, which led to unidirectional 4.5 kb deletion in TRAC locus and achieved an editing efficiency up to 41.2%. Our study provides the structural basis for understanding target DNA recognition by type I-B Cascade and lays foundation for harnessing this system for long range genome editing in human T cells.
Collapse
Affiliation(s)
- Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| | - Chenlin Yu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuwen Zhang
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Wenjun Ju
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhi Ye
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Chenyang Hua
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Jinze Mao
- Nanjing Foreign Language School, Nanjing, 210008, China
| | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
- Precision Medicine Translational Research Programme (TRP), Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117543, Singapore
| | - Zhenhuang Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Shenzhen, Guangdong, 518112, China.
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
- Chongqing Innovation Institute of China Pharmaceutical University, Chongqing, 401135, China.
| |
Collapse
|
5
|
CRISPR-Cas adaptation in Escherichia coli. Biosci Rep 2023; 43:232582. [PMID: 36809461 PMCID: PMC10011333 DOI: 10.1042/bsr20221198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/23/2023] Open
Abstract
Prokaryotes use the adaptive immunity mediated via the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR associated (CRISPR-Cas) system for protection against invading elements such as phages and plasmids. The immunity is achieved by capturing small DNA fragments or spacers from foreign nucleic acids (protospacers) and integrating them into the host CRISPR locus. This step of CRISPR-Cas immunity called 'naïve CRISPR adaptation' requires the conserved Cas1-Cas2 complex and is often supported by variable host proteins that assist in spacer processing and integration. Bacteria that have acquired new spacers become immune to the same invading elements when reinfected. CRISPR-Cas immunity can also be updated by integrating new spacers from the same invading elements, a process called 'primed adaptation'. Only properly selected and integrated spacers are functional in the next steps of CRISPR immunity when their processed transcripts are used for RNA-guided target recognition and interference (target degradation). Capturing, trimming, and integrating new spacers in the correct orientation are universal steps of adaptation to all CRISPR-Cas systems, but some details are CRISPR-Cas type-specific and species-specific. In this review, we provide an overview of the mechanisms of CRISPR-Cas class 1 type I-E adaptation in Escherichia coli as a general model for adaptation processes (DNA capture and integration) that have been studied in detail. We focus on the role of host non-Cas proteins involved in adaptation, particularly on the role of homologous recombination.
Collapse
|
6
|
Hussain MS, Anand V, Kumar M. Functional PAM sequence for DNA interference by CRISPR-Cas I-B system of Leptospira interrogans and the role of LinCas11b encoded within lincas8b. Int J Biol Macromol 2023; 237:124086. [PMID: 36940764 DOI: 10.1016/j.ijbiomac.2023.124086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/18/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Pathogenic species of Leptospira are recalcitrant for genetic manipulation using conventional tools, and therefore there is a need to explore techniques of higher efficiency. Application of endogenous CRISPR-Cas tool is emerging and efficient; nevertheless, it is limited by a poor understanding of interference machinery in the bacterial genome and its associated protospacer adjacent motif (PAM). In this study, interference machinery of CRISPR-Cas subtype I-B (Lin_I-B) from L. interrogans was experimentally validated in E. coli using the various identified PAM (TGA, ATG, ATA). The overexpression of the Lin_I-B interference machinery in E. coli demonstrated that LinCas5, LinCas6, LinCas7, and LinCas8b can self-assemble on cognate CRISPR RNA to form an interference complex (LinCascade). Moreover, a robust interference of target plasmids containing a protospacer with a PAM suggested a functional LinCascade. We also recognized a small open reading frame within lincas8b that independently co-translates LinCas11b. A mutant variant of LinCascade-Cas11b that lacks LinCas11b co-expression erred to mount target plasmid interference. At the same time, LinCas11b complementation in LinCascade-Cas11b rescued target plasmid interference. Thus, the present study establishes Leptospira subtype I-B interference machinery to be functional and, soon, may pave the way for scientists to harness it as a programmable endogenous genetic manipulation tool.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Vineet Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
