1
|
Tan L, Yang J, He Z, Wan Y, Li Z, Song J, Zhang W, Yang X. Inhibitory effects of extracts from Prunella vulgaris on biofilm formation of Staphylococcus aureus. Microb Pathog 2025; 205:107694. [PMID: 40355056 DOI: 10.1016/j.micpath.2025.107694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Staphylococcus aureus (S. aureus) is a highly prevalent pathogen capable of strongly adhering to food processing equipment and the contact surfaces, where it forms resilient biofilms that are difficult to eliminate. Prunella vulgaris (P. vulgaris), a traditional Chinese herbal medicine, has demonstrated strong potential in inhibiting S. aureus biofilm formation. This study investigated the inhibitory mechanisms of P. vulgaris extracts against S. aureus growth and biofilm formation, evaluating the biofilm inhibitory concentration, bactericidal concentration and their effects on ica operon gene expression. The P. vulgaris extracts exhibited a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 1.25 mg/mL. At the MIC level, the extracts not only suppressed S. aureus growth and metabolic viability but also inhibited polysaccharide intercellular adhesion (PIA), prevented biofilm formation and disrupted mature biofilms. Furthermore, P. vulgaris extracts demonstrated concentration-dependent effects on extracellular polymeric substances (EPS) production: while 1/2 MIC concentrations stimulated EPS synthesis, double-MIC concentrations markedly suppressed it. Notably, the extracts consistently downregulated icaA and icaD expression at both MIC and 2 × MIC concentrations. Therefore, P. vulgaris exhibits significant potential against S. aureus-induced foodborne diseases, demonstrating promise as a novel antibacterial agent for future applications in both pharmaceutical development and food safety enhancement.
Collapse
Affiliation(s)
- Luyi Tan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Jiani Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China; Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Zhini He
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Yu Wan
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Ziyin Li
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Jia Song
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China
| | - Wenjuan Zhang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, Guangdong, 510632, PR China.
| | - Xingfen Yang
- Food Safety and Health Research Center, NMPA Key Laboratory for Safety Evaluation of Cosmetics, Guangdong-Hongkong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, PR China.
| |
Collapse
|
2
|
Zhou RW, Manisa B, Wang B. A binuclear metallohydrolase model for RelA/SpoT-Homolog (RSH) hydrolases. J Biol Chem 2024; 300:107841. [PMID: 39357826 PMCID: PMC11554896 DOI: 10.1016/j.jbc.2024.107841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024] Open
Abstract
When challenged by starvation, bacterial organisms synthesize guanosine pentaphosphate and tetraphosphate, collectively denoted as (p)ppGpp, as second messengers to reprogram metabolism toward slower growth and enhanced stress tolerance. When starvation is alleviated, the RelA-SpoT Homolog (RSH) hydrolases downregulate (p)ppGpp, cleaving the 3'-diphosphate to produce GTP or GDP. Metazoan RSH hydrolases possess phosphatase activity responsible for converting cytoplasmic NADPH to NADH in mammalian cells. Inhibitor development for this family may therefore provide therapies to combat bacterial infection or metabolic dysregulation. Despite the availability of dozens of high-resolution structures, catalytic mechanisms of RSH hydrolases have remained poorly understood. All RSH hydrolases tightly bind a Mn2+ near its active center, which is believed sufficient for hydrolase activity. In contrast to this notion, we demonstrate, using the (p)ppGpp hydrolase SpoT from Acinetobacter baumannii, that a second divalent cation, presumably a Mg2+ under physiological conditions, is required for efficient catalysis. We also show that SpoT preferentially cleaves 3'-diphosphate over 3'-phosphate substrates, likely due to a key coordination between the β-phosphate and the second metal center. Metazoan RSH hydrolase replaces this β-phosphate with the side chain of an aspartate residue, thereby functioning as a phosphatase. We propose a binuclear metallohydrolase model where an invariant ED (Glu-Asp) diad, previously believed to activate the water nucleophile, instead coordinates to a Mg2+ center. The refined molecular and evolutionary blueprint of RSH hydrolases will provide a more reliable foundation for the development of small-molecule inhibitors of this important enzyme family.
