1
|
Schmidt J, Brandenburg V, Elders H, Shahzad S, Schäkermann S, Fiedler R, Knoke L, Pfänder Y, Dietze P, Bille H, Gärtner B, Albin L, Leichert L, Bandow J, Hofmann E, Narberhaus F. Two redox-responsive LysR-type transcription factors control the oxidative stress response of Agrobacterium tumefaciens. Nucleic Acids Res 2025; 53:gkaf267. [PMID: 40193708 PMCID: PMC11975290 DOI: 10.1093/nar/gkaf267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 03/10/2025] [Accepted: 03/24/2025] [Indexed: 04/09/2025] Open
Abstract
Pathogenic bacteria often encounter fluctuating reactive oxygen species (ROS) levels, particularly during host infection, necessitating robust redox-sensing mechanisms for survival. The LysR-type transcriptional regulator (LTTR) OxyR is a widely conserved bacterial thiol-based redox sensor. However, members of the Rhizobiales also encode LsrB, a second LTTR with potential redox-sensing function. This study explores the roles of OxyR and LsrB in the plant-pathogen Agrobacterium tumefaciens. Through single and combined deletions, we observed increased H2O2 sensitivity, underscoring their function in oxidative defense. Genome-wide transcriptome profiling under H2O2 exposure revealed that OxyR and LsrB co-regulate key antioxidant genes, including katG, encoding a bifunctional catalase/peroxidase. Agrobacterium tumefaciens LsrB possesses four cysteine residues potentially involved in redox sensing. To elucidate the structural basis for redox-sensing, we applied single-particle cryo-EM (cryogenic electron microscopy) to experimentally confirm an AlphaFold model of LsrB, identifying two proximal cysteine pairs. In vitro thiol-trapping coupled with mass spectrometry confirmed reversible thiol modifications of all four residues, suggesting a functional role in redox regulation. Collectively, these findings reveal that A. tumefaciens employs two cysteine-based redox sensing transcription factors, OxyR and LsrB, to withstand oxidative stress encountered in host and soil environments.
Collapse
Affiliation(s)
- Janka J Schmidt
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Hannah Elders
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Saba Shahzad
- Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C-3): Structural Biology, Institute of Biological Information Processing (IBI-6): Structural Cell Biology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Sina Schäkermann
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Ronja Fiedler
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lisa R Knoke
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Pascal Dietze
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Hannah Bille
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Bela Gärtner
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lennart J Albin
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Lars I Leichert
- Microbial Biochemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Ruhr University Bochum, 44801 Bochum, Germany
- Center for System-based Antibiotic Research, Ruhr University Bochum, 44801 Bochum, Germany
| | - Eckhard Hofmann
- Protein Crystallography, Ruhr University Bochum, 44801 Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
2
|
Guanzon DA, Pienkoß S, Brandenburg V, Röder J, Scheller D, Dietze A, Wimbert A, Twittenhoff C, Narberhaus F. Two temperature-responsive RNAs act in concert: the small RNA CyaR and the mRNA ompX. Nucleic Acids Res 2025; 53:gkaf041. [PMID: 39907110 PMCID: PMC11795201 DOI: 10.1093/nar/gkaf041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/20/2024] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
Bacterial pathogens, such as Yersinia pseudotuberculosis, encounter temperature fluctuations during host infection and upon return to the environment. These temperature shifts impact RNA structures globally. While previous transcriptome-wide studies have focused on RNA thermometers in the 5'-untranslated region of virulence-related messenger RNAs, our investigation revealed temperature-driven structural rearrangements in the small RNA CyaR (cyclic AMP-activated RNA). At 25°C, CyaR primarily adopts a conformation that occludes its seed region, but transitions to a liberated state at 37°C. By RNA sequencing and in-line probing experiments, we identified the Shine-Dalgarno sequence of ompX as a direct target of CyaR. Interestingly, the ompX transcript itself exhibits RNA thermometer-like properties, facilitating CyaR base pairing at elevated temperatures. This interaction impedes ribosome binding to ompX and accelerates degradation of the ompX transcript. Furthermore, we observed induced proteolytic turnover of the OmpX protein at higher temperatures. Collectively, our study uncovered multilayered post-transcriptional mechanisms governing ompX expression, resulting in lower OmpX levels at 37°C compared with 25°C.
