1
|
Li DF, Wang S, Suarez CE, Xuan X, He L, Zhao JL. Pushing the frontiers of babesiosis research: in vitro culture and gene editing. Trends Parasitol 2025; 41:317-329. [PMID: 40089452 DOI: 10.1016/j.pt.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 03/17/2025]
Abstract
Babesiosis is a tick-borne parasitic disease that poses a significant risk to both animal and human health. A comprehensive understanding of Babesia biology necessitates the application of advanced laboratory techniques. This review explores recent advancements in gene editing technologies of Babesia, emphasizing the foundational importance of in vitro culture systems. We highlight the historical challenges encountered in establishing effective in vitro culture and discuss the need for optimizing these methods to enhance gene editing efficiency. Here, we describe recent progress in Babesia transfection, different gene manipulation systems, and the applications of gene editing. This review aims to provide essential insights and technical guidance for future studies in Babesia genetics, highlighting the transformative potential of gene manipulation in combating this important parasitic disease.
Collapse
Affiliation(s)
- Dong-Fang Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China
| | - Sen Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
| | - Lan He
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China.
| | - Jun-Long Zhao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei Province 430070, PR China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province 430070, PR China.
| |
Collapse
|
2
|
Li Y, Suo J, Liang R, Liang L, Liu X, Ding J, Suo X, Tang X. Genetic manipulation for the non-model protozoan Eimeria: Advancements, challenges, and future perspective. iScience 2025; 28:112060. [PMID: 40109377 PMCID: PMC11919594 DOI: 10.1016/j.isci.2025.112060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Eimeria parasites pose a significant global threat to animal health, necessitating improved and cost-effective control measures. Genetic manipulation is pivotal for understanding Eimeria biology and designing targeted control strategies. Recent advancements, including genome sequencing and the development of transient and stable transfection systems, have significantly enhanced insights into the molecular biology of Eimeria. These advancements have paved the way for cutting-edge techniques like CRISPR-Cas9 gene editing. This review summarizes the key milestones in the development of genetic manipulation platforms for Eimeria and their transformative applications, such as the development of next-generation drugs, vaccines, and Eimeria-based vaccine vectors. Furthermore, this review provides insights that could be applicable to the establishment of genetic tools for other protozoan organisms.
Collapse
Affiliation(s)
- Yaru Li
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingxia Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ruiying Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lin Liang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianyong Liu
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiabo Ding
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xun Suo
- National Key Laboratory of Veterinary Public Health Security, Key Laboratory of Animal Epidemiology of the MARA, National Animal Protozoa Laboratory & College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinming Tang
- Key Laboratory of Animal Biosafety Risk Prevention and Control (North) & Key Laboratory of Veterinary Biological Products and Chemical Drugs of MARA, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Das S, Unhale T, Marinach C, Valeriano Alegria BDC, Roux C, Madry H, Mohand Oumoussa B, Amino R, Iwanaga S, Briquet S, Silvie O. Constitutive expression of Cas9 and rapamycin-inducible Cre recombinase facilitates conditional genome editing in Plasmodium berghei. Sci Rep 2025; 15:2949. [PMID: 39849074 PMCID: PMC11758014 DOI: 10.1038/s41598-025-87114-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/16/2025] [Indexed: 01/25/2025] Open
Abstract
Malaria is caused by protozoan parasites of the genus Plasmodium and remains a global health concern. The parasite has a highly adaptable life cycle comprising successive rounds of asexual replication in a vertebrate host and sexual maturation in the mosquito vector Anopheles. Genetic manipulation of the parasite has been instrumental for deciphering the function of Plasmodium genes. Conventional reverse genetic tools cannot be used to study essential genes of the asexual blood stages, thereby necessitating the development of conditional strategies. Among various such strategies, the rapamycin-inducible dimerisable Cre (DiCre) recombinase system emerged as a powerful approach for conditional editing of essential genes in human-infecting P. falciparum and in the rodent malaria model parasite P. berghei. We previously generated a DiCre-expressing P. berghei line and validated it by conditionally deleting several essential asexual stage genes, revealing their important role also in sporozoites. Another potent tool is the CRISPR/Cas9 technology, which has enabled targeted genome editing with higher accuracy and specificity and greatly advanced genome engineering in Plasmodium spp. Here, we developed new P. berghei parasite lines by integrating the DiCre cassette and a fluorescent marker in parasites constitutively expressing Cas9. Owing to the dual integration of CRISPR/Cas9 and DiCre, these new lines allow unparalleled levels of gene modification and conditional regulation simultaneously. To illustrate the versatility of this new tool, we conditionally knocked out the essential gene encoding the claudin-like apicomplexan micronemal protein (CLAMP) in P. berghei and confirmed the role of CLAMP during invasion of erythrocytes.
