1
|
Li SY, He C, Valades-Cruz CA, Zhang CC, Yang Y. Phototactic signaling network in rod-shaped cyanobacteria: A study on Synechococcus elongatus UTEX 3055. Microbiol Res 2025; 292:127967. [PMID: 39637757 DOI: 10.1016/j.micres.2024.127967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 12/07/2024]
Abstract
Light-controlled motility is advantageous for photosynthetic prokaryotes to better survive in environment with constantly changing light conditions. For cyanobacteria, light is both an energy source for photosynthesis and a stress factor. Consequently, some cyanobacteria evolved the ability to control type-IV pili (T4P)-mediated surface motility using a chemotaxis-like system in response to light signals. Extensive studies on the mechanism of phototaxis has been conducted in the spherical Synechocystis sp. PCC 6803 and the filamentous strain Nostoc punctiforme, while less is explored in rod-shaped cyanobacteria such as Synechococcus species. In this study, we investigated the phototaxis pathway in the unicellular rod-shaped cyanobacterium Synechococcus elongatus UTEX 3055, which exhibits bidirectional phototaxis using a single tax1 operon, in contrast to more complex and multiple gene clusters revealed in Synechocystis sp. PCC 6803. Results obtained by protein-protein interaction assays and protein subcellular localization experiments indicated that proteins encoded by the tax1 operon form large clusters that asymmetrically distributed both between the two poles and within the same pole. In vitro phosphorylation assays and site-directed mutations of conserved phosphorylation sites in PixLSe, PixGSe and PixHSe demonstrate that PixLSe acts as a histidine kinase, and PixGSe and PixHSe as response regulators for signal transduction. We further show that PixGSe and PixHSe are recruited to cell poles via interactions with the N-terminal region of PixLSe. While phosphotransfer reactions in this signaling pathway are critical for phototactic signaling, the two response regulators appear to play different roles in the control of phototaxis. This study provides a framework for further investigation into the complex phototactic signaling network in rod-shaped cyanobacteria with clearly defined cell poles in contrast to round shaped Synechocystis species with virtual cells poles through light-lensing effect.
Collapse
Affiliation(s)
- Shang-Yu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chenliu He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Cesar Augusto Valades-Cruz
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China
| | - Cheng-Cai Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China; Hubei Hongshan Laboratory, Wuhan, Hubei 430070, PR China.
| | - Yiling Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, PR China.
| |
Collapse
|
2
|
Han Y, Hammerl J, Flemming FE, Schuergers N, Wilde A. A cyanobacterial chemotaxis-like system controls phototactic orientation via phosphorylation of two antagonistic response regulators. MICROLIFE 2024; 5:uqae012. [PMID: 38887653 PMCID: PMC11181946 DOI: 10.1093/femsml/uqae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/20/2024]
Abstract
Photosynthetic cyanobacteria exhibit phototaxis, utilizing type IV pili (T4P) to navigate either toward or away from a light source. The Tax1 system is a chemotaxis-like signal transduction pathway that controls the switch in cell polarity, which is crucial for positive phototaxis in Synechocystis sp. PCC 6803. The system consists of the blue/green light sensor PixJ, which controls the histidine kinase PixL and two CheY-like response regulators, PixG and PixH. However, the molecular mechanism by which Tax1 regulates T4P activity and polarity is poorly understood. Here, we investigated the phosphotransfer between PixL and its cognate response regulators in vitro and analyzed the localization and function of wild-type and phosphorylation-deficient PixG and PixH during phototaxis. We found that both PixG and PixH are phosphorylated by PixL but have different roles in phototaxis regulation. Only phosphorylated PixG interacts with the T4P motor protein PilB1 and localizes to the leading cell pole under directional light, thereby promoting positive phototaxis. In contrast, PixH is a negative regulator of PixG phosphorylation and inhibits positive phototaxis. We also demonstrated that the C-terminal receiver domain of PixL is essential for positive phototaxis, and modulates the kinase activity of PixL. Our findings reveal the molecular basis of positive phototaxis regulation by the Tax1 system and provide insights into the division of labor between PatA-type and CheY-like response regulators in cyanobacterial chemotaxis-like systems. Furthermore, these findings highlight similarities in the regulation of movement direction during twitching motility in phototactic and chemotactic bacteria.