7
|
Rawashdeh O, Rawashdeh RY, Kebede T, Kapp D, Ralescu A. Bio-informatic analysis of CRISPR protospacer adjacent motifs (PAMs) in T4 genome. BMC Genom Data 2022; 23:40. [PMID: 35655130 PMCID: PMC9161530 DOI: 10.1186/s12863-022-01056-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The existence of protospacer adjacent motifs (PAMs) sequences in bacteriophage genome is critical for the recognition and function of the clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) machinery system. We further elucidate the significance of PAMs and their function, particularly as a part of transcriptional regulatory regions in T4 bacteriophages. METHODS A scripting language was used to analyze a sequence of T4 phage genome, and a list of few selected PAMs. Mann-Whitney Wilcoxon (MWW) test was used to compare the sequence hits for the PAMs versus the hits of all the possible sequences of equal lengths. RESULTS The results of MWW test show that certain PAMs such as: 'NGG' and 'TATA' are preferably located at the core of phage promoters: around -10 position, whereas the position around -35 appears to have no detectable count variation of any of the tested PAMs. Among all tested PAMs, the following three sequences: 5'-GCTV-3', 5'-TTGAAT-3' and 5'-TTGGGT-3' have higher prevalence in essential genes. By analyzing all the possible ways of reading PAM sequences as codons for the corresponding amino acids, it was found that deduced amino acids of some PAMs have a significant tendency to prefer the surface of proteins. CONCLUSION These results provide novel insights into the location and the subsequent identification of the role of PAMs as transcriptional regulatory elements. Also, CRISPR targeting certain PAM sequences is somehow likely to be connected to the hydrophilicity (water solubility) of amino acids translated from PAM's triplets. Therefore, these amino acids are found at the interacting unit at protein-protein interfaces.
Collapse
Affiliation(s)
- Omar Rawashdeh
- Department of Electrical Engineering and Computer Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| | - Rabeah Y. Rawashdeh
- Department of Biological Sciences, Yarmouk University, Shafiq Irshidat Street, Irbid, 21163 Jordan
| | | | | | - Anca Ralescu
- Department of Electrical Engineering and Computer Sciences, University of Cincinnati, Cincinnati, OH 45221 USA
| |
Collapse
|
8
|
Abstract
RNA-guided CRISPR-Cas nucleases efficiently protect bacterial cells from phage infection and plasmid transformation. Yet, the efficiency of CRISPR-Cas defense is not absolute. Mutations in either CRISPR-Cas components of the host or mobile genetic elements regions targeted by CRISPR-Cas inactivate the defensive action. Here, we show that even at conditions of active CRISPR-Cas and unaltered targeted plasmids, a kinetic equilibrium between CRISPR-Cas nucleases action and plasmid replication processes allows for existence of a small subpopulation of plasmid-bearing cells on the background of cells that have been cured from the plasmid. In nature, the observed diversification of phenotypes may allow rapid changes in the population structure to meet the demands of the environment. CRISPR-Cas systems provide prokaryotes with an RNA-guided defense against foreign mobile genetic elements (MGEs) such as plasmids and viruses. A common mechanism by which MGEs avoid interference by CRISPR consists of acquisition of escape mutations in regions targeted by CRISPR. Here, using microbiological, live microscopy and microfluidics analyses we demonstrate that plasmids can persist for multiple generations in some Escherichia coli cell lineages at conditions of continuous targeting by the type I-E CRISPR-Cas system. We used mathematical modeling to show how plasmid persistence in a subpopulation of cells mounting CRISPR interference is achieved due to the stochastic nature of CRISPR interference and plasmid replication events. We hypothesize that the observed complex dynamics provides bacterial populations with long-term benefits due to continuous maintenance of mobile genetic elements in some cells, which leads to diversification of phenotypes in the entire community and allows rapid changes in the population structure to meet the demands of a changing environment.