Collapse
Affiliation(s)
- Samhita Das
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Tanaya Unhale
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Carine Marinach
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Belsy Del Carmen Valeriano Alegria
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
- Institut Pasteur, Laboratory of Ecology and Emergence of Arthropod-borne Pathogens, Paris, France
| | - Camille Roux
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France
| | - Hélène Madry
- Sorbonne Université, Inserm, Production et Analyse des données en Sciences de la vie et Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75005 Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, Production et Analyse des données en Sciences de la vie et Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, F-75005 Paris, France
| | - Rogerio Amino
- Institut Pasteur, Université Paris Cité, Malaria Infection and Immunity Unit, F-75015 Paris, France
| | - Shiroh Iwanaga
- Research Center for Infectious Disease Control, Department of Molecular Protozoology, Suita, Osaka 565-0871, Japan
| | - Sylvie Briquet
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
| | - Olivier Silvie
- Sorbonne Université, CNRS, Inserm, Centre d'Immunologie et des Maladies Infectieuses, CIMI, F-75013 Paris, France.
| |
Collapse
|
4
|
Singhal R, Prata IO, Bonnell VA, Llinás M. Unraveling the complexities of ApiAP2 regulation in Plasmodium falciparum. Trends Parasitol 2024; 40:987-999. [PMID: 39419713 DOI: 10.1016/j.pt.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 10/19/2024]
Abstract
The regulation of gene expression in Plasmodium spp., the causative agents of malaria, relies on precise transcriptional control. Malaria parasites encode a limited repertoire of sequence-specific transcriptional regulators dominated by the apicomplexan APETALA 2 (ApiAP2) protein family. ApiAP2 DNA-binding proteins play critical roles at all stages of the parasite life cycle. Recent studies have provided mechanistic insight into the functional roles of many ApiAP2 proteins. Two major areas that have advanced significantly are the identification of ApiAP2-containing protein complexes and the role of ApiAP2 proteins in malaria parasite sexual development. In this review, we present recent advances on the functional biology of ApiAP2 proteins and their role in regulating gene expression across the blood stages of the parasite life cycle.
Collapse
Affiliation(s)
- Ritwik Singhal
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Isadora O Prata
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Victoria A Bonnell
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Malaria Research, The Pennsylvania State University, University Park, PA 16802, USA; Huck Institutes Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA 16802, USA; Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
5
|
Bansal A, Sharma M, Choudhury H. Generation of a new DiCre expressing parasite strain for functional characterization of Plasmodium falciparum genes in blood stages. Sci Rep 2024; 14:24076. [PMID: 39402380 PMCID: PMC11473785 DOI: 10.1038/s41598-024-75657-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Conditional regulation is a highly beneficial system for studying the function of essential genes in Plasmodium falciparum and dimerizable Cre recombinase (DiCre) is a recently adapted conditional regulation system suitable for this purpose. In the DiCre system, two inactive fragments of Cre are reconstituted to form a functionally active enzyme in the presence of rapamycin. Different loci have been targeted to generate parasite lines that express the DiCre enzyme. Here, we have used marker-free CRISPR-Cas9 gene editing to integrate the DiCre cassette in a redundant cg6 locus. We have shown the utility of the newly generated ∆cg6DC4 parasites in mediating robust, rapid, and highly specific excision of exogenously encoded gfp sequence. The ∆cg6DC4 parasites are also capable of conditional excision of an endogenous parasite gene, PF3D7_1246000. Conditional deletion of PF3D7_1246000 did not cause any inhibition in the asexual proliferation of the parasites. Furthermore, the health and morphology of the mutant parasites were comparable to that of the control parasites in Giemsa smears. The availability of another stable DiCre parasite strain competent for conditional excision of target genes will expedite functional characterization and validation of novel drug and vaccine targets against malaria.
