1
|
Jebeli L, McDaniels TA, Ho DTT, Tahir H, Kai-Ming NL, Mcgaw M, Karlic KI, Lewis JM, Scott NE. The Late-Stage Steps of Burkholderia cenocepacia Protein O-Linked Glycan Biosynthesis Are Conditionally Essential. J Biol Chem 2025:108515. [PMID: 40286851 DOI: 10.1016/j.jbc.2025.108515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Periplasmic O-linked protein glycosylation is a highly conserved process observed across the Burkholderia genus. Within Burkholderia, protein glycosylation requires the five gene cluster known as the O-glycosylation cluster (OGC, ogcXABEI) which facilitates the construction of the O-linked trisaccharide attached to periplasmic proteins. Previous studies have reported conflicting results regarding the essentiality of ogcA, predicted to be responsible for the addition of the final carbohydrate of the O-linked trisaccharide and ogcX, the putative O-linked glycan flippase. Within this work, we aimed to dissect the impact of the loss of ogcA and ogcX on Burkholderia cenocepacia viability. We demonstrate that the loss of either ogcA or ogcX are detrimental if glycosylation is initiated leading to marked phenotypic effects. Proteomic analysis supports that the loss of ogcA/ogcX both blocks glycosylation and drives pleotropic effects in the membrane proteome, resulting in the loss of membrane integrity. Consistent with this, strains lacking ogcA and ogcX exhibit increased sensitivity to membrane stressors including antibiotics and demonstrate marked changes in membrane permeability. These effects are consistent with fouling of the undecaprenyl pool due to dead-end O-linked glycan intermediates, and consistent with this, we show that modulation of the undecaprenyl pool through the overexpression of undecaprenyl pyrophosphate synthase (UppS) or the OGC flippase (OgcX) restores viability while expression of early-stage OGC biosynthesis genes (ogcI and ogcB) reduce B. cenocepacia viability. These findings demonstrate disrupting O-linked glycan biosynthesis or transport appears to dramatically impact B. cenocepacia viability, supporting the assignment of ogcA and ogcX as conditionally essential.
Collapse
Affiliation(s)
- Leila Jebeli
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Taylor A McDaniels
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Duncan T T Ho
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Hamza Tahir
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Nicholas L Kai-Ming
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Molli Mcgaw
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Kristian I Karlic
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia
| | - Jessica M Lewis
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Nichollas E Scott
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne 3000, Australia.
| |
Collapse
|
2
|
Kay EJ, Dooda MK, Bryant JC, Reid AJ, Wren BW, Troutman JM, Jorgenson MA. Engineering Escherichia coli for increased Und-P availability leads to material improvements in glycan expression technology. Microb Cell Fact 2024; 23:72. [PMID: 38429691 PMCID: PMC10908060 DOI: 10.1186/s12934-024-02339-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Bacterial surface glycans are assembled by glycosyltransferases (GTs) that transfer sugar monomers to long-chained lipid carriers. Most bacteria employ the 55-carbon chain undecaprenyl phosphate (Und-P) to scaffold glycan assembly. The amount of Und-P available for glycan synthesis is thought to be limited by the rate of Und-P synthesis and by competition for Und-P between phosphoglycosyl transferases (PGTs) and GTs that prime glycan assembly (which we collectively refer to as PGT/GTs). While decreasing Und-P availability disrupts glycan synthesis and promotes cell death, less is known about the effects of increased Und-P availability. RESULTS To determine if cells can maintain higher Und-P levels, we first reduced intracellular competition for Und-P by deleting all known non-essential PGT/GTs in the Gram-negative bacterium Escherichia coli (hereafter called ΔPGT/GT cells). We then increased the rate of Und-P synthesis in ΔPGT/GT cells by overexpressing the Und-P(P) synthase uppS from a plasmid (puppS). Und-P quantitation revealed that ΔPGT/GT/puppS cells can be induced to maintain 3-fold more Und-P than wild type cells. Next, we determined how increasing Und-P availability affects glycan expression. Interestingly, increasing Und-P availability increased endogenous and recombinant glycan expression. In particular, ΔPGT/GT/puppS cells could be induced to express 7-fold more capsule from Streptococcus pneumoniae serotype 4 than traditional E. coli cells used to express recombinant glycans. CONCLUSIONS We demonstrate that the biotechnology standard bacterium E. coli can be engineered to maintain higher levels of Und-P. The results also strongly suggest that Und-P pathways can be engineered to increase the expression of potentially any Und-P-dependent polymer. Given that many bacterial glycans are central to the production of vaccines, diagnostics, and therapeutics, increasing Und-P availability should be a foremost consideration when designing bacterial glycan expression systems.