Collapse
|
9
|
McKenzie RE, Keizer EM, Vink JNA, van Lopik J, Büke F, Kalkman V, Fleck C, Tans SJ, Brouns SJJ. Single cell variability of CRISPR-Cas interference and adaptation. Mol Syst Biol 2022; 18:e10680. [PMID: 35467080 PMCID: PMC10561596 DOI: 10.15252/msb.202110680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022] Open
Abstract
While CRISPR-Cas defence mechanisms have been studied on a population level, their temporal dynamics and variability in individual cells have remained unknown. Using a microfluidic device, time-lapse microscopy and mathematical modelling, we studied invader clearance in Escherichia coli across multiple generations. We observed that CRISPR interference is fast with a narrow distribution of clearance times. In contrast, for invaders with escaping PAM mutations we found large cell-to-cell variability, which originates from primed CRISPR adaptation. Faster growth and cell division and higher levels of Cascade increase the chance of clearance by interference, while slower growth is associated with increased chances of clearance by priming. Our findings suggest that Cascade binding to the mutated invader DNA, rather than spacer integration, is the main source of priming heterogeneity. The highly stochastic nature of primed CRISPR adaptation implies that only subpopulations of bacteria are able to respond quickly to invading threats. We conjecture that CRISPR-Cas dynamics and heterogeneity at the cellular level are crucial to understanding the strategy of bacteria in their competition with other species and phages.
Collapse
Affiliation(s)
- Rebecca E McKenzie
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Emma M Keizer
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
| | - Jochem N A Vink
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Jasper van Lopik
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Ferhat Büke
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Vera Kalkman
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| | - Christian Fleck
- Freiburg Center for Data Analysis and Modeling (FDM)Spatial Systems Biology GroupUniversity of FreiburgFreiburgGermany
| | - Sander J Tans
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
- AMOLFAmsterdamThe Netherlands
| | - Stan J J Brouns
- Department of BionanoscienceDelft University of TechnologyDelftThe Netherlands
- Kavli Institute of NanoscienceDelftThe Netherlands
| |
Collapse
|
10
|
Function and Application of the CRISPR-Cas System in the Plant Pathogen Erwinia amylovora. Appl Environ Microbiol 2022; 88:e0251321. [PMID: 35285707 PMCID: PMC9004355 DOI: 10.1128/aem.02513-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phage-based biocontrol is an emerging method for managing the plant pathogen Erwinia amylovora. Control of E. amylovora in North America is achieved chiefly through the application of streptomycin and has led to the development of streptomycin resistance. Resistant E. amylovora can be tracked through the analysis of CRISPR spacer sequences. An alternative to antibiotics are bacterial viruses, known as phages, which lyse their hosts during replication to control the bacterial population. Endogenous CRISPR-Cas systems act as phage resistance mechanisms however, preliminary genomic analysis suggests this activity is limited in E. amylovora. This leaves the functionality of the CRISPR-Cas system, any clade-based differences, and the impact which this system may have on phage-based biocontrol in question. In this study, the CRISPR arrays from 127 newly available genomic sequences of E. amylovora were analyzed through a novel bioinformatic pipeline. Through this, the Eastern and Western North American clades were shown to be incompatible with the current PCR-based approaches for tracking E. amylovora given the size and composition of their CRISPR arrays. Two artificial CRISPR arrays were designed to investigate the functionality of the CRISPR-Cas system in E. amylovora. This system was capable of curing a targeted plasmid and providing phage resistance but was not the source of phage resistance observed within the controls. This suggests that while the CRISPR-Cas system is an important defense mechanism for invasive plasmids, an as yet unidentified mechanism is the primary source of phage resistance in E. amylovora. IMPORTANCE Erwinia amylovora is an economically significant agricultural pathogen found throughout the world. In North America, E. amylovora has developed streptomycin resistance and therefore alternative treatments using phages have received increased attention. In this study, we analyzed recently published genomes to determine that two significant groups of E. amylovora are poorly identified using the current, CRISPR-based tracking methods. We also showed that the CRISPR-Cas system and an unidentified mechanism work together to provide a significant degree of resistance against one of the phages proposed for phage-based biocontrol.