Collapse
Affiliation(s)
- Abhisheka Bansal
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| | - Manish Sharma
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Himashree Choudhury
- Molecular Parasitology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
6
|
Hu Z, Liu Q, Ouyang B, Wang G, Wei C, Zhao X. Recent advances in genetic engineering to enhance plant-polysaccharide-degrading enzyme expression in Penicillium oxalicum: A brief review. Int J Biol Macromol 2024; 278:134775. [PMID: 39153674 DOI: 10.1016/j.ijbiomac.2024.134775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
With the depletion of non-renewable fossil fuels, there has been an increasing emphasis on renewable biomass. Penicillium oxalicum is notable for its exceptional capacity to secrete a diverse array of enzymes that degrade plant polysaccharides into monosaccharides. These valuable monosaccharides can be harnessed in the production of bioethanol and other sustainable forms of energy. By enhancing the production of plant-polysaccharide-degrading enzymes (PPDEs) in P. oxalicum, we can optimize the utilization of plant biomass. This paper presents recent advances in augmenting PPDE expression in P. oxalicum through genetic engineering strategies involving protoplast preparation, transformation, and factors influencing PPDE gene expression.
Collapse
Affiliation(s)
- Ziyan Hu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Qiling Liu
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Bei Ouyang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Guoping Wang
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chenyang Wei
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xihua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
7
|
Kou YJ, Gao J, Li R, Ma ZY, Elsheikha HM, Wu XJ, Zheng XN, Wang M, Zhu XQ. Functional Characterization of Six Eukaryotic Translation Initiation Factors of Toxoplasma gondii Using the CRISPR-Cas9 System. Int J Mol Sci 2024; 25:7834. [PMID: 39063076 PMCID: PMC11276994 DOI: 10.3390/ijms25147834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Eukaryotic translation initiation factors (eIFs) are crucial for initiating protein translation and ensuring the correct assembly of mRNA-ribosomal subunit complexes. In this study, we investigated the effects of deleting six eIFs in the apicomplexan parasite Toxoplasma gondii using the CRISPR-Cas9 system. We determined the subcellular localization of these eIFs using C-terminal endogenous tagging and immunofluorescence analysis. Four eIFs (RH::315150-6HA, RH::286090-6HA, RH::249370-6HA, and RH::211410-6HA) were localized in the cytoplasm, while RH::224235-6HA was localized in the apicoplast. Additionally, RH::272640-6HA was found in both the basal complex and the cytoplasm of T. gondii. Functional characterization of the six RHΔeIFs strains was conducted using plaque assay, cell invasion assay, intracellular growth assay and egress assay in vitro, and virulence assay in mice. Disruption of five eIF genes (RHΔ315150, RHΔ272640, RHΔ249370, RHΔ211410, and RHΔ224235) did not affect the ability of the T. gondii RH strain to invade, replicate, form plaques and egress in vitro, or virulence in Kunming mice (p > 0.05). However, the RHΔ286090 strain showed slightly reduced invasion efficiency and virulence (p < 0.01) compared to the other five RHΔeIFs strains and the wild-type strain. The disruption of the TGGT1_286090 gene significantly impaired the ability of tachyzoites to differentiate into bradyzoites in both type I RH and type II Pru strains. These findings reveal that the eukaryotic translation initiation factor TGGT1_286090 is crucial for T. gondii bradyzoite differentiation and may serve as a potential target for drug development and an attenuated vaccine against T. gondii.