Collapse
Affiliation(s)
- Emily J Kay
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Manoj K Dooda
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Joseph C Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA
| | - Amanda J Reid
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Brendan W Wren
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Jerry M Troutman
- Nanoscale Science Program, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Matthew A Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, 4301 West Markham St. / Biomed I, Room 511 / Little Rock, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Knapp BD, Willis L, Gonzalez C, Vashistha H, Touma JJ, Tikhonov M, Ram J, Salman H, Elias JE, Huang KC. Metabolomic rearrangement controls the intrinsic microbial response to temperature changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.22.550177. [PMID: 37546722 PMCID: PMC10401945 DOI: 10.1101/2023.07.22.550177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Temperature is one of the key determinants of microbial behavior and survival, whose impact is typically studied under heat- or cold-shock conditions that elicit specific regulation to combat lethal stress. At intermediate temperatures, cellular growth rate varies according to the Arrhenius law of thermodynamics without stress responses, a behavior whose origins have not yet been elucidated. Using single-cell microscopy during temperature perturbations, we show that bacteria exhibit a highly conserved, gradual response to temperature upshifts with a time scale of ~1.5 doublings at the higher temperature, regardless of initial/final temperature or nutrient source. We find that this behavior is coupled to a temperature memory, which we rule out as being neither transcriptional, translational, nor membrane dependent. Instead, we demonstrate that an autocatalytic enzyme network incorporating temperature-sensitive Michaelis-Menten kinetics recapitulates all temperature-shift dynamics through metabolome rearrangement, which encodes a temperature memory and successfully predicts alterations in the upshift response observed under simple-sugar, low-nutrient conditions, and in fungi. This model also provides a mechanistic framework for both Arrhenius-dependent growth and the classical Monod Equation through temperature-dependent metabolite flux.
Collapse
Affiliation(s)
| | - Lisa Willis
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Carlos Gonzalez
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harsh Vashistha
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Joanna Jammal Touma
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Mikhail Tikhonov
- Department of Physics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jeffrey Ram
- Department of Physiology, Wayne State University, Detroit, MI 48201, USA
| | - Hanna Salman
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Josh E. Elias
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
4
|
Hogan AM, Rahman ASMZ, Motnenko A, Natarajan A, Maydaniuk DT, León B, Batun Z, Palacios A, Bosch A, Cardona ST. Profiling cell envelope-antibiotic interactions reveals vulnerabilities to β-lactams in a multidrug-resistant bacterium. Nat Commun 2023; 14:4815. [PMID: 37558695 PMCID: PMC10412643 DOI: 10.1038/s41467-023-40494-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/28/2023] [Indexed: 08/11/2023] Open
Abstract
The cell envelope of Gram-negative bacteria belonging to the Burkholderia cepacia complex (Bcc) presents unique restrictions to antibiotic penetration. As a consequence, Bcc species are notorious for causing recalcitrant multidrug-resistant infections in immunocompromised individuals. Here, we present the results of a genome-wide screen for cell envelope-associated resistance and susceptibility determinants in a Burkholderia cenocepacia clinical isolate. For this purpose, we construct a high-density, randomly-barcoded transposon mutant library and expose it to 19 cell envelope-targeting antibiotics. By quantifying relative mutant fitness with BarSeq, followed by validation with CRISPR-interference, we profile over a hundred functional associations and identify mediators of antibiotic susceptibility in the Bcc cell envelope. We reveal connections between β-lactam susceptibility, peptidoglycan synthesis, and blockages in undecaprenyl phosphate metabolism. The synergy of the β-lactam/β-lactamase inhibitor combination ceftazidime/avibactam is primarily mediated by inhibition of the PenB carbapenemase. In comparison with ceftazidime, avibactam more strongly potentiates the activity of aztreonam and meropenem in a panel of Bcc clinical isolates. Finally, we characterize in Bcc the iron and receptor-dependent activity of the siderophore-cephalosporin antibiotic, cefiderocol. Our work has implications for antibiotic target prioritization, and for using additional combinations of β-lactam/β-lactamase inhibitors that can extend the utility of current antibacterial therapies.