Collapse
|
11
|
Wimmer F, Mougiakos I, Englert F, Beisel CL. Rapid cell-free characterization of multi-subunit CRISPR effectors and transposons. Mol Cell 2022; 82:1210-1224.e6. [PMID: 35216669 DOI: 10.1016/j.molcel.2022.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022]
Abstract
CRISPR-Cas biology and technologies have been largely shaped to date by the characterization and use of single-effector nucleases. By contrast, multi-subunit effectors dominate natural systems, represent emerging technologies, and were recently associated with RNA-guided DNA transposition. This disconnect stems from the challenge of working with multiple protein subunits in vitro and in vivo. Here, we apply cell-free transcription-translation (TXTL) systems to radically accelerate the characterization of multi-subunit CRISPR effectors and transposons. Numerous DNA constructs can be combined in one TXTL reaction, yielding defined biomolecular readouts in hours. Using TXTL, we mined phylogenetically diverse I-E effectors, interrogated extensively self-targeting I-C and I-F systems, and elucidated targeting rules for I-B and I-F CRISPR transposons using only DNA-binding components. We further recapitulated DNA transposition in TXTL, which helped reveal a distinct branch of I-B CRISPR transposons. These capabilities will facilitate the study and exploitation of the broad yet underexplored diversity of CRISPR-Cas systems and transposons.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Ioannis Mougiakos
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
12
|
Vink JNA, Baijens JHL, Brouns SJJ. PAM-repeat associations and spacer selection preferences in single and co-occurring CRISPR-Cas systems. Genome Biol 2021; 22:281. [PMID: 34593010 PMCID: PMC8482600 DOI: 10.1186/s13059-021-02495-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The adaptive CRISPR-Cas immune system stores sequences from past invaders as spacers in CRISPR arrays and thereby provides direct evidence that links invaders to hosts. Mapping CRISPR spacers has revealed many aspects of CRISPR-Cas biology, including target requirements such as the protospacer adjacent motif (PAM). However, studies have so far been limited by a low number of mapped spacers in the database. RESULTS By using vast metagenomic sequence databases, we map approximately one-third of more than 200,000 unique CRISPR spacers from a variety of microbes and derive a catalog of more than two hundred unique PAM sequences associated with specific CRISPR-Cas subtypes. These PAMs are further used to correctly assign the orientation of CRISPR arrays, revealing conserved patterns between the last nucleotides of the CRISPR repeat and PAM. We could also deduce CRISPR-Cas subtype-specific preferences for targeting either template or coding strand of open reading frames. While some DNA-targeting systems (type I-E and type II systems) prefer the template strand and avoid mRNA, other DNA- and RNA-targeting systems (types I-A and I-B and type III systems) prefer the coding strand and mRNA. In addition, we find large-scale evidence that both CRISPR-Cas adaptation machinery and CRISPR arrays are shared between different CRISPR-Cas systems. This could lead to simultaneous DNA and RNA targeting of invaders, which may be effective at combating mobile genetic invaders. CONCLUSIONS This study has broad implications for our understanding of how CRISPR-Cas systems work in a wide range of organisms for which only the genome sequence is known.
Collapse
Affiliation(s)
- Jochem N A Vink
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Jan H L Baijens
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands
- Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Delft, The Netherlands.
- Kavli Institute of Nanoscience, Delft, The Netherlands.
| |
Collapse
|
13
|
Prespacers formed during primed adaptation associate with the Cas1-Cas2 adaptation complex and the Cas3 interference nuclease-helicase. Proc Natl Acad Sci U S A 2021; 118:2021291118. [PMID: 34035168 PMCID: PMC8179228 DOI: 10.1073/pnas.2021291118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Primed adaptation allows rapid acquisition of protective spacers derived from foreign mobile genetic elements into CRISPR arrays of the host. Primed adaptation requires ongoing CRISPR interference that destroys foreign genetic elements, but the nature of this requirement is unknown. Using the Escherichia coli I-E CRISPR-Cas as a model, we show that prespacers, short fragments of foreign DNA on their way to become incorporated into CRISPR arrays as spacers, are associated with both the adaptation integrase Cas1 and the interference nuclease Cas3, implying physical association of the interference and adaptation machineries during priming. For Type I CRISPR-Cas systems, a mode of CRISPR adaptation named priming has been described. Priming allows specific and highly efficient acquisition of new spacers from DNA recognized (primed) by the Cascade-crRNA (CRISPR RNA) effector complex. Recognition of the priming protospacer by Cascade-crRNA serves as a signal for engaging the Cas3 nuclease–helicase required for both interference and primed adaptation, suggesting the existence of a primed adaptation complex (PAC) containing the Cas1–Cas2 adaptation integrase and Cas3. To detect this complex in vivo, we here performed chromatin immunoprecipitation with Cas3-specific and Cas1-specific antibodies using cells undergoing primed adaptation. We found that prespacers are bound by both Cas1 (presumably, as part of the Cas1–Cas2 integrase) and Cas3, implying direct physical association of the interference and adaptation machineries as part of PAC.
