1
|
Lee S, Dobes P, Marciniak J, Mascellani Bergo A, Kamler M, Marsik P, Pohl R, Titera D, Hyrsl P, Havlik J. Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees? Open Biol 2024; 14:240219. [PMID: 39657820 PMCID: PMC11631464 DOI: 10.1098/rsob.240219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Intensive agricultural practices impact the health and nutrition of pollinators like honey bees (Apis mellifera). Rapeseed (Brassica napus L.) is widely cultivated, providing diverse nutrients and phytochemicals, including S-methyl-L-cysteine sulfoxide (SMCSO). While the nutritional impact of rapeseed on bees is known, SMCSO's effects remain unexplored. We examined SMCSO and its related metabolites-3-methylthiolactic acid sulfoxide and N-acetyl-S-methyl-L-cysteine sulfoxide-analysing their seasonal fluctuations, colony variations and distribution in body parts. Our findings showed that these compounds in bee gut vary among colonies, possibly due to the dietary preferences, and are highly concentrated in bodies during the summer. They are distributed differently within bee bodies, with higher concentrations in the abdomens of foragers compared with nurses. Administration of SMCSO in a laboratory setting showed no immediate toxic effects but significantly boosted bees' antioxidant capacity. Long-term administration decreased bee body weight, particularly in the thorax and head, and altered amino acid metabolism. SMCSO is found in the nectar and pollen of rapeseed flowers and highly accumulates in rapeseed honey compared with other types of honey. This study reveals the dual impact of SMCSO on bee health, providing a basis for further ecological and physiological research to enhance bee health and colony sustainability.
Collapse
Affiliation(s)
- Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Dobes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jacek Marciniak
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Petr Marsik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Pavel Hyrsl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
2
|
Xiang Q, Yu M, Cai Q, Hu M, Rao B, Liang X, Liu Z, Xie Y, Cen K, Zhang R, Xu H, Liu Y. Multi-omics insights into the microbiota-gut-brain axis and cognitive improvement post-bariatric surgery. J Transl Med 2024; 22:945. [PMID: 39420319 PMCID: PMC11484437 DOI: 10.1186/s12967-024-05757-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Although numerous studies have shown that bariatric surgery results in sustained weight loss and modifications in gut microbiota composition and cognitive function, the exact underlying mechanisms are unclear. This study aimed to investigate the effects of bariatric surgery on cognitive function through the microbiota-gut-brain axis (MGBA). METHODS Demographic data, serum samples, fecal samples, cognitive assessment scales, and resting-state functional connectivity magnetic resonance imaging (rs-fMRI) scans were obtained from 39 obese patients before and after (6 months) laparoscopic sleeve gastrectomy (LSG). PCA analysis, OPLS-DA analysis, and permutation tests were used to conduct fecal 16 S microbiota profiling, serum metabolomics, and neuroimaging analyses, and a bariatric surgery-specific rs-fMRI brain functional connectivity network was constructed. Spearman correlation analysis and Co-inertia analysis were employed to correlate significant alterations in cognitive assessment scales and resting-state functional connectivity difference networks with differential serum metabolites and 16 S microbiota data to identify key gut microbiota and serum metabolic factors. RESULTS LSG significantly reduced the weight of obese patients, with reductions of up to 28%. Furthermore, cognitive assessment scale measurements revealed that LSG enhanced cognitive functions, including memory (HVLT, p = 0.000) and executive function (SCWT, p = 0.008). Also, LSG significantly altered gut microbiota composition (p = 0.001), with increased microbial abundance and diversity (p < 0.05). Moreover, serum metabolite levels were significantly altered, revealing intergroup differences in 229 metabolites mapped to 72 metabolic pathways (p < 0.05, VIP > 1). Spearman correlation analysis among cognitive assessment scales, gut microbiota species, and serum metabolites revealed correlations with 68 gut microbiota species and 138 serum metabolites (p < 0.05). Furthermore, pairwise correlations were detected between gut microbiota and serum metabolites (p < 0.05). Functional neuroimaging analysis revealed that LSG increased functional connectivity in cognitive-related frontotemporal networks (FPN, p < 0.01). Additionally, normalization of the default mode network (DMN) and salience network (SN) connectivity was observed after LSG (p < 0.001). Further canonical correlation and correlation analysis suggested that the cognitive-related brain network changes induced by LSG were associated with key gut microbiota species (Akkermansia, Blautia, Collinsella, Phascolarctobacterium, and Ruminococcus, p < 0.05) and neuroactive metabolites (Glycine, L-Serine, DL-Dopa, SM (d18:1/24:1(15Z), p < 0.05). CONCLUSION These findings indicate the pathophysiological role of the microbiota-gut-brain axis in enhancing cognitive function after bariatric surgery, and the study provides a basis for clinical dietary adjustments, probiotic supplementation, and guidance for bariatric surgery, but further research is still needed. TRIAL REGISTRATION Chinese Clinical Trial Registry, ChiCTR2100049403. Registered 02 August 2021, https://www.chictr.org.cn/ .