Collapse
Affiliation(s)
- Andrew M Hogan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Anna Motnenko
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Aakash Natarajan
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dustin T Maydaniuk
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Beltina León
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Zayra Batun
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Armando Palacios
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Alejandra Bosch
- CINDEFI, CONICET-CCT La Plata, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina
| | - Silvia T Cardona
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
5
|
Keller MR, Dörr T. Bacterial metabolism and susceptibility to cell wall-active antibiotics. Adv Microb Physiol 2023; 83:181-219. [PMID: 37507159 PMCID: PMC11024984 DOI: 10.1016/bs.ampbs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Bacterial infections are increasingly resistant to antimicrobial therapy. Intense research focus has thus been placed on identifying the mechanisms that bacteria use to resist killing or growth inhibition by antibiotics and the ways in which bacteria share these traits with one another. This work has led to the advancement of new drugs, combination therapy regimens, and a deeper appreciation for the adaptability seen in microorganisms. However, while the primary mechanisms of action of most antibiotics are well understood, the more subtle contributions of bacterial metabolic state to repairing or preventing damage caused by antimicrobials (thereby promoting survival) are still understudied. Here, we review a modern viewpoint on a classical system: examining bacterial metabolism's connection to antibiotic susceptibility. We dive into the relationship between metabolism and antibiotic efficacy through the lens of growth rate, energy state, resource allocation, and the infection environment, focusing on cell wall-active antibiotics.
Collapse
Affiliation(s)
- Megan Renee Keller
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States
| | - Tobias Dörr
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, United States; Department of Microbiology, Cornell University, Ithaca, NY, United States; Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States.
| |
Collapse
|
6
|
Abstract
While many mechanisms governing bacterial envelope homeostasis have been identified, others remain poorly understood. To decipher these processes, we previously developed an assay in the Gram-negative model Escherichia coli to identify genes involved in maintenance of envelope integrity. One such gene was ElyC, which was shown to be required for envelope integrity and peptidoglycan synthesis at room temperature. ElyC is predicted to be an integral inner membrane protein with a highly conserved domain of unknown function (DUF218). In this study, and stemming from a further characterization of the role of ElyC in maintaining cell envelope integrity, we serendipitously discovered an unappreciated form of oxidative stress in the bacterial envelope. We found that cells lacking ElyC overproduce hydroxyl radicals (HO•) in their envelope compartment and that HO• overproduction is directly or indirectly responsible for the peptidoglycan synthesis arrest, cell envelope integrity defects, and cell lysis of the ΔelyC mutant. Consistent with these observations, we show that the ΔelyC mutant defect is suppressed during anaerobiosis. HO• is known to cause DNA damage but to our knowledge has not been shown to interfere with peptidoglycan synthesis. Thus, our work implicates oxidative stress as an important stressor in the bacterial cell envelope and opens the door to future studies deciphering the mechanisms that render peptidoglycan synthesis sensitive to oxidative stress. IMPORTANCE Oxidative stress is caused by the production and excessive accumulation of oxygen reactive species. In bacterial cells, oxidative stress mediated by hydroxyl radicals is typically associated with DNA damage in the cytoplasm. Here, we reveal the existence of a pathway for oxidative stress in the envelope of Gram-negative bacteria. Stemming from the characterization of a poorly characterized gene, we found that HO• overproduction specifically in the envelope compartment causes inhibition of peptidoglycan synthesis and eventually bacterial cell lysis.