Collapse
|
14
|
Zhou Y, Tang Y, Fu P, Tian D, Yu L, Huang Y, Li G, Li M, Wang Y, Yang Z, Xu X, Yin Z, Zhou D, Poirel L, Jiang X. The type I-E CRISPR-Cas system influences the acquisition of blaKPC-IncF plasmid in Klebsiella pneumonia. Emerg Microbes Infect 2020; 9:1011-1022. [PMID: 32393110 PMCID: PMC7301723 DOI: 10.1080/22221751.2020.1763209] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-KP) have disseminated worldwide and emerged as major threats to public health. Of epidemiological significance, the international pandemic of KPC-KP is primarily associated with CG258 isolates and blaKPC-IncF plasmids. CRISPR-Cas system is an adaptive immune system that can hinder gene expansion driven by horizontal gene transfer. Because of blaKPC-IncF plasmids are favored by CG258 K. pneumoniae, it was of interest to examine the co-distribution of CRISPR and blaKPC-IncF plasmids in such isolates. We collected 459 clinical K. pneumoniae isolates in China and collected 203 global whole-genome sequences in GenBank to determine the prevalence of CRISPR-Cas systems. We observed that CRISPR-Cas system was significantly scarce in the CG258 lineage and blaKPC-positive isolates. Furthermore, the results of conjugation and plasmid stability assay fully demonstrated the CRIPSR-Cas system in K. pneumoniae could effectively hindered blaKPC-IncF plasmids invasion and existence. Notably, most blaKPC-IncF plasmids were also proved to be good targets of CRISPR owing to carry matched and functional protospacers and PAMs. Overall, our work suggests that type I-E CRISPR-Cas systems could impact the spread of blaKPC in K. pneumoniae populations, and the scarcity of CRISPR-Cas system was one of potential factors leading to the propagation of blaKPC-IncF plasmids in CG258 K. pneumoniae.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Tang
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Pan Fu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Dongxing Tian
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Lianhua Yu
- Department of Laboratory Medicine, Taizhou Municipal Hospital, Taizhou, People's Republic of China
| | - Yunkun Huang
- Department of Laboratory Medicine Kunming Yan'an Hospital, Kunming, People's Republic of China
| | - Gang Li
- Department of Laboratory Medicine, Jinshan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Meng Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yong Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, Jinan, People's Republic of China
| | - Zehua Yang
- Department of Laboratory Medicine, Sixth Hospital of Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University, and Key Laboratory of Clinical Pharmacology of Antibiotics, National Health and Family Planning Commission, Shanghai, People's Republic of China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People's Republic of China
| | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland.,Laboratoire Europeen Associé (LEA) INSERM, IAME (Paris, France), University of Fribourg, Fribourg, Switzerland
| | - Xiaofei Jiang
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Abstract
Prokaryotes have developed numerous defense strategies to combat the constant threat posed by the diverse genetic parasites that endanger them. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas loci guard their hosts with an adaptive immune system against foreign nucleic acids. Protection starts with an immunization phase, in which short pieces of the invader's genome, known as spacers, are captured and integrated into the CRISPR locus after infection. Next, during the targeting phase, spacers are transcribed into CRISPR RNAs (crRNAs) that guide CRISPR-associated (Cas) nucleases to destroy the invader's DNA or RNA. Here we describe the many different molecular mechanisms of CRISPR targeting and how they are interconnected with the immunization phase through a third phase of the CRISPR-Cas immune response: primed spacer acquisition. In this phase, Cas proteins direct the crRNA-guided acquisition of additional spacers to achieve a more rapid and robust immunization of the population.