Collapse
MESH Headings
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- Yersinia pseudotuberculosis/genetics
- Yersinia pseudotuberculosis/pathogenicity
- Temperature
- RNA, Bacterial/chemistry
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- Gene Expression Regulation, Bacterial
- RNA, Small Untranslated/chemistry
- RNA, Small Untranslated/genetics
- RNA, Small Untranslated/metabolism
- Nucleic Acid Conformation
- Bacterial Outer Membrane Proteins/genetics
- Bacterial Outer Membrane Proteins/metabolism
- RNA Stability
Collapse
Affiliation(s)
- David A Guanzon
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Stephan Pienkoß
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Jennifer Röder
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Daniel Scheller
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Alisa Dietze
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Andrea Wimbert
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| | | | - Franz Narberhaus
- Microbial Biology, Ruhr University Bochum, 44801 Bochum, Germany
| |
Collapse
|
3
|
Demeester W, De Paepe B, De Mey M. Fundamentals and Exceptions of the LysR-type Transcriptional Regulators. ACS Synth Biol 2024; 13:3069-3092. [PMID: 39306765 PMCID: PMC11495319 DOI: 10.1021/acssynbio.4c00219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 10/19/2024]
Abstract
LysR-type transcriptional regulators (LTTRs) are emerging as a promising group of macromolecules for the field of biosensors. As the largest family of bacterial transcription factors, the LTTRs represent a vast and mostly untapped repertoire of sensor proteins. To fully harness these regulators for transcription factor-based biosensor development, it is crucial to understand their underlying mechanisms and functionalities. In the first part, this Review discusses the established model and features of LTTRs. As dual-function regulators, these inducible transcription factors exude precise control over their regulatory targets. In the second part of this Review, an overview is given of the exceptions to the "classic" LTTR model. While a general regulatory mechanism has helped elucidate the intricate regulation performed by LTTRs, it is essential to recognize the variations within the family. By combining this knowledge, characterization of new regulators can be done more efficiently and accurately, accelerating the expansion of transcriptional sensors for biosensor development. Unlocking the pool of LTTRs would significantly expand the currently limited range of detectable molecules and regulatory functions available for the implementation of novel synthetic genetic circuitry.
Collapse
Affiliation(s)
- Wouter Demeester
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Brecht De Paepe
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology,
Center for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
4
|
Mayo-Pérez S, Gama-Martínez Y, Dávila S, Rivera N, Hernández-Lucas I. LysR-type transcriptional regulators: state of the art. Crit Rev Microbiol 2024; 50:598-630. [PMID: 37635411 DOI: 10.1080/1040841x.2023.2247477] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023]
Abstract
The LysR-type transcriptional regulators (LTTRs) are DNA-binding proteins present in bacteria, archaea, and in algae. Knowledge about their distribution, abundance, evolution, structural organization, transcriptional regulation, fundamental roles in free life, pathogenesis, and bacteria-plant interaction has been generated. This review focuses on these aspects and provides a current picture of LTTR biology.