Collapse
|
7
|
Goodall ECA, Isom GL, Rooke JL, Pullela K, Icke C, Yang Z, Boelter G, Jones A, Warner I, Da Costa R, Zhang B, Rae J, Tan WB, Winkle M, Delhaye A, Heinz E, Collet JF, Cunningham AF, Blaskovich MA, Parton RG, Cole JA, Banzhaf M, Chng SS, Vollmer W, Bryant JA, Henderson IR. Loss of YhcB results in dysregulation of coordinated peptidoglycan, LPS and phospholipid synthesis during Escherichia coli cell growth. PLoS Genet 2021; 17:e1009586. [PMID: 34941903 PMCID: PMC8741058 DOI: 10.1371/journal.pgen.1009586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 01/07/2022] [Accepted: 11/24/2021] [Indexed: 12/13/2022] Open
Abstract
The cell envelope is essential for viability in all domains of life. It retains enzymes and substrates within a confined space while providing a protective barrier to the external environment. Destabilising the envelope of bacterial pathogens is a common strategy employed by antimicrobial treatment. However, even in one of the best studied organisms, Escherichia coli, there remain gaps in our understanding of how the synthesis of the successive layers of the cell envelope are coordinated during growth and cell division. Here, we used a whole-genome phenotypic screen to identify mutants with a defective cell envelope. We report that loss of yhcB, a conserved gene of unknown function, results in loss of envelope stability, increased cell permeability and dysregulated control of cell size. Using whole genome transposon mutagenesis strategies, we report the comprehensive genetic interaction network of yhcB, revealing all genes with a synthetic negative and a synthetic positive relationship. These genes include those previously reported to have a role in cell envelope biogenesis. Surprisingly, we identified genes previously annotated as essential that became non-essential in a ΔyhcB background. Subsequent analyses suggest that YhcB functions at the junction of several envelope biosynthetic pathways coordinating the spatiotemporal growth of the cell, highlighting YhcB as an as yet unexplored antimicrobial target. All life depends on a cell envelope to enclose the chemical reactions that make life possible. But how do cell envelopes grow? How each component of the cell envelope is incorporated into the envelope at the correct amount, in the correct place, and at the correct time, to prevent cell death, has been a long-standing question in bacteriology. Using a unique combination of high throughput chemical genetic screens we identified yhcB, a conserved gene of unknown function, required for the maintenance of cell envelope integrity in Escherichia coli. Loss of YhcB results in aberrant cell size driven by the production of excess membrane phospholipids. Subsequent molecular and biochemical analyses suggest YhcB influences the spatiotemporal biogenesis of LPS, peptidoglycan and membrane phospholipids. Our data indicate YhcB is a key regulator of cell envelope growth in Gram-negative bacteria playing a crucial role in coordinating cell width, elongation, and division to maintain cell envelope integrity.