Collapse
Affiliation(s)
- Rich W Zhou
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Berti Manisa
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Boyuan Wang
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
3
|
Chrenková A, Bisiak F, Brodersen DE. Breaking bad nucleotides: understanding the regulatory mechanisms of bacterial small alarmone hydrolases. Trends Microbiol 2024; 32:769-780. [PMID: 38262803 DOI: 10.1016/j.tim.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/25/2024]
Abstract
Guanosine tetra- and pentaphosphate nucleotides, (p)ppGpp, function as central secondary messengers and alarmones in bacterial cell biology, signalling a range of stress conditions, including nutrient starvation and exposure to cell-wall-targeting antibiotics, and are critical for survival. While activation of the stringent response and alarmone synthesis on starved ribosomes by members of the RSH (Rel) class of proteins is well understood, much less is known about how single-domain small alarmone synthetases (SASs) and their corresponding alarmone hydrolases, the small alarmone hydrolases (SAHs), are regulated and contribute to (p)ppGpp homeostasis. The substrate spectrum of these enzymes has recently been expanded to include hyperphosphorylated adenosine nucleotides, suggesting that they take part in a highly complex and interconnected signalling network. In this review, we provide an overview of our understanding of the SAHs and discuss their structure, function, regulation, and phylogeny.
Collapse
Affiliation(s)
- Adriana Chrenková
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Francesco Bisiak
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
4
|
Shan L, Zheng W, Xu S, Zhu Z, Pei Y, Bao X, Yuan Y. Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials. Arch Microbiol 2024; 206:295. [PMID: 38856934 DOI: 10.1007/s00203-024-04013-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024]
Abstract
Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.
Collapse
Affiliation(s)
- Lili Shan
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Wanjun Zheng
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Siyang Xu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
- Department of Transportation of Jiangxi Province, Comprehensive Transportation Development Research Center of Jiangxi Provincial, Nanchang, PR China
| | - Zebing Zhu
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China.
| | - Yunyan Pei
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Xiajun Bao
- School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China
| | - Yixing Yuan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China
| |
Collapse
|
5
|
Eilers K, Hoong Yam JK, Liu X, Goh YF, To KN, Paracuellos P, Morton R, Brizuela J, Hui Yong AM, Givskov M, Freibert SA, Bange G, Rice SA, Steinchen W, Filloux A. The dual GGDEF/EAL domain enzyme PA0285 is a Pseudomonas species housekeeping phosphodiesterase regulating early attachment and biofilm architecture. J Biol Chem 2024; 300:105659. [PMID: 38237678 PMCID: PMC10874727 DOI: 10.1016/j.jbc.2024.105659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 02/15/2024] Open
Abstract
Bacterial lifestyles depend on conditions encountered during colonization. The transition between planktonic and biofilm growth is dependent on the intracellular second messenger c-di-GMP. High c-di-GMP levels driven by diguanylate cyclases (DGCs) activity favor biofilm formation, while low levels were maintained by phosphodiesterases (PDE) encourage planktonic lifestyle. The activity of these enzymes can be modulated by stimuli-sensing domains such as Per-ARNT-Sim (PAS). In Pseudomonas aeruginosa, more than 40 PDE/DGC are involved in c-di-GMP homeostasis, including 16 dual proteins possessing both canonical DGC and PDE motifs, that is, GGDEF and EAL, respectively. It was reported that deletion of the EAL/GGDEF dual enzyme PA0285, one of five c-di-GMP-related enzymes conserved across all Pseudomonas species, impacts biofilms. PA0285 is anchored in the membrane and carries two PAS domains. Here, we confirm that its role is conserved in various P. aeruginosa strains and in Pseudomonas putida. Deletion of PA0285 impacts the early stage of colonization, and RNA-seq analysis suggests that expression of cupA fimbrial genes is involved. We demonstrate that the C-terminal portion of PA0285 encompassing the GGDEF and EAL domains binds GTP and c-di-GMP, respectively, but only exhibits PDE activity in vitro. However, both GGDEF and EAL domains are important for PA0285 PDE activity in vivo. Complementation of the PA0285 mutant strain with a copy of the gene encoding the C-terminal GGDEF/EAL portion in trans was not as effective as complementation with the full-length gene. This suggests the N-terminal transmembrane and PAS domains influence the PDE activity in vivo, through modulating the protein conformation.
Collapse
Affiliation(s)
- Kira Eilers
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Joey Kuok Hoong Yam
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Xianghui Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Yu Fen Goh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Ka-Ning To
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Patricia Paracuellos
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Richard Morton
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jaime Brizuela
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Adeline Mei Hui Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Michael Givskov
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Denmark
| | - Sven-Andreas Freibert
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Gert Bange
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Scott A Rice
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; Microbiomes for One Systems Health and Agriculture and Food, CSIRO, Westmead, New South Wales, Australia
| | - Wieland Steinchen
- Philipps University Marburg, Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany.
| | - Alain Filloux
- CBRB Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, United Kingdom; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
6
|
Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, Stilp S, Jansen N, Gosz M, Goeden L, Anantharaman V, Aravind L, Waters LS. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. Mol Microbiol 2024; 121:152-166. [PMID: 38104967 PMCID: PMC10842292 DOI: 10.1111/mmi.15206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
Small proteins (<50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance, are poorly understood. Here, we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene neighborhoods support that MntS evolved from the signal peptide of an ancestral SitA protein, acquiring a life of its own with a distinct function in Mn homeostasis.