Collapse
Affiliation(s)
- S Mayo-Pérez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Y Gama-Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - S Dávila
- Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - N Rivera
- IPN: CICATA, Unidad Morelos del Instituto Politécnico Nacional, Atlacholoaya, Mexico
| | - I Hernández-Lucas
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
5
|
Schmidt JJ, Remme DCLE, Eisfeld J, Brandenburg VB, Bille H, Narberhaus F. The LysR-type transcription factor LsrB regulates beta-lactam resistance in Agrobacterium tumefaciens. Mol Microbiol 2024; 121:26-39. [PMID: 37985428 DOI: 10.1111/mmi.15191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
Agrobacterium tumefaciens is a plant pathogen, broadly known as the causal agent of the crown gall disease. The soil bacterium is naturally resistant to beta-lactam antibiotics by utilizing the inducible beta-lactamase AmpC. Our picture on the condition-dependent regulation of ampC expression is incomplete. A known regulator is AmpR controlling the transcription of ampC in response to unrecycled muropeptides as a signal for cell wall stress. In our study, we uncovered the global transcriptional regulator LsrB as a critical player acting upstream of AmpR. Deletion of lsrB led to severe ampicillin and penicillin sensitivity, which could be restored to wild-type levels by lsrB complementation. By transcriptome profiling via RNA-Seq and qRT-PCR and by electrophoretic mobility shift assays, we show that ampD coding for an anhydroamidase involved in peptidoglycan recycling is under direct negative control by LsrB. Controlling AmpD levels by the LysR-type regulator in turn impacts the cytoplasmic concentration of cell wall degradation products and thereby the AmpR-mediated regulation of ampC. Our results substantially expand the existing model of inducible beta-lactam resistance in A. tumefaciens by establishing LsrB as higher-level transcriptional regulator.
Collapse
Affiliation(s)
| | | | - Jessica Eisfeld
- Medical Microbiology, Ruhr University Bochum, Bochum, Germany
| | | | - Hannah Bille
- Microbial Biology, Ruhr University Bochum, Bochum, Germany
| | | |
Collapse
|
6
|
Bustamante JA, Ceron JS, Gao IT, Ramirez HA, Aviles MV, Bet Adam D, Brice JR, Cuellar RA, Dockery E, Jabagat MK, Karp DG, Lau JKO, Li S, Lopez-Magaña R, Moore RR, Morin BKR, Nzongo J, Rezaeihaghighi Y, Sapienza-Martinez J, Tran TTK, Huang Z, Duthoy AJ, Barnett MJ, Long SR, Chen JC. A protease and a lipoprotein jointly modulate the conserved ExoR-ExoS-ChvI signaling pathway critical in Sinorhizobium meliloti for symbiosis with legume hosts. PLoS Genet 2023; 19:e1010776. [PMID: 37871041 PMCID: PMC10659215 DOI: 10.1371/journal.pgen.1010776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 11/20/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.
Collapse
Affiliation(s)
- Julian A. Bustamante
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Josue S. Ceron
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Ivan Thomas Gao
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Hector A. Ramirez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Milo V. Aviles
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Demsin Bet Adam
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Jason R. Brice
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rodrigo A. Cuellar
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Eva Dockery
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Miguel Karlo Jabagat
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Donna Grace Karp
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Kin-On Lau
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Suling Li
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Raymondo Lopez-Magaña
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Rebecca R. Moore
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Bethany Kristi R. Morin
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Juliana Nzongo
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Yasha Rezaeihaghighi
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Joseph Sapienza-Martinez
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Tuyet Thi Kim Tran
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Zhenzhong Huang
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| | - Aaron J. Duthoy
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Melanie J. Barnett
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Sharon R. Long
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Joseph C. Chen
- Department of Biology, San Francisco State University, San Francisco, California, United States of America
| |
Collapse
|
7
|
Baugh AC, Momany C, Neidle EL. Versatility and Complexity: Common and Uncommon Facets of LysR-Type Transcriptional Regulators. Annu Rev Microbiol 2023; 77:317-339. [PMID: 37285554 DOI: 10.1146/annurev-micro-050323-040543] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
LysR-type transcriptional regulators (LTTRs) form one of the largest families of bacterial regulators. They are widely distributed and contribute to all aspects of metabolism and physiology. Most are homotetramers, with each subunit composed of an N-terminal DNA-binding domain followed by a long helix connecting to an effector-binding domain. LTTRs typically bind DNA in the presence or absence of a small-molecule ligand (effector). In response to cellular signals, conformational changes alter DNA interactions, contact with RNA polymerase, and sometimes contact with other proteins. Many are dual-function repressor-activators, although different modes of regulation may occur at multiple promoters. This review presents an update on the molecular basis of regulation, the complexity of regulatory schemes, and applications in biotechnology and medicine. The abundance of LTTRs reflects their versatility and importance. While a single regulatory model cannot describe all family members, a comparison of similarities and differences provides a framework for future study.