Collapse
Affiliation(s)
- Emily C. A. Goodall
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| | - Georgia L. Isom
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jessica L. Rooke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Karthik Pullela
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Christopher Icke
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Zihao Yang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Gabriela Boelter
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Alun Jones
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Isabel Warner
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Rochelle Da Costa
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bing Zhang
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - James Rae
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Wee Boon Tan
- Department of Chemistry, National University of Singapore, Singapore
| | - Matthias Winkle
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Antoine Delhaye
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Eva Heinz
- Departments of Vector Biology and Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Adam F. Cunningham
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Mark A. Blaskovich
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Robert G. Parton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, Australia
| | - Jeff A. Cole
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Manuel Banzhaf
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Shu-Sin Chng
- Department of Chemistry, National University of Singapore, Singapore
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jack A. Bryant
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Ian R. Henderson
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
- * E-mail: (ECAG); (IRH)
| |
Collapse
|
8
|
FtsA acts through FtsW to promote cell wall synthesis during cell division in Escherichia coli. Proc Natl Acad Sci U S A 2021; 118:2107210118. [PMID: 34453005 DOI: 10.1073/pnas.2107210118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, FtsQLB is required to recruit the essential septal peptidoglycan (sPG) synthase FtsWI to FtsA, which tethers FtsZ filaments to the membrane. The arrival of FtsN switches FtsQLB in the periplasm and FtsA in the cytoplasm from a recruitment role to active forms that synergize to activate FtsWI. Genetic evidence indicates that the active form of FtsQLB has an altered conformation with an exposed domain of FtsL that acts on FtsI to activate FtsW. However, how FtsA contributes to the activation of FtsW is not clear, as it could promote the conformational change in FtsQLB or act directly on FtsW. Here, we show that the overexpression of an activated FtsA (FtsA*) bypasses FtsQ, indicating it can compensate for FtsQ's recruitment function. Consistent with this, FtsA* also rescued FtsL and FtsB mutants deficient in FtsW recruitment. FtsA* also rescued an FtsL mutant unable to deliver the periplasmic signal from FtsN, consistent with FtsA* acting on FtsW. In support of this, an FtsW mutant was isolated that was rescued by an activated FtsQLB but not by FtsA*, indicating it was specifically defective in activation by FtsA. Our results suggest that in response to FtsN, the active form of FtsA acts on FtsW in the cytoplasm and synergizes with the active form of FtsQLB acting on FtsI in the periplasm to activate FtsWI to carry out sPG synthesis.
Collapse
|
9
|
Sachla AJ, Helmann JD. Resource sharing between central metabolism and cell envelope synthesis. Curr Opin Microbiol 2021; 60:34-43. [PMID: 33581378 PMCID: PMC7988295 DOI: 10.1016/j.mib.2021.01.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/18/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022]
Abstract
Synthesis of the bacterial cell envelope requires a regulated partitioning of resources from central metabolism. Here, we consider the key metabolic junctions that provide the precursors needed to assemble the cell envelope. Peptidoglycan synthesis requires redirection of a glycolytic intermediate, fructose-6-phosphate, into aminosugar biosynthesis by the highly regulated branchpoint enzyme GlmS. MurA directs the downstream product, UDP-GlcNAc, specifically into peptidoglycan synthesis. Other shared resources required for cell envelope synthesis include the isoprenoid carrier lipid undecaprenyl phosphate and amino acids required for peptidoglycan cross-bridges. Assembly of the envelope requires a sharing of limited resources between competing cellular pathways and may additionally benefit from scavenging of metabolites released from neighboring cells or the formation of symbiotic relationships with a host.
Collapse
Affiliation(s)
- Ankita J Sachla
- Department of Microbiology, Cornell University, 370 Wing Hall, Wing Drive, Ithaca, NY 14853-8101, USA
| | - John D Helmann
- Department of Microbiology, Cornell University, 370 Wing Hall, Wing Drive, Ithaca, NY 14853-8101, USA.