Collapse
Affiliation(s)
- Philip M. Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY 10065, USA
| | - Luciano A. Marraffini
- Laboratory of Bacteriology, The Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
16
|
Bourgeois J, Lazinski DW, Camilli A. Identification of Spacer and Protospacer Sequence Requirements in the Vibrio cholerae Type I-E CRISPR/Cas System. mSphere 2020; 5:e00813-20. [PMID: 33208517 PMCID: PMC7677007 DOI: 10.1128/msphere.00813-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/01/2020] [Indexed: 11/24/2022] Open
Abstract
The prokaryotic adaptive immune system CRISPR/Cas serves as a defense against bacteriophage and invasive nucleic acids. A type I-E CRISPR/Cas system has been detected in classical biotype isolates of Vibrio cholerae, the causative agent of the disease cholera. Experimental characterization of this system revealed a functional immune system that operates using a 5'-TT-3' protospacer-adjacent motif (PAM) for interference. However, several designed spacers against the 5'-TT-3' PAM do not interfere as expected, indicating that further investigation of this system is necessary. In this study, we identified additional conserved sequences, including a pyrimidine in the 5' position of the spacer and a purine in the complementary position of the protospacer using 873 unique spacers and 2,267 protospacers mined from CRISPR arrays in deposited sequences of V. cholerae We present bioinformatic evidence that during acquisition the protospacer purine is captured in the prespacer and that a 5'-RTT-3' PAM is necessary for spacer acquisition. Finally, we demonstrate experimentally, by designing and manipulating spacer and cognate PAMs in a plasmid conjugation assay, that a 5'-RTT-3' PAM is necessary for CRISPR interference, and we discover functional consequences for spacer efficacy related to the identity of the 5' spacer pyrimidine.IMPORTANCE Bacterial CRISPR/Cas systems provide immunity by defending against phage and other invading elements. A thorough comprehension of the molecular mechanisms employed by these diverse systems will improve our understanding of bacteriophage-bacterium interactions and bacterial adaptation to foreign DNA. The Vibrio cholerae type I-E system was previously identified in an extinct classical biotype and was partially characterized for its function. Here, using both bioinformatic and functional assays, we extend that initial study. We have found that the type I-E system still exists in modern strains of V. cholerae Furthermore, we defined additional sequence elements both in the CRISPR array and in target DNA that are required for immunity. CRISPR/Cas systems are now commonly used as precise and powerful genetic engineering tools. Knowledge of the sequences required for CRISPR/Cas immunity is a prerequisite for the effective design and experimental use of these systems. Our results greatly facilitate the effective use of one such system. Furthermore, we provide a publicly available software program that assists in the detection and validation of CRISPR/Cas immunity requirements when such a system exists in a bacterial species.
Collapse
Affiliation(s)
- Jacob Bourgeois
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University, School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University, School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Westra ER, Levin BR. It is unclear how important CRISPR-Cas systems are for protecting natural populations of bacteria against infections by mobile genetic elements. Proc Natl Acad Sci U S A 2020; 117:27777-27785. [PMID: 33122438 PMCID: PMC7668106 DOI: 10.1073/pnas.1915966117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Articles on CRISPR commonly open with some variant of the phrase "these short palindromic repeats and their associated endonucleases (Cas) are an adaptive immune system that exists to protect bacteria and archaea from viruses and infections with other mobile genetic elements." There is an abundance of genomic data consistent with the hypothesis that CRISPR plays this role in natural populations of bacteria and archaea, and experimental demonstrations with a few species of bacteria and their phage and plasmids show that CRISPR-Cas systems can play this role in vitro. Not at all clear are the ubiquity, magnitude, and nature of the contribution of CRISPR-Cas systems to the ecology and evolution of natural populations of microbes and the strength of selection mediated by different types of phage and plasmids to the evolution and maintenance of CRISPR-Cas systems. In this perspective, with the aid of heuristic mathematical-computer simulation models, we explore the a priori conditions under which exposure to lytic and temperate phage and conjugative plasmids will select for and maintain CRISPR-Cas systems in populations of bacteria and archaea. We review the existing literature addressing these ecological and evolutionary questions and highlight the experimental and other evidence needed to fully understand the conditions responsible for the evolution and maintenance of CRISPR-Cas systems and the contribution of these systems to the ecology and evolution of bacteria, archaea, and the mobile genetic elements that infect them.