Collapse
Affiliation(s)
- Zachary Wright
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Mackenzie Seymour
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Kalista Paszczak
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Taylor Truttmann
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Katherine Senn
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Samuel Stilp
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Nickolas Jansen
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Magdalyn Gosz
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Lindsay Goeden
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Lauren S. Waters
- Department of Chemistry, 800 Algoma Blvd, University of Wisconsin, Oshkosh, WI 54901, USA
| |
Collapse
|
7
|
Guo Q, Zhan Y, Zhang W, Wang J, Yan Y, Wang W, Lin M. Development and Regulation of the Extreme Biofilm Formation of Deinococcus radiodurans R1 under Extreme Environmental Conditions. Int J Mol Sci 2023; 25:421. [PMID: 38203592 PMCID: PMC10778927 DOI: 10.3390/ijms25010421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
To grow in various harsh environments, extremophiles have developed extraordinary strategies such as biofilm formation, which is an extremely complex and progressive process. However, the genetic elements and exact mechanisms underlying extreme biofilm formation remain enigmatic. Here, we characterized the biofilm-forming ability of Deinococcus radiodurans in vitro under extreme environmental conditions and found that extremely high concentrations of NaCl or sorbitol could induce biofilm formation. Meantime, the survival ability of biofilm cells was superior to that of planktonic cells in different extreme conditions, such as hydrogen peroxide stress, sorbitol stress, and high UV radiation. Transcriptome profiles of D. radiodurans in four different biofilm development stages further revealed that only 13 matched genes, which are involved in environmental information processing, carbohydrate metabolism, or stress responses, share sequence homology with genes related to the biofilm formation of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Overall, 64% of the differentially expressed genes are functionally unknown, indicating the specificity of the regulatory network of D. radiodurans. The mutation of the drRRA gene encoding a response regulator strongly impaired biofilm formation ability, implying that DrRRA is an essential component of the biofilm formation of D. radiodurans. Furthermore, transcripts from both the wild type and the drRRA mutant were compared, showing that the expression of drBON1 (Deinococcus radioduransBON domain-containing protein 1) significantly decreased in the drRRA mutant during biofilm development. Further analysis revealed that the drBON1 mutant lacked the ability to form biofilm and DrRRA, and as a facilitator of biofilm formation, could directly stimulate the transcription of the biofilm-related gene drBON1. Overall, our work highlights a molecular mechanism mediated by the response regulator DrRRA for controlling extreme biofilm formation and thus provides guidance for future studies to investigate novel mechanisms that are used by D. radiodurans to adapt to extreme environments.
Collapse
Affiliation(s)
- Qiannan Guo
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuhua Zhan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jin Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongliang Yan
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenxiu Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Lin
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.G.); (Y.Z.); (W.Z.); (J.W.); (Y.Y.); (W.W.)
- Key Laboratory of Agricultural Microbiome (MARA), Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
8
|
Fung DK, Trinquier AE, Wang JD. Crosstalk between (p)ppGpp and other nucleotide second messengers. Curr Opin Microbiol 2023; 76:102398. [PMID: 37866203 PMCID: PMC10842992 DOI: 10.1016/j.mib.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023]
Abstract
In response to environmental cues, bacteria produce intracellular nucleotide messengers to regulate a wide variety of cellular processes and physiology. Studies on individual nucleotide messengers, such as (p)ppGpp or cyclic (di)nucleotides, have established their respective regulatory themes. As research on nucleotide signaling networks expands, recent studies have begun to uncover various crosstalk mechanisms between (p)ppGpp and other nucleotide messengers, including signal conversion, allosteric regulation, and target competition. The multiple layers of crosstalk implicate that (p)ppGpp is intricately linked to different nucleotide signaling pathways. From a physiological perspective, (p)ppGpp crosstalk enables fine-tuning and feedback regulation with other nucleotide messengers to achieve optimal adaptation.
