1
|
Ferreira LC, Santana FM, Scagliusi SMM, Beckmann M, Mur LAJ. Omic characterisation of multi-component defences against the necrotrophic pathogen Pyrenophora tritici-repentis in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:347-361. [PMID: 39918991 PMCID: PMC11950905 DOI: 10.1111/plb.13746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/14/2024] [Indexed: 02/09/2025]
Abstract
Tan Spot disease is caused by the necrotrophic pathogen Pyrenophora tritici-repentis (Ptr) and poses a significant threat to global wheat production. Therefore, novel sources of resistance need to be identified, coupled with a fuller mechanistic understanding of host responses to Ptr. Herein, we characterise the interaction between a ToxA-positive Ptr strain and parental wheat lines from a multiparent advanced generation intercross (MAGIC) population. Genotypes displaying moderate resistance ('Robigus') or susceptibility ('Hereward') to Ptr challenge were identified and characterised through histological, metabolomic, and transcriptomic approaches. Histological investigations indicated the prominence of papilla-based defences in Robigus. Transcriptomic analyses could link this to the expression of barrier-related genes i.e. actin polymerisation, callose deposition, vesicle trafficking, and cellulose synthesis. Inhibiting actin polymerisation with cytochalasin E increased lesion numbers but did not augment lesion growth, suggesting the deployment of other defence mechanisms. These may be influenced by auxin, as its exogenous application exacerbated symptom development. Transcriptomic and metabolomic analyses in Hereward following challenge with Ptr suggested shifts in primary metabolism, affecting glycolysis, the TCA cycle, and the γ-aminobutyric acid (GABA) shunt. Activation of salicylic acid (SA)-associated genes, including NPR1 and WRKY33, was specific to Hereward, and exogenous SA increased susceptibility to Ptr in both genotypes. This study suggests barrier defences could be effective against Ptr as well as a lack of susceptibility factors like SA or the appropriate processing of IAA. These findings offer potential avenues for enhancing wheat resistance to Ptr.
Collapse
Affiliation(s)
- L. C. Ferreira
- Department of Life SciencesAberystwyth UniversityAberystwythWalesUK
- University of Florida, Everglades Research and Education CenterBelle GladeFLUSA
| | - F. M. Santana
- Laboratório de FitopatologiaPasso FundoRio Grande do SulBrazil
| | | | - M. Beckmann
- Department of Life SciencesAberystwyth UniversityAberystwythWalesUK
| | - L. A. J. Mur
- Department of Life SciencesAberystwyth UniversityAberystwythWalesUK
| |
Collapse
|
2
|
Javed T, Wang W, Yang B, Shen L, Sun T, Gao SJ, Zhang S. Pathogenesis related-1 proteins in plant defense: regulation and functional diversity. Crit Rev Biotechnol 2025; 45:305-313. [PMID: 38719539 DOI: 10.1080/07388551.2024.2344583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 05/14/2024]
Abstract
Climate change-related environmental stresses can negatively impact crop productivity and pose a threat to sustainable agriculture. Plants have a remarkable innate ability to detect a broad array of environmental cues, including stresses that trigger stress-induced regulatory networks and signaling pathways. Transcriptional activation of plant pathogenesis related-1 (PR-1) proteins was first identified as an integral component of systemic acquired resistance in response to stress. Consistent with their central role in immune defense, overexpression of PR-1s in diverse plant species is frequently used as a marker for salicylic acid (SA)-mediated defense responses. Recent advances demonstrated how virulence effectors, SA signaling cascades, and epigenetic modifications modulate PR-1 expression in response to environmental stresses. We and others showed that transcriptional regulatory networks involving PR-1s could be used to improve plant resilience to stress. Together, the results of these studies have re-energized the field and provided long-awaited insights into a possible function of PR-1s under extreme environmental stress.
Collapse
Affiliation(s)
- Talha Javed
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Benpeng Yang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Linbo Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| |
Collapse
|
3
|
Wu X, Wang L, Xing Q, Zhao Y, Qi H. CmPIF8-CmERF27-CmACS10-mediated ethylene biosynthesis modulates red light-induced powdery mildew resistance in oriental melon. PLANT, CELL & ENVIRONMENT 2024; 47:4135-4150. [PMID: 38923433 DOI: 10.1111/pce.15015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Powdery mildew is a serious fungal disease in protected melon cultivation that affects the growth, development and production of melon plants. Previous studies have shown that red light can improve oriental melon seedlings resistance to powdery mildew. Here, after inoculation with Podosphaera xanthii, an obligate fungal pathogen eliciting powdery mildew, we found that red light pretreatment increased ethylene production and this improved the resistance of melon seedlings to powdery mildew, and the ethylene biosynthesis gene CmACS10 played an important role in this process. By analysing the CmACS10 promoter, screening yeast one-hybrid library, it was found that CmERF27 positively regulated the expression of CmACS10, increased powdery mildew resistance and interacted with PHYTOCHROME INTERACTING FACTOR8 (CmPIF8) at the protein level to participate in the regulation of ethylene biosynthesis to respond to the red light-induced resistance to P. xanthii, Furthermore, CmPIF8 also directly targeted the promoter of CmACS10, negatively participated in this process. In summary, this study revealed the specific mechanism by which the CmPIF8-CmERF27-CmACS10 module regulates red light-induced ethylene biosynthesis to resist P. xanthii infection, elucidate the interaction between light and plant hormones under biological stress, provide a reference and genetic resources for breeding of disease-resistant melon plants.
Collapse
Affiliation(s)
- Xutong Wu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Lixia Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Qiaojuan Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yaping Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| | - Hongyan Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture of Education of Ministry and Liaoning Province/National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, China
| |
Collapse
|
4
|
Fatima M, Anjum Bhat H, Rebekah N, Murugasamy S, Makandar R. Genome-wide search and gene expression studies reveal candidate effectors with a role in pathogenicity and virulence in Fusarium graminearum. Mycologia 2024; 116:708-728. [PMID: 39110876 DOI: 10.1080/00275514.2024.2373665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/18/2024] [Indexed: 09/05/2024]
Abstract
Fusarium graminearum causes Fusarium head blight (FHB) disease in wheat worldwide. Although F. graminearum is reported to secrete several effectors, their role in virulence and pathogenicity is unknown. The study aimed at identifying candidate genes with a role in pathogenicity and virulence using two different host systems, Arabidopsis thaliana and wheat, challenged with F. graminearum TN01. Detached leaf assay and histological studies revealed the virulent nature of TN01. A genome-wide in silico search revealed several candidate genes, of which 23 genes were selected based on reproducibility. Gene expression studies by reverse transcriptase-polymerase chain reaction (RT-PCR) in leaf tissues of Arabidopsis and the two wheat genotypes, the susceptible (Sonalika) and the resistant (Nobeoka Bozu/Nobeoka), compared with mock-treated controls in a time-course study using fungal- and plant-specific genes as internal controls revealed that these genes were differentially regulated. Further, expression of these candidates in F. graminearum-inoculated Sonalika and Nobeoka spikes compared with mock-treated controls