Collapse
Affiliation(s)
- Alyssa C Baugh
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| | - Cory Momany
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, Georgia, USA;
| |
Collapse
|
8
|
Nguyen TQ, Heo BE, Park Y, Jeon S, Choudhary A, Moon C, Jang J. CRISPR Interference-Based Inhibition of MAB_0055c Expression Alters Drug Sensitivity in Mycobacterium abscessus. Microbiol Spectr 2023; 11:e0063123. [PMID: 37158736 PMCID: PMC10269454 DOI: 10.1128/spectrum.00631-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
There is an unmet medical need for effective treatments against Mycobacterium abscessus infections. Although advanced molecular genetic tools to validate drug targets and resistance of M. abscessus exist, the practical design and construction of plasmids are relatively laborious and time-consuming. Thus, for this purpose, we used CRISPR interference (CRISPRi) combined with catalytically deactivated Cas9 to inhibit the gene expression of a predicted LysR-type transcriptional regulator gene, MAB_0055c, in M. abscessus and evaluated its contribution to the development of drug resistance. Our results showed that silencing the MAB_0055c gene lead to increased rifamycin susceptibility depending on the hydroquinone moiety. These results demonstrate that CRISPRi is an excellent approach for studying drug resistance in M. abscessus. IMPORTANCE In this study, we utilized CRISPR interference (CRISPRi) to specifically target the MAB_0055c gene in M. abscessus, a bacterium that causes difficult-to-treat infections. The study found that silencing the gene lead to increased rifabutin and rifalazil susceptibility. This study is the first to establish a link between the predicted LysR-type transcriptional regulator gene and antibiotic resistance in mycobacteria. These findings underscore the potential of using CRISPRi as a tool for elucidating resistance mechanisms, essential drug targets, and drug mechanisms of action, which could pave the way for more effective treatments for M. abscessus infections. The results of this study could have important implications for the development of new therapeutic options for this challenging-to-treat bacterial infection.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Yujin Park
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Arunima Choudhary
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
9
|
Yu Y, Wang P, Cao HY, Teng ZJ, Zhu Y, Wang M, McMinn A, Chen Y, Xiang H, Zhang YZ, Chen XL, Zhang YQ. Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea. THE ISME JOURNAL 2023; 17:537-548. [PMID: 36690779 PMCID: PMC10030869 DOI: 10.1038/s41396-023-01364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/25/2023]
Abstract
D-glutamate (D-Glu) is an essential component of bacterial peptidoglycans, representing an important, yet overlooked, pool of organic matter in global oceans. However, little is known on D-Glu catabolism by marine microorganisms. Here, a novel catabolic pathway for D-Glu was identified using the marine bacterium Pseudoalteromonas sp. CF6-2 as the model. Two novel enzymes (DgcN, DgcA), together with a transcriptional regulator DgcR, are crucial for D-Glu catabolism in strain CF6-2. Genetic and biochemical data confirm that DgcN is a N-acetyltransferase which catalyzes the formation of N-acetyl-D-Glu from D-Glu. DgcA is a racemase that converts N-acetyl-D-Glu to N-acetyl-L-Glu, which is further hydrolyzed to L-Glu. DgcR positively regulates the transcription of dgcN and dgcA. Structural and biochemical analyses suggested that DgcN and its homologs, which use D-Glu as the acyl receptor, represent a new group of the general control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) superfamily. DgcA and DgcN occur widely in marine bacteria (particularly Rhodobacterales) and halophilic archaea (Halobacteria) and are abundant in marine and hypersaline metagenome datasets. Thus, this study reveals a novel D-Glu catabolic pathway in ecologically important marine bacteria and halophilic archaea and helps better understand the catabolism and recycling of D-Glu in these ecosystems.