| |
Collapse
|
10
|
Fisher JF, Mobashery S. β-Lactams against the Fortress of the Gram-Positive Staphylococcus aureus Bacterium. Chem Rev 2021; 121:3412-3463. [PMID: 33373523 PMCID: PMC8653850 DOI: 10.1021/acs.chemrev.0c01010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The biological diversity of the unicellular bacteria-whether assessed by shape, food, metabolism, or ecological niche-surely rivals (if not exceeds) that of the multicellular eukaryotes. The relationship between bacteria whose ecological niche is the eukaryote, and the eukaryote, is often symbiosis or stasis. Some bacteria, however, seek advantage in this relationship. One of the most successful-to the disadvantage of the eukaryote-is the small (less than 1 μm diameter) and nearly spherical Staphylococcus aureus bacterium. For decades, successful clinical control of its infection has been accomplished using β-lactam antibiotics such as the penicillins and the cephalosporins. Over these same decades S. aureus has perfected resistance mechanisms against these antibiotics, which are then countered by new generations of β-lactam structure. This review addresses the current breadth of biochemical and microbiological efforts to preserve the future of the β-lactam antibiotics through a better understanding of how S. aureus protects the enzyme targets of the β-lactams, the penicillin-binding proteins. The penicillin-binding proteins are essential enzyme catalysts for the biosynthesis of the cell wall, and understanding how this cell wall is integrated into the protective cell envelope of the bacterium may identify new antibacterials and new adjuvants that preserve the efficacy of the β-lactams.
Collapse
Affiliation(s)
- Jed F Fisher
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| | - Shahriar Mobashery
- Department of Chemistry and Biochemistry, McCourtney Hall, University of Notre Dame, Notre Dame Indiana 46556, United States
| |
Collapse
|
11
|
Pazos M, Vollmer W. Regulation and function of class A Penicillin-binding proteins. Curr Opin Microbiol 2021; 60:80-87. [PMID: 33611146 DOI: 10.1016/j.mib.2021.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 01/14/2023]
Abstract
Most bacteria surround their cell membrane with a peptidoglycan sacculus that counteracts the turgor and maintains the shape of the cell. Class A PBPs are bi-functional glycosyltransferase-transpeptidases that polymerize glycan chains and cross-link peptides. They have a major contribution to the total peptidoglycan synthesized during cell growth and cell division. In recent years it became apparent that class A PBPs participate in multiple protein? protein interactions and that some of these regulate their activities. In this opinion article, we review and discuss the role of class A PBPs in peptidoglycan growth and repair. We hypothesize that class A PBP function is essential in walled bacteria unless they have (a) SEDS protein(s) capable of replacing their function.
Collapse
Affiliation(s)
- Manuel Pazos
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, NE2 4AX, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
12
|
Yin J, Zhang T, Cai J, Lou J, Cheng D, Zhou W, Xu C, Liu Y, Gao H, Yu Z. PBP1a glycosyltransferase and transpeptidase activities are both required for maintaining cell morphology and envelope integrity in Shewanella oneidensis. FEMS Microbiol Lett 2021; 367:5731804. [PMID: 32037461 DOI: 10.1093/femsle/fnaa026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/07/2020] [Indexed: 12/29/2022] Open
Abstract
In rod-shaped Gram-negative bacteria, penicillin binding protein 1a (PBP1a) and 1b (PBP1b) form peptidoglycan-synthesizing complexes with the outer membrane lipoprotein LpoA and LpoB, respectively. Escherichia coli mutants lacking PBP1b/LpoB are sicker than those lacking PBP1a/LpoA. However, we previously found that mutants lacking PBP1a/LpoA but not PBP1b/LpoB are deleterious in Shewanella oneidensis. Here, we show that S. oneidensis PBP1a (SoPBP1a) contains conserved signature motifs with its E. coli counterpart, EcPBP1a. Although EcPBP1a play a less prominent role in E. coli, it is capable of substituting for the SoPBP1a in a manner dependent on SoLpoA. In S. oneidensis, expression of PBP1b is lower than PBP1a, and therefore the additional expression of SoPBP1b at low levels can functionally compensate for the absence of SoPBP1a. Importantly, S. oneidensis PBP1a variants lacking either glycosyltransferase (GTase) or transpeptidase (TPase) activity fail to maintain normal morphology and cell envelope integrity. Similarly, SoPBP1b variants also fail to compensate for the loss of SoPBP1a. Furthermore, overproduction of variants of SoPBP1a, but not SoPBP1b, has detrimental effects on cell morphology in S. oneidensis wild type cells. Overall, our results indicate that the combined enzymatic activities of SoPBP1a are essential for cell wall homeostasis.