Collapse
Affiliation(s)
- Qiaoyuan Xiang
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Qi Cai
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Mengjie Hu
- Department of Hepatobiliary, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xin Liang
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Zhenxing Liu
- Department of Neurology, Yiling Hospital of Yichang City, Yichang, Hubei, China
| | - Yu Xie
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Kuan Cen
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Renwei Zhang
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China.
| | - Yumin Liu
- Dapartment of Neurology, Zhongnan Hospital of Wuhan University, No.169 Donghu Street, Wuhan, Hubei, 430000, China.
| |
Collapse
|
3
|
Santucci P. Molecular Microbiology of Microbiomes. Mol Microbiol 2024; 122:271-272. [PMID: 39258446 DOI: 10.1111/mmi.15308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Affiliation(s)
- Pierre Santucci
- Aix Marseille Univ, CNRS, LISM, IMM FR3479, IM2B, Marseille, France
| |
Collapse
|
4
|
Sbardellati DL, Vannette RL. Targeted viromes and total metagenomes capture distinct components of bee gut phage communities. MICROBIOME 2024; 12:155. [PMID: 39175056 PMCID: PMC11342477 DOI: 10.1186/s40168-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/16/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Despite being among the most abundant biological entities on earth, bacteriophage (phage) remain an understudied component of host-associated systems. One limitation to studying host-associated phage is the lack of consensus on methods for sampling phage communities. Here, we compare paired total metagenomes and viral size fraction metagenomes (viromes) as methods for investigating the dsDNA viral communities associated with the GI tract of two bee species: the European honey bee Apis mellifera and the eastern bumble bee Bombus impatiens. RESULTS We find that viromes successfully enriched for phage, thereby increasing phage recovery, but only in honey bees. In contrast, for bumble bees, total metagenomes recovered greater phage diversity. Across both bee species, viromes better sampled low occupancy phage, while total metagenomes were biased towards sampling temperate phage. Additionally, many of the phage captured by total metagenomes were absent altogether from viromes. Comparing between bees, we show that phage communities in commercially reared bumble bees are significantly reduced in diversity compared to honey bees, likely reflecting differences in bacterial titer and diversity. In a broader context, these results highlight the complementary nature of total metagenomes and targeted viromes, especially when applied to host-associated environments. CONCLUSIONS Overall, we suggest that studies interested in assessing total communities of host-associated phage should consider using both approaches. However, given the constraints of virome sampling, total metagenomes may serve to sample phage communities with the understanding that they will preferentially sample dominant and temperate phage. Video Abstract.