Collapse
Affiliation(s)
- Yong-Jie Kou
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.-J.K.); (J.G.); (Z.-Y.M.); (X.-J.W.); (X.-N.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Jin Gao
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.-J.K.); (J.G.); (Z.-Y.M.); (X.-J.W.); (X.-N.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Rui Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Zhi-Ya Ma
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.-J.K.); (J.G.); (Z.-Y.M.); (X.-J.W.); (X.-N.Z.)
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK;
| | - Xiao-Jing Wu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.-J.K.); (J.G.); (Z.-Y.M.); (X.-J.W.); (X.-N.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Xiao-Nan Zheng
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.-J.K.); (J.G.); (Z.-Y.M.); (X.-J.W.); (X.-N.Z.)
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong 030801, China; (Y.-J.K.); (J.G.); (Z.-Y.M.); (X.-J.W.); (X.-N.Z.)
| |
Collapse
|
8
|
Klinger CM, Jimenez-Ruiz E, Mourier T, Klingl A, Lemgruber L, Pain A, Dacks JB, Meissner M. Evolutionary analysis identifies a Golgi pathway and correlates lineage-specific factors with endomembrane organelle emergence in apicomplexans. Cell Rep 2024; 43:113740. [PMID: 38363682 DOI: 10.1016/j.celrep.2024.113740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/20/2023] [Accepted: 01/18/2024] [Indexed: 02/18/2024] Open
Abstract
The organelle paralogy hypothesis (OPH) aims to explain the evolution of non-endosymbiotically derived organelles. It predicts that lineage-specific pathways or organelles should result when identity-encoding membrane-trafficking components duplicate and co-evolve. Here, we investigate the presence of such lineage-specific membrane-trafficking machinery paralogs in Apicomplexa, a globally important parasitic lineage. We are able to identify 18 paralogs of known membrane-trafficking machinery, in several cases co-incident with the presence of new endomembrane organelles in apicomplexans or their parent lineage, the Alveolata. Moreover, focused analysis of the apicomplexan Arf-like small GTPases (i.e., ArlX3) revealed a specific post-Golgi trafficking pathway. This pathway appears involved in delivery of proteins to micronemes and rhoptries, with knockdown demonstrating reduced invasion capacity. Overall, our data have identified an unforeseen post-Golgi trafficking pathway in apicomplexans and are consistent with the OPH mechanism acting to produce endomembrane pathways or organelles at various evolutionary stages across the alveolate lineage.
Collapse
Affiliation(s)
- Christen M Klinger
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Elena Jimenez-Ruiz
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Bioscience Programme, Biological, and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Andreas Klingl
- Pflanzliche Entwicklungsbiologie, Biozentrum der Ludwig-Maximilians-Universität, Munich, Germany
| | - Leandro Lemgruber
- Cellular Analysis Facility, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Arnab Pain
- Pathogen Genomics Laboratory, Bioscience Programme, Biological, and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; International Institute for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Japan
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine and Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada; Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada; Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Centre for Life's Origin and Evolution, Department of Genetics, Evolution & Environment, University College London, London, UK.
| | - Markus Meissner
- Experimental Parasitology, Department of Veterinary Sciences, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität, LMU, Munich, Germany.