Collapse
Affiliation(s)
- Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Aude E Trinquier
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Wang M, Tang NY, Xie S, Watt RM. Functional Characterization of Small Alarmone Synthetase and Small Alarmone Hydrolase Proteins from Treponema denticola. Microbiol Spectr 2023; 11:e0510022. [PMID: 37289081 PMCID: PMC10434055 DOI: 10.1128/spectrum.05100-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
The stringent response enables bacteria to survive nutrient starvation, antibiotic challenge, and other threats to cellular survival. Two alarmone (magic spot) second messengers, guanosine pentaphosphate (pppGpp) and guanosine tetraphosphate (ppGpp), which are synthesized by RelA/SpoT homologue (RSH) proteins, play central roles in the stringent response. The pathogenic oral spirochete bacterium Treponema denticola lacks a long-RSH homologue but encodes putative small alarmone synthetase (Tde-SAS, TDE1711) and small alarmone hydrolase (Tde-SAH, TDE1690) proteins. Here, we characterize the respective in vitro and in vivo activities of Tde-SAS and Tde-SAH, which respectively belong to the previously uncharacterized RSH families DsRel and ActSpo2. The tetrameric 410-amino acid (aa) Tde-SAS protein preferentially synthesizes ppGpp over pppGpp and a third alarmone, pGpp. Unlike RelQ homologues, alarmones do not allosterically stimulate the synthetic activities of Tde-SAS. The ~180 aa C-terminal tetratricopeptide repeat (TPR) domain of Tde-SAS acts as a brake on the alarmone synthesis activities of the ~220-aa N-terminal catalytic domain. Tde-SAS also synthesizes "alarmone-like" nucleotides such as adenosine tetraphosphate (ppApp), albeit at considerably lower rates. The 210-aa Tde-SAH protein efficiently hydrolyzes all guanosine and adenosine-based alarmones in a Mn(II) ion-dependent manner. Using a growth assays with a ΔrelAΔspoT strain of Escherichia coli that is deficient in pppGpp/ppGpp synthesis, we demonstrate that Tde-SAS can synthesize alarmones in vivo to restore growth in minimal media. Taken together, our results add to our holistic understanding of alarmone metabolism across diverse bacterial species. IMPORTANCE The spirochete bacterium Treponema denticola is a common component of the oral microbiota. However, it may play important pathological roles in multispecies oral infectious diseases such as periodontitis: a severe and destructive form of gum disease, which is a major cause of tooth loss in adults. The operation of the stringent response, a highly conserved survival mechanism, is known to help many bacterial species cause persistent or virulent infections. By characterizing the biochemical functions of the proteins putatively responsible for the stringent response in T. denticola, we may gain molecular insight into how this bacterium can survive within harsh oral environments and promote infection. Our results also expand our general understanding of proteins that synthesize nucleotide-based intracellular signaling molecules in bacteria.
Collapse
Affiliation(s)
- Miao Wang
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Nga-Yeung Tang
- Department of Pathology and Laboratory Medicine, Beaumont Health, Royal Oak, Michigan, USA
- Department of Pathology and Laboratory Medicine, Oakland University William Beaumont School of Medicine, Auburn Hills, Michigan, USA
| | - Shujie Xie
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| | - Rory M. Watt
- Faculty of Dentistry, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China
| |
Collapse
|
10
|
Wright Z, Seymour M, Paszczak K, Truttmann T, Senn K, Stilp S, Jansen N, Gosz M, Goeden L, Anantharaman V, Aravind L, Waters LS. The small protein MntS evolved from a signal peptide and acquired a novel function regulating manganese homeostasis in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543501. [PMID: 37398132 PMCID: PMC10312517 DOI: 10.1101/2023.06.02.543501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Small proteins (< 50 amino acids) are emerging as ubiquitous and important regulators in organisms ranging from bacteria to humans, where they commonly bind to and regulate larger proteins during stress responses. However, fundamental aspects of small proteins, such as their molecular mechanism of action, downregulation after they are no longer needed, and their evolutionary provenance are poorly understood. Here we show that the MntS small protein involved in manganese (Mn) homeostasis binds and inhibits the MntP Mn transporter. Mn is crucial for bacterial survival in stressful environments, but is toxic in excess. Thus, Mn transport is tightly controlled at multiple levels to maintain optimal Mn levels. The small protein MntS adds a new level of regulation for Mn transporters, beyond the known transcriptional and post-transcriptional control. We also found that MntS binds to itself in the presence of Mn, providing a possible mechanism of downregulating MntS activity to terminate its inhibition of MntP Mn export. MntS is homologous to the signal peptide of SitA, the periplasmic metal-binding subunit of a Mn importer. Remarkably, the homologous signal peptide regions can substitute for MntS, demonstrating a functional relationship between MntS and these signal peptides. Conserved gene-neighborhoods support that MntS evolved from an ancestral SitA, acquiring a life of its own with a distinct function in Mn homeostasis. Significance This study demonstrates that the MntS small protein binds and inhibits the MntP Mn exporter, adding another layer to the complex regulation of Mn homeostasis. MntS also interacts with itself in cells with Mn, which could prevent it from regulating MntP. We propose that MntS and other small proteins might sense environmental signals and shut off their own regulation via binding to ligands (e.g., metals) or other proteins. We also provide evidence that MntS evolved from the signal peptide region of the Mn importer, SitA. Homologous SitA signal peptides can recapitulate MntS activities, showing that they have a second function beyond protein secretion. Overall, we establish that small proteins can emerge and develop novel functionalities from gene remnants.