Collapse
Affiliation(s)
- Jianhua Yin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Ting Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Jingxiao Cai
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Jie Lou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Dan Cheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Weifeng Zhou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Chaoyi Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Yanqiu Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| | - Haichun Gao
- College of Life sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China
| | - Zhiliang Yu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, Zhejiang Province, China
| |
Collapse
|
13
|
Jorgenson MA, Bryant JC. A genetic screen to identify factors affected by undecaprenyl phosphate recycling uncovers novel connections to morphogenesis in Escherichia coli. Mol Microbiol 2021; 115:191-207. [PMID: 32979869 PMCID: PMC10568968 DOI: 10.1111/mmi.14609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Indexed: 01/30/2023]
Abstract
Undecaprenyl phosphate (Und-P) is an essential lipid carrier that ferries cell wall intermediates across the cytoplasmic membrane in bacteria. Und-P is generated by dephosphorylating undecaprenyl pyrophosphate (Und-PP). In Escherichia coli, BacA, PgpB, YbjG, and LpxT dephosphorylate Und-PP and are conditionally essential. To identify vulnerabilities that arise when Und-P metabolism is defective, we developed a genetic screen for synthetic interactions which, in combination with ΔybjG ΔlpxT ΔbacA, are lethal or reduce fitness. The screen uncovered novel connections to cell division, DNA replication/repair, signal transduction, and glutathione metabolism. Further analysis revealed several new morphogenes; loss of one of these, qseC, caused cells to enlarge and lyse. QseC is the sensor kinase component of the QseBC two-component system. Loss of QseC causes overactivation of the QseB response regulator by PmrB cross-phosphorylation. Here, we show that deleting qseB completely reverses the shape defect of ΔqseC cells, as does overexpressing rprA (a small RNA). Surprisingly, deleting pmrB only partially suppressed qseC-related shape defects. Thus, QseB is activated by multiple factors in QseC's absence and prior functions ascribed to QseBC may originate from cell wall defects. Altogether, our findings provide a framework for identifying new determinants of cell integrity that could be targeted in future therapies.
Collapse
Affiliation(s)
- Matthew A. Jorgenson
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Joseph C. Bryant
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
14
|
Li K, Mohammed MAA, Zhou Y, Tu H, Zhang J, Liu C, Chen Z, Burns R, Hu D, Ruso JM, Tang Z, Liu Z. Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: A mini‐review. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4791] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ke Li
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Monier Alhadi Abdelrahman Mohammed
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Yongshan Zhou
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Hongyi Tu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Jiachen Zhang
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Chunli Liu
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Zhenbin Chen
- State Key Laboratory of Gansu Advanced Non‐ferrous Metal MaterialsLanzhou University of Technology Lanzhou China
- School of Materials Science and EngineeringLanzhou University of Technology Lanzhou China
| | - Robert Burns
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| | - Dongdong Hu
- State Key Laboratory of Chemical EngineeringEast China University of Science and Technology Shanghai China
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied PhysicsUniversity of Santiago de Compostela Santiago de Compostela Spain
| | - Zhenghua Tang
- Guangzhou Key Laboratory for Surface Chemistry of Energy MaterialsNew Energy Research Institute School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre Guangzhou China
- Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy MaterialsSchool of Environment and Energy South China University of Technology, Guangzhou Higher Education Mega Center Guangzhou China
| | - Zhen Liu
- Department of Physics and EngineeringFrostburg State University Frostburg Maryland
| |
Collapse
|