| |
Collapse
|
9
|
Sanchez SG, Bassot E, Cerutti A, Mai Nguyen H, Aïda A, Blanchard N, Besteiro S. The apicoplast is important for the viability and persistence of Toxoplasma gondii bradyzoites. Proc Natl Acad Sci U S A 2023; 120:e2309043120. [PMID: 37590416 PMCID: PMC10450435 DOI: 10.1073/pnas.2309043120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/27/2023] [Indexed: 08/19/2023] Open
Abstract
Toxoplasma gondii is responsible for toxoplasmosis, a disease that can be serious when contracted during pregnancy, but can also be a threat for immunocompromised individuals. Acute infection is associated with the tachyzoite form that spreads rapidly within the host. However, under stress conditions, some parasites can differentiate into cyst-forming bradyzoites, residing mainly in the central nervous system, retina and muscle. Because this latent form of the parasite is resistant to all currently available treatments, and is central to persistence and transmission of the parasite, specific therapeutic strategies targeting this developmental stage need to be found. T. gondii contains a plastid of endosymbiotic origin called the apicoplast, which is an appealing drug target because it is essential for tachyzoite viability and contains several key metabolic pathways that are largely absent from the mammalian host. Its function in bradyzoites, however, is unknown. Our objective was thus to study the contribution of the apicoplast to the viability and persistence of bradyzoites during chronic toxoplasmosis. We have used complementary strategies based on stage-specific promoters to generate conditional bradyzoite mutants of essential apicoplast genes. Our results show that specifically targeting the apicoplast in both in vitro or in vivo-differentiated bradyzoites leads to a loss of long-term bradyzoite viability, highlighting the importance of this organelle for this developmental stage. This validates the apicoplast as a potential area to look for therapeutic targets in bradyzoites, with the aim to interfere with this currently incurable parasite stage.
Collapse
Affiliation(s)
- Syrian G. Sanchez
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Aude Cerutti
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Hoa Mai Nguyen
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, University of Toulouse, CNRS, Inserm, Université Paul Sabatier, 31059Toulouse, France
| | - Sébastien Besteiro
- Laboratory of Pathogens and Host Immunity, CNRS, University of Montpellier, 34095Montpellier, France
| |
Collapse
|
10
|
Parres-Mercader M, Pance A, Gómez-Díaz E. Novel systems to study vector-pathogen interactions in malaria. Front Cell Infect Microbiol 2023; 13:1146030. [PMID: 37305421 PMCID: PMC10253182 DOI: 10.3389/fcimb.2023.1146030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 04/04/2023] [Indexed: 06/13/2023] Open
Abstract
Some parasitic diseases, such as malaria, require two hosts to complete their lifecycle: a human and an insect vector. Although most malaria research has focused on parasite development in the human host, the life cycle within the vector is critical for the propagation of the disease. The mosquito stage of the Plasmodium lifecycle represents a major demographic bottleneck, crucial for transmission blocking strategies. Furthermore, it is in the vector, where sexual recombination occurs generating "de novo" genetic diversity, which can favor the spread of drug resistance and hinder effective vaccine development. However, understanding of vector-parasite interactions is hampered by the lack of experimental systems that mimic the natural environment while allowing to control and standardize the complexity of the interactions. The breakthrough in stem cell technologies has provided new insights into human-pathogen interactions, but these advances have not been translated into insect models. Here, we review in vivo and in vitro systems that have been used so far to study malaria in the mosquito. We also highlight the relevance of single-cell technologies to progress understanding of these interactions with higher resolution and depth. Finally, we emphasize the necessity to develop robust and accessible ex vivo systems (tissues and organs) to enable investigation of the molecular mechanisms of parasite-vector interactions providing new targets for malaria control.