Collapse
|
11
|
Effect of domestic pipe materials on microbiological safety of drinking water: Different biofilm formation and chlorination resistance for diverse pipe materials. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
12
|
Ahmad S, Gordon IJ, Tsang KK, Alexei AG, Sychantha D, Colautti J, Trilesky SL, Kim Y, Wang B, Whitney JC. Identification of a broadly conserved family of enzymes that hydrolyze (p)ppApp. Proc Natl Acad Sci U S A 2023; 120:e2213771120. [PMID: 36989297 PMCID: PMC10083569 DOI: 10.1073/pnas.2213771120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 02/25/2023] [Indexed: 03/30/2023] Open
Abstract
Bacteria produce a variety of nucleotide second messengers to adapt to their surroundings. Although chemically similar, the nucleotides guanosine penta- and tetraphosphate [(p)ppGpp] and adenosine penta- and tetraphosphate [(p)ppApp] have distinct functions in bacteria. (p)ppGpp mediates survival under nutrient-limiting conditions and its intracellular levels are regulated by synthetases and hydrolases belonging to the RelA-SpoT homolog (RSH) family of enzymes. By contrast, (p)ppApp is not known to be involved in nutrient stress responses and is synthesized by RSH-resembling toxins that inhibit the growth of bacterial cells. However, it remains unclear whether there exists a family of hydrolases that specifically act on (p)ppApp to reverse its toxic effects. Here, we present the structure and biochemical characterization of adenosine 3'-pyrophosphohydrolase 1 (Aph1), the founding member of a monofunctional (p)ppApp hydrolase family of enzymes. Our work reveals that Aph1 adopts a histidine-aspartate (HD)-domain fold characteristic of phosphohydrolase metalloenzymes and its activity mitigates the growth inhibitory effects of (p)ppApp-synthesizing toxins. Using an informatic approach, we identify over 2,000 putative (p)ppApp hydrolases that are widely distributed across bacterial phyla and found in diverse genomic contexts, and we demonstrate that 12 representative members hydrolyze ppApp. In addition, our in silico analyses reveal a unique molecular signature that is specific to (p)ppApp hydrolases, and we show that mutation of two residues within this signature broadens the specificity of Aph1 to promiscuously hydrolyze (p)ppGpp in vitro. Overall, our findings indicate that like (p)ppGpp hydrolases, (p)ppApp hydrolases are widespread in bacteria and may play important and underappreciated role(s) in bacterial physiology.
Collapse
Affiliation(s)
- Shehryar Ahmad
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Isis J. Gordon
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kara K. Tsang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - Andrea G. Alexei
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - David Sychantha
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Sarah L. Trilesky
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
| | - Youngchang Kim
- Structural Biology Center, X-ray Science, Argonne National Laboratory, Argonne, IL60439
| | - Boyuan Wang
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | - John C. Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ONL8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ONL8S 4K1, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ONL8S 4K1, Canada
| |
Collapse
|
13
|
Leiva LE, Zegarra V, Bange G, Ibba M. At the Crossroad of Nucleotide Dynamics and Protein Synthesis in Bacteria. Microbiol Mol Biol Rev 2023; 87:e0004422. [PMID: 36853029 PMCID: PMC10029340 DOI: 10.1128/mmbr.00044-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Nucleotides are at the heart of the most essential biological processes in the cell, be it as key protagonists in the dogma of molecular biology or by regulating multiple metabolic pathways. The dynamic nature of nucleotides, the cross talk between them, and their constant feedback to and from the cell's metabolic state position them as a hallmark of adaption toward environmental and growth challenges. It has become increasingly clear how the activity of RNA polymerase, the synthesis and maintenance of tRNAs, mRNA translation at all stages, and the biogenesis and assembly of ribosomes are fine-tuned by the pools of intracellular nucleotides. With all aspects composing protein synthesis involved, the ribosome emerges as the molecular hub in which many of these nucleotides encounter each other and regulate the state of the cell. In this review, we aim to highlight intracellular nucleotides in bacteria as dynamic characters permanently cross talking with each other and ultimately regulating protein synthesis at various stages in which the ribosome is mainly the principal character.