Collapse
Affiliation(s)
- Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn, TR10 9FE Cornwall, United Kingdom;
| | - Bruce R Levin
- Department of Biology, Emory University, Atlanta, GA 30307
| |
Collapse
|
18
|
Detection of CRISPR adaptation. Biochem Soc Trans 2020; 48:257-269. [PMID: 32010936 PMCID: PMC7054753 DOI: 10.1042/bst20190662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022]
Abstract
Prokaryotic adaptive immunity is built when short DNA fragments called spacers are acquired into CRISPR (clustered regularly interspaced short palindromic repeats) arrays. CRISPR adaptation is a multistep process which comprises selection, generation, and incorporation of prespacers into arrays. Once adapted, spacers provide immunity through the recognition of complementary nucleic acid sequences, channeling them for destruction. To prevent deleterious autoimmunity, CRISPR adaptation must therefore be a highly regulated and infrequent process, at least in the absence of genetic invaders. Over the years, ingenious methods to study CRISPR adaptation have been developed. In this paper, we discuss and compare methods that detect CRISPR adaptation and its intermediates in vivo and propose suppressing PCR as a simple modification of a popular assay to monitor spacer acquisition with increased sensitivity.
Collapse
|
19
|
Yoganand KN, Muralidharan M, Nimkar S, Anand B. Fidelity of prespacer capture and processing is governed by the PAM-mediated interactions of Cas1-2 adaptation complex in CRISPR-Cas type I-E system. J Biol Chem 2019; 294:20039-20053. [PMID: 31748409 PMCID: PMC6937570 DOI: 10.1074/jbc.ra119.009438] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
Prokaryotes deploy CRISPR-Cas-based RNA-guided adaptive immunity to fend off mobile genetic elements such as phages and plasmids. During CRISPR adaptation, which is the first stage of CRISPR immunity, the Cas1-2 integrase complex captures invader-derived prespacer DNA and specifically integrates it at the leader-repeat junction as spacers. For this integration, several variants of CRISPR-Cas systems use Cas4 as an indispensable nuclease for selectively processing the protospacer adjacent motif (PAM) containing prespacers to a defined length. Surprisingly, however, a few CRISPR-Cas systems, such as type I-E, are bereft of Cas4. Despite the absence of Cas4, how the prespacers show impeccable conservation for length and PAM selection in type I-E remains intriguing. Here, using in vivo and in vitro integration assays, deep sequencing, and exonuclease footprinting, we show that Cas1-2/I-E-via the type I-E-specific extended C-terminal tail of Cas1-displays intrinsic affinity for PAM containing prespacers of variable length in Escherichia coli Although Cas1-2/I-E does not prune the prespacers, its binding protects the prespacer boundaries from exonuclease action. This ensures the pruning of exposed ends by exonucleases to aptly sized substrates for integration into the CRISPR locus. In summary, our work reveals that in a few CRISPR-Cas variants, such as type I-E, the specificity of PAM selection resides with Cas1-2, whereas the prespacer processing is co-opted by cellular non-Cas exonucleases, thereby offsetting the need for Cas4.
Collapse
Affiliation(s)
- Kakimani Nagarajan Yoganand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Manasasri Muralidharan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Siddharth Nimkar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Baskaran Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
20
|
Nussenzweig PM, McGinn J, Marraffini LA. Cas9 Cleavage of Viral Genomes Primes the Acquisition of New Immunological Memories. Cell Host Microbe 2019; 26:515-526.e6. [PMID: 31585845 PMCID: PMC7558852 DOI: 10.1016/j.chom.2019.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023]
Abstract
Type II CRISPR-Cas systems defend prokaryotes from bacteriophage infection through the acquisition of short viral DNA sequences known as spacers, which are transcribed into short RNA guides to specify the targets of the Cas9 nuclease. To counter the potentially devastating propagation of escaper phages with mutations in the target sequences, the host population acquires many different spacers. Whether and how pre-existing spacers in type II systems affect the acquisition of new ones is unknown. Here, we demonstrate that previously acquired spacers promote additional spacer acquisition from the vicinity of the target DNA site cleaved by Cas9. Therefore, CRISPR immune cells acquire additional spacers at the same time as they destroy the infecting virus. This anticipates the rise of escapers or related viruses that could escape targeting by the first spacer acquired. Our results thus reveal Cas9's role in the generation of immunological memories.
Collapse
Affiliation(s)
- Philip M Nussenzweig
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Jon McGinn
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA
| | - Luciano A Marraffini
- Laboratory of Bacteriology, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY 10065, USA.
| |
Collapse
|