Collapse
Affiliation(s)
- Marina Parres-Mercader
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| | - Alena Pance
- School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Elena Gómez-Díaz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas (IPBLN, CSIC), Granada, Spain
| |
Collapse
|
11
|
Nourani L, Mehrizi AA, Pirahmadi S, Pourhashem Z, Asadollahi E, Jahangiri B. CRISPR/Cas advancements for genome editing, diagnosis, therapeutics, and vaccine development for Plasmodium parasites, and genetic engineering of Anopheles mosquito vector. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 109:105419. [PMID: 36842543 DOI: 10.1016/j.meegid.2023.105419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 02/28/2023]
Abstract
Malaria as vector-borne disease remains important health concern with over 200 million cases globally. Novel antimalarial medicines and more effective vaccines must be developed to eliminate and eradicate malaria. Appraisal of preceding genome editing approaches confirmed the CRISPR/Cas nuclease system as a novel proficient genome editing system and a tool for species-specific diagnosis, and drug resistance researches for Plasmodium species, and gene drive to control Anopheles population. CRISPR/Cas technology, as a handy tool for genome editing can be justified for the production of transgenic malaria parasites like Plasmodium transgenic lines expressing Cas9, chimeric Plasmodium transgenic lines, knockdown and knockout transgenic parasites, and transgenic parasites expressing alternative alleles, and also mutant strains of Anopheles such as only male mosquito populations, generation of wingless mosquitoes, and creation of knock-out/ knock-in mutants. Though, the incorporation of traditional methods and novel molecular techniques could noticeably enhance the quality of results. The striking development of a CRISPR/Cas-based diagnostic kit that can specifically diagnose the Plasmodium species or drug resistance markers is highly required in malaria settings with affordable cost and high-speed detection. Furthermore, the advancement of genome modifications by CRISPR/Cas technologies resolves contemporary restrictions to culturing, maintaining, and analyzing these parasites, and the aptitude to investigate parasite genome functions opens up new vistas in the better understanding of pathogenesis.
Collapse
Affiliation(s)
- Leila Nourani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Zeinab Pourhashem
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Elahe Asadollahi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Babak Jahangiri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Quansah E, Chen Y, Yang S, Wang J, Sun D, Zhao Y, Chen M, Yu L, Zhang C. CRISPR-Cas13 in malaria parasite: Diagnosis and prospective gene function identification. Front Microbiol 2023; 14:1076947. [PMID: 36760507 PMCID: PMC9905151 DOI: 10.3389/fmicb.2023.1076947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/03/2023] [Indexed: 01/26/2023] Open
Abstract
Malaria caused by Plasmodium is still a serious public health problem. Genomic editing is essential to understand parasite biology, elucidate mechanical pathways, uncover gene functions, identify novel therapeutic targets, and develop clinical diagnostic tools. Recent advances have seen the development of genomic diagnostic technologies and the emergence of genetic manipulation toolbox comprising a host of several systems for editing the genome of Plasmodium at the DNA, RNA, and protein level. Genomic manipulation at the RNA level is critical as it allows for the functional characterization of several transcripts. Of notice, some developed artificial RNA genome editing tools hinge on the endogenous RNA interference system of Plasmodium. However, Plasmodium lacks a robust RNAi machinery, hampering the progress of these editing tools. CRISPR-Cas13, which belongs to the VI type of the CRISPR system, can specifically bind and cut RNA under the guidance of crRNA, with no or minimal permanent genetic scar on genes. This review summarizes CRISPR-Cas13 system from its discovery, classification, principle of action, and diagnostic platforms. Further, it discusses the application prospects of Cas13-based systems in Plasmodium and highlights its advantages and drawbacks.
Collapse
Affiliation(s)
- Elvis Quansah
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yihuan Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Shijie Yang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Junyan Wang
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Danhong Sun
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Yangxi Zhao
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Ming Chen
- The Second Clinical Medical College, Anhui Medical University, Hefei, China
| | - Li Yu
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,*Correspondence: Li Yu, ✉
| | - Chao Zhang
- Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Key Laboratory of Zoonoses, Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China,Chao Zhang, ✉
| |
Collapse
|
13
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|
14
|
Loukas A. Frontiers in Parasitology Grand Challenge. FRONTIERS IN PARASITOLOGY 2022; 1:902098. [PMID: 39816472 PMCID: PMC11731821 DOI: 10.3389/fpara.2022.902098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 01/18/2025]
Affiliation(s)
- Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health & Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
15
|
Hartland EL. Emerging technologies in microbiology. Mol Microbiol 2022; 117:551-552. [PMID: 35303397 DOI: 10.1111/mmi.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| |
Collapse
|