Collapse
Affiliation(s)
- Lorenzo Eugenio Leiva
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| | - Victor Zegarra
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
| | - Gert Bange
- Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- Department of Chemistry, Philipps-University Marburg, Marburg, Germany
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Michael Ibba
- Schmid College of Science and Technology, Chapman University, Orange, California, USA
| |
Collapse
|
14
|
Terrettaz C, Cabete B, Geiser J, Valentini M, Gonzalez D. KaiC-like proteins contribute to stress resistance and biofilm formation in environmental Pseudomonas species. Environ Microbiol 2022; 25:894-913. [PMID: 36579711 DOI: 10.1111/1462-2920.16330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
KaiC is the central cog of the circadian clock in Cyanobacteria. Close homologues of this protein are widespread among nonphotosynthetic bacteria, but the function, interaction network, and mechanism of action of these proteins are still largely unknown. Here, we focus on KaiC homologues found in environmental Pseudomonas species. Using bioinformatics, we describe the distribution of this protein family in the genus and reveal a conserved interaction network comprising a histidine kinase and response regulator. We characterize experimentally the only KaiC homologue present in Pseudomonas putida KT2440 and Pseudomonas protegens CHA0. Through phenotypic assays and transcriptomics, we show that KaiC is involved in osmotic and oxidative stress resistance in P. putida and in biofilm production in both species. KaiC homologues are found in different phosphorylation states and physically interact with a cognate histidine kinase and response regulator. In contrast with cyanobacterial counterparts, the expression and phosphorylation of KaiC homologues do not correlate with light variations under 12:12 light: dark cycles in either Pseudomonas species, and KaiC itself is not required to support a light-driven behaviour in P. putida. Overall, this suggests that KaiC homologues in Pseudomonas species are involved in environmental stress resistance but not in responses to diurnal rhythms.
Collapse
Affiliation(s)
- Céline Terrettaz
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Bruno Cabete
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Johan Geiser
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
15
|
Metabolic Promiscuity of an Orphan Small Alarmone Hydrolase Facilitates Bacterial Environmental Adaptation. mBio 2022; 13:e0242222. [PMID: 36472432 PMCID: PMC9765508 DOI: 10.1128/mbio.02422-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Small alarmone hydrolases (SAHs) are alarmone metabolizing enzymes found in both metazoans and bacteria. In metazoans, the SAH homolog Mesh1 is reported to function in cofactor metabolism by hydrolyzing NADPH to NADH. In bacteria, SAHs are often identified in genomes with toxic alarmone synthetases for self-resistance. Here, we characterized a bacterial orphan SAH, i.e., without a toxic alarmone synthetase, in the phytopathogen Xanthomonas campestris pv. campestris (XccSAH) and found that it metabolizes both cellular alarmones and cofactors. In vitro, XccSAH displays abilities to hydrolyze multiple nucleotides, including pppGpp, ppGpp, pGpp, pppApp, and NADPH. In vivo, X. campestris pv. campestris cells lacking sah accumulated higher levels of cellular (pp)pGpp and NADPH compared to wild-type cells upon amino acid starvation. In addition, X. campestris pv. campestris mutants lacking sah were more sensitive to killing by Pseudomonas during interbacterial competition. Interestingly, loss of sah also resulted in reduced growth in amino acid-replete medium, a condition that did not induce (pp)pGpp or pppApp accumulation. Further metabolomic characterization revealed strong depletion of NADH levels in the X. campestris pv. campestris mutant lacking sah, suggesting that NADPH/NADH regulation is an evolutionarily conserved function of both bacterial and metazoan SAHs and Mesh1. Overall, our work demonstrates a regulatory role of bacterial SAHs as tuners of stress responses and metabolism, beyond functioning as antitoxins. IMPORTANCE Small alarmone hydrolases (SAHs) comprise a widespread family of alarmone metabolizing enzymes. In metazoans, SAHs have been reported to control multiple aspects of physiology and stress resistance through alarmone and NADPH metabolisms, but their physiological functions in bacteria is mostly uncharacterized except for a few reports as antitoxins. Here, we identified an SAH functioning independently of toxins in the phytopathogen Xanthomonas campestris pv. campestris. We found that XccSAH hydrolyzed multiple alarmones and NADPH in vitro, and X. campestris pv. campestris mutants lacking sah displayed increased alarmone levels during starvation, loss of interspecies competitive fitness, growth defects, and strong reduction in NADH. Our findings reveal the importance of NADPH hydrolysis by a bacterial SAH. Our work is also the first report of significant physiological roles of bacterial SAHs beyond functioning as antitoxins and suggests that SAHs have far broader physiological roles and share similar functions across domains of life.