Collapse
Affiliation(s)
- Yu Han
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Jonas Hammerl
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Albertstr. 19A, University of Freiburg, Germany
| | - Felicitas E Flemming
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Nils Schuergers
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics, Institute of Biology III, Schänzlestraße 1, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
3
|
Kühn MJ, Macmillan H, Talà L, Inclan Y, Patino R, Pierrat X, Al‐Mayyah Z, Engel JN, Persat A. Two antagonistic response regulators control Pseudomonas aeruginosa polarization during mechanotaxis. EMBO J 2023; 42:e112165. [PMID: 36795017 PMCID: PMC10519157 DOI: 10.15252/embj.2022112165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 01/24/2023] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa adapts to solid surfaces to enhance virulence and infect its host. Type IV pili (T4P), long and thin filaments that power surface-specific twitching motility, allow single cells to sense surfaces and control their direction of movement. T4P distribution is polarized to the sensing pole by the chemotaxis-like Chp system via a local positive feedback loop. However, how the initial spatially resolved mechanical signal is translated into T4P polarity is incompletely understood. Here, we demonstrate that the two Chp response regulators PilG and PilH enable dynamic cell polarization by antagonistically regulating T4P extension. By precisely quantifying the localization of fluorescent protein fusions, we show that phosphorylation of PilG by the histidine kinase ChpA controls PilG polarization. Although PilH is not strictly required for twitching reversals, it becomes activated upon phosphorylation and breaks the local positive feedback mechanism established by PilG, allowing forward-twitching cells to reverse. Chp thus uses a main output response regulator, PilG, to resolve mechanical signals in space and employs a second regulator, PilH, to break and respond when the signal changes. By identifying the molecular functions of two response regulators that dynamically control cell polarization, our work provides a rationale for the diversity of architectures often found in non-canonical chemotaxis systems.
Collapse
Affiliation(s)
- Marco J Kühn
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | | | - Lorenzo Talà
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Yuki Inclan
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Ramiro Patino
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
| | - Xavier Pierrat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Zainebe Al‐Mayyah
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Joanne N Engel
- Department of MedicineUniversity of CaliforniaSan FranciscoCAUSA
- Department of Microbiology and ImmunologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Alexandre Persat
- Institute of Bioengineering and Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de LausanneLausanneSwitzerland
| |
Collapse
|
4
|
Nakane D, Enomoto G, Bähre H, Hirose Y, Wilde A, Nishizaka T. Thermosynechococcus switches the direction of phototaxis by a c-di-GMP-dependent process with high spatial resolution. eLife 2022; 11:73405. [PMID: 35535498 PMCID: PMC9090330 DOI: 10.7554/elife.73405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Many cyanobacteria, which use light as an energy source via photosynthesis, show directional movement towards or away from a light source. However, the molecular and cell biological mechanisms for switching the direction of movement remain unclear. Here, we visualized type IV pilus-dependent cell movement in the rod-shaped thermophilic cyanobacterium Thermosynechococcus vulcanus using optical microscopy at physiological temperature and light conditions. Positive and negative phototaxis were controlled on a short time scale of 1 min. The cells smoothly moved over solid surfaces towards green light, but the direction was switched to backward movement when we applied additional blue light illumination. The switching was mediated by three photoreceptors, SesA, SesB, and SesC, which have cyanobacteriochrome photosensory domains and synthesis/degradation activity of the bacterial second messenger cyclic dimeric GMP (c-di-GMP). Our results suggest that the decision-making process for directional switching in phototaxis involves light-dependent changes in the cellular concentration of c-di-GMP. Direct visualization of type IV pilus filaments revealed that rod-shaped cells can move perpendicular to the light vector, indicating that the polarity can be controlled not only by pole-to-pole regulation but also within-a-pole regulation. This study provides insights into previously undescribed rapid bacterial polarity regulation via second messenger signalling with high spatial resolution.
Collapse
Affiliation(s)
- Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Gen Enomoto
- Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Heike Bähre
- Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Japan
| | - Annegret Wilde
- Institute of Biology III, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | | |
Collapse
|