Collapse
Affiliation(s)
| | - Rachel Lee Vannette
- Department of Entomology and Nematology, University of California Davis, Davis, CA, USA
| |
Collapse
|
5
|
Zeng J, Li Y, Yan J, Chang R, Xu M, Zhou G, Meng J, Liu D, Mao Z, Yang Y. Gut microbiota from patients with Parkinson's disease causes motor deficits in honeybees. Front Microbiol 2024; 15:1418857. [PMID: 39070266 PMCID: PMC11272988 DOI: 10.3389/fmicb.2024.1418857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Objective Parkinson's disease (PD) is possibly caused by genetic factors, environmental factors, and gut microbiota dysbiosis. This study aims to explore whether the microbiota contributes to the behavior abnormalities of PD. Methods We transplanted gut microbiota from patients with PD or healthy controls (HC) into microbiota-free honeybees. We also established two more groups, namely the rotenone (ROT) group, in which PD-like symptoms of honeybees were induced by rotenone, and the conventional (CV) group, in which honeybees were colonized with conventional gut microbiota. The climbing assay was performed to assess the motor capabilities of honeybees. Histopathological examination was conducted to evaluate the integrity of gut mucosa. Tyrosine hydroxylase (TH) gene expression levels and dopamine (DA) concentrations in the brain were also examined. Additionally, metagenomics and full-length 16S rRNA analyses were performed to identify alterations in gut microbiota profiles, both in PD patients and honeybees. Results Honeybees in the PD and ROT groups exhibited slower climbing speeds, downregulated TH gene expression, and impaired gut barriers. Both the HC and PD groups of honeybees successfully harbored a portion of gut microbiota from corresponding human donors, and differences in microbial composition were identified. Morganella morganii and Erysipelatoclostridium ramosum exhibited significantly increased relative abundance in the HC group, while Dorea longicatena, Collinsella aerofaciens, Lactococcus garvieae, Holdemanella biformis, Gemmiger formicilis, and Blautia obeum showed significantly increased relative abundance in the PD group. Functional predictions of microbial communities in the PD group indicated an increased synthesis of hydrogen sulfide and methane. Conclusion A novel PD model was induced in honeybees with rotenone and gut microbiota from PD patients. This study linked PD-related behaviors to altered gut microbiota, highlighting a potential gut microbiota-brain axis involvement in PD pathogenesis. We identify previously unrecognized associations of Dorea longicatena, Collinsella aerofaciens, Lactococcus garvieae, Holdemanella biformis, Gemmiger formicilis, and Blautia obeum with PD. Additionally, pathways related to hydrogen sulfide and methane synthesis have been previously suggested as potential contributors to the development of PD, and our research further supports this hypothesis.
Collapse
Affiliation(s)
- Jiaqi Zeng
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- Medical School of Chinese PLA, Beijing, China
| | - Yiyuan Li
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jingshuang Yan
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Ruqi Chang
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mengqi Xu
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Guanzhou Zhou
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jie Meng
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Di Liu
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiqi Mao
- Department of Neurosurgery, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yunsheng Yang
- Microbiota Division, Department of Gastroenterology and Hepatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
- National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
7
|
Hotchkiss MZ, Forrest JRK, Poulain AJ. Exposure to a fungicide for a field-realistic duration does not alter bumble bee fecal microbiota structure. Appl Environ Microbiol 2024; 90:e0173923. [PMID: 38240563 PMCID: PMC10880609 DOI: 10.1128/aem.01739-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/22/2024] Open
Abstract
Social bees are frequently exposed to pesticides when foraging on nectar and pollen. Recent research has shown that pesticide exposure not only impacts social bee host health but can also alter the community structure of social bee gut microbiotas. However, most research on pesticide-bee gut microbiota interactions has been conducted in honey bees; bumble bees, native North American pollinators, have received less attention and, due to differences in their ecology, may be exposed to certain pesticides for shorter durations than honey bees. Here, we examine how exposure to the fungicide chlorothalonil for a short, field-realistic duration alters bumble bee fecal microbiotas (used as a proxy for gut microbiotas) and host performance. We expose small groups of Bombus impatiens workers (microcolonies) to field-realistic chlorothalonil concentrations for 5 days, track changes in fecal microbiotas during the exposure period and a recovery period, and compare microcolony offspring production between treatments at the end of the experiment. We also assess the use of fecal microbiotas as a gut microbiota proxy by comparing community structures of fecal and gut microbiotas. We find that chlorothalonil exposure for a short duration does not alter bumble bee fecal microbiota structure or affect microcolony production at any concentration but that fecal and gut microbiotas differ significantly in community structure. Our results show that, at least when exposure durations are brief and unaccompanied by other stressors, bumble bee microbiotas are resilient to fungicide exposure. Additionally, our work highlights the importance of sampling gut microbiotas directly, when possible.IMPORTANCEWith global pesticide use expected to increase in the coming decades, studies on how pesticides affect the health and performance of animals, including and perhaps especially pollinators, will be crucial to minimize negative environmental impacts of pesticides in agriculture. Here, we find no effect of exposure to chlorothalonil for a short, field-realistic period on bumble bee fecal microbiota community structure or microcolony production regardless of pesticide concentration. Our results can help inform pesticide use practices to minimize negative environmental impacts on the health and fitness of bumble bees, which are key native, commercial pollinators in North America. We also find that concurrently sampled bumble bee fecal and gut microbiotas contain similar microbes but differ from one another in community structure and consequently suggest that using fecal microbiotas as a proxy for gut microbiotas be done cautiously; this result contributes to our understanding of proxy use in gut microbiota research.
Collapse
|