Collapse
|
16
|
Martin JE, Waters LS. Regulation of Bacterial Manganese Homeostasis and Usage During Stress Responses and Pathogenesis. Front Mol Biosci 2022; 9:945724. [PMID: 35911964 PMCID: PMC9334652 DOI: 10.3389/fmolb.2022.945724] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Manganese (Mn) plays a multifaceted role in the survival of pathogenic and symbiotic bacteria in eukaryotic hosts, and it is also important for free-living bacteria to grow in stressful environments. Previous research has uncovered components of the bacterial Mn homeostasis systems that control intracellular Mn levels, many of which are important for virulence. Multiple studies have also identified proteins that use Mn once it is inside the cell, including Mn-specific enzymes and enzymes transiently loaded with Mn for protection during oxidative stress. Emerging evidence continues to reveal proteins involved in maintaining Mn homeostasis, as well as enzymes that can bind Mn. For some of these enzymes, Mn serves as an essential cofactor. For other enzymes, mismetallation with Mn can lead to inactivation or poor activity. Some enzymes may even potentially be regulated by differential metallation with Mn or zinc (Zn). This review focuses on new developments in regulatory mechanisms that affect Mn homeostasis and usage, additional players in Mn import that increase bacterial survival during pathogenesis, and the interplay between Mn and other metals during Mn-responsive physiological processes. Lastly, we highlight lessons learned from fundamental research that are now being applied to bacterial interactions within larger microbial communities or eukaryotic hosts.
Collapse
Affiliation(s)
- Julia E. Martin
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| | - Lauren S. Waters
- Department of Chemistry, University of Wisconsin Oshkosh, Oshkosh, WI, United States
| |
Collapse
|
17
|
Bisiak F, Chrenková A, Zhang SD, Pedersen JN, Otzen DE, Zhang YE, Brodersen DE. Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response. J Biol Chem 2022; 298:102142. [PMID: 35714769 PMCID: PMC9293644 DOI: 10.1016/j.jbc.2022.102142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 11/04/2022] Open
Abstract
The bacterial stringent response involves wide-ranging metabolic reprogramming aimed at increasing long-term survivability during stress conditions. One of the hallmarks of the stringent response is the production of a set of modified nucleotides, known as alarmones, which affect a multitude of cellular pathways in diverse ways. Production and degradation of these molecules depend on the activity of enzymes from the RelA/SpoT homologous family, which come in both bifunctional (containing domains to both synthesize and hydrolyze alarmones) and monofunctional (consisting of only synthetase or hydrolase domain) variants, of which the structure, activity, and regulation of the bifunctional RelA/SpoT homologs have been studied most intensely. Despite playing an important role in guanosine nucleotide homeostasis in particular, mechanisms of regulation of the small alarmone hydrolases (SAHs) are still rather unclear. Here, we present crystal structures of SAH enzymes from Corynebacterium glutamicum (RelHCg) and Leptospira levettii (RelHLl) and show that while being highly similar, structural differences in substrate access and dimer conformations might be important for regulating their activity. We propose that a varied dimer form is a general property of the SAH family, based on current structural information as well as prediction models for this class of enzymes. Finally, subtle structural variations between monofunctional and bifunctional enzymes point to how these different classes of enzymes are regulated.