Collapse
Affiliation(s)
- Yang Yu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Peng Wang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yanping Zhu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Yin Chen
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Hua Xiang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Microbial Resources, the Institute of Microbiology CAS, Beijing, China
| | - Yu-Zhong Zhang
- College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
| |
Collapse
|
10
|
Chi X, Wang Y, Miao J, Wang W, Sun Y, Yu Z, Feng Z, Cheng S, Chen L, Ge Y. EppR, a new LysR-family transcription regulator, positively influences phenazine biosynthesis in the plant growth-promoting rhizobacterium Pseudomonas chlororaphis G05. Microbiol Res 2022; 260:127050. [DOI: 10.1016/j.micres.2022.127050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
|
11
|
Pervasive RNA Regulation of Metabolism Enhances the Root Colonization Ability of Nitrogen-Fixing Symbiotic α-Rhizobia. mBio 2021; 13:e0357621. [PMID: 35164560 PMCID: PMC8844928 DOI: 10.1128/mbio.03576-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rhizosphere and rhizoplane are nutrient-rich but selective environments for the root microbiome. Here, we deciphered a posttranscriptional network regulated by the homologous trans-small RNAs (sRNAs) AbcR1 and AbcR2, which rewire the metabolism of the nitrogen-fixing α-rhizobium Sinorhizobium meliloti during preinfection stages of symbiosis with its legume host alfalfa. The LysR-type regulator LsrB, which transduces the cell redox state, is indispensable for AbcR1 expression in actively dividing bacteria, whereas the stress-induced transcription of AbcR2 depends on the alternative σ factor RpoH1. MS2 affinity purification coupled with RNA sequencing unveiled exceptionally large and overlapping AbcR1/2 mRNA interactomes, jointly representing ⁓6% of the S. meliloti protein-coding genes. Most mRNAs encode transport/metabolic proteins whose translation is silenced by base pairing to two distinct anti-Shine Dalgarno motifs that function independently in both sRNAs. A metabolic model-aided analysis of the targetomes predicted changes in AbcR1/2 expression driven by shifts in carbon/nitrogen sources, which were confirmed experimentally. Low AbcR1/2 levels in some defined media anticipated overexpression growth phenotypes linked to the silencing of specific mRNAs. As a proof of principle, we confirmed AbcR1/2-mediated downregulation of the l-amino acid AapQ permease. AbcR1/2 interactomes are well represented in rhizosphere-related S. meliloti transcriptomic signatures. Remarkably, a lack of AbcR1 specifically compromised the ability of S. meliloti to colonize the root rhizoplane. The AbcR1 regulon likely ranks the utilization of available substrates to optimize metabolism, thus conferring on S. meliloti an advantage for efficient rhizosphere/rhizoplane colonization. AbcR1 regulation is predicted to be conserved in related α-rhizobia, which opens unprecedented possibilities for engineering highly competitive biofertilizers. IMPORTANCE Nitrogen-fixing root nodule symbioses between rhizobia and legume plants provide more than half of the combined nitrogen incorporated annually into terrestrial ecosystems, rendering plant growth independent of environmentally unfriendly chemical fertilizers. The success of symbiosis depends primarily on the capacity of rhizobia to establish competitive populations in soil and rhizosphere environments. Here, we provide insights into the regulation and architecture of an extensive RNA posttranscriptional network that fine-tunes the metabolism of the alfalfa symbiont S. meliloti, thereby enhancing the ability of this beneficial bacterium to colonize nutrient-rich but extremely selective niches, such as the rhizosphere of its host plant. This pervasive RNA regulation of metabolism is a major adaptive mechanism, predicted to operate in diverse rhizobial species. Because RNA regulation relies on modifiable base-pairing interactions, our findings open unexplored avenues for engineering the legumes rhizobiome within sustainable agricultural practices.
Collapse
|