Collapse
Affiliation(s)
- Francesco Bisiak
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Adriana Chrenková
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Sheng-Da Zhang
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jannik N Pedersen
- Interdisciplinary Nanoscience Centre (iNano), Aarhus University, Aarhus C, Denmark
| | - Daniel E Otzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark; Interdisciplinary Nanoscience Centre (iNano), Aarhus University, Aarhus C, Denmark
| | - Yong E Zhang
- Department of Biology, University of Copenhagen, København N, Denmark
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
18
|
Mojr V, Roghanian M, Tamman H, Do Pham DD, Petrová M, Pohl R, Takada H, Van Nerom K, Ainelo H, Caballero-Montes J, Jimmy S, Garcia-Pino A, Hauryliuk V, Rejman D. Nonhydrolysable Analogues of (p)ppGpp and (p)ppApp Alarmone Nucleotides as Novel Molecular Tools. ACS Chem Biol 2021; 16:1680-1691. [PMID: 34477366 DOI: 10.1021/acschembio.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While alarmone nucleotides guanosine-3',5'-bisdiphosphate (ppGpp) and guanosine-5'-triphosphate-3'-diphosphate (pppGpp) are archetypical bacterial second messengers, their adenosine analogues ppApp (adenosine-3',5'-bisdiphosphate) and pppApp (adenosine-5'-triphosphate-3'-diphosphate) are toxic effectors that abrogate bacterial growth. The alarmones are both synthesized and degraded by the members of the RelA-SpoT Homologue (RSH) enzyme family. Because of the chemical and enzymatic liability of (p)ppGpp and (p)ppApp, these alarmones are prone to degradation during structural biology experiments. To overcome this limitation, we have established an efficient and straightforward procedure for synthesizing nonhydrolysable (p)ppNuNpp analogues starting from 3'-azido-3'-deoxyribonucleotides as key intermediates. To demonstrate the utility of (p)ppGNpp as a molecular tool, we show that (i) as an HD substrate mimic, ppGNpp competes with ppGpp to inhibit the enzymatic activity of human MESH1 Small Alarmone Hyrolase, SAH; and (ii) mimicking the allosteric effects of (p)ppGpp, (p)ppGNpp acts as a positive regulator of the synthetase activity of long ribosome-associated RSHs Rel and RelA. Finally, by solving the structure of the N-terminal domain region (NTD) of T. thermophilus Rel complexed with pppGNpp, we show that as an HD substrate mimic, the analogue serves as a bona fide orthosteric regulator that promotes the same intra-NTD structural rearrangements as the native substrate.
Collapse
Affiliation(s)
- Viktor Mojr
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Mohammad Roghanian
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Department of Clinical Microbiology, Rigshospitalet, 2200 Copenhagen, Denmark
| | - Hedvig Tamman
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Duy Dinh Do Pham
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Magdalena Petrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Hiraku Takada
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo, Motoyama, Kita-ku, Kyoto 603-8555, Japan
| | - Katleen Van Nerom
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Hanna Ainelo
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Julien Caballero-Montes
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Steffi Jimmy
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Deutsches Elektronen-Synchrotron DESY, Centre for Structural Systems Biology (CSSB), Notkestr. 85, 22607 Hamburg, Germany
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université libre de Bruxelles, Campus La Plaine, Building BC, (1C4 203), Boulevard du Triomphe, 1050, Brussels, Belgium
- WELBIO, Avenue Hippocrate 75, 1200 Brussels, Belgium
| | - Vasili Hauryliuk
- Laboratory for Molecular Infection Medicine Sweden (MIMS) and Umea° Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- University of Tartu, Institute of Technology, 50411 Tartu, Estonia
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden
| | - Dominik Rejman
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
19
|
Chau NYE, Ahmad S, Whitney JC, Coombes BK. Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis. PLoS Pathog 2021; 17:e1009532. [PMID: 33984072 PMCID: PMC8118318 DOI: 10.1371/journal.ppat.1009532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Bacteria inhabit diverse environmental niches and consequently must modulate their metabolism to adapt to stress. The nucleotide second messengers guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) (collectively referred to as (p)ppGpp) are essential for survival during nutrient starvation. (p)ppGpp is synthesized by the RelA-SpoT homologue (RSH) protein family and coordinates the control of cellular metabolism through its combined effect on over 50 proteins. While the role of (p)ppGpp has largely been associated with nutrient limitation, recent studies have shown that (p)ppGpp and related nucleotides have a previously underappreciated effect on different aspects of bacterial physiology, such as maintaining cellular homeostasis and regulating bacterial interactions with a host, other bacteria, or phages. (p)ppGpp produced by pathogenic bacteria facilitates the evasion of host defenses such as reactive nitrogen intermediates, acidic pH, and the complement system. Additionally, (p)ppGpp and pyrophosphorylated derivatives of canonical adenosine nucleotides called (p)ppApp are emerging as effectors of bacterial toxin proteins. Here, we review the RSH protein family with a focus on its unconventional roles during host infection and bacterial competition.
Collapse
Affiliation(s)
- N. Y Elizabeth Chau
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Shehryar Ahmad
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - John C. Whitney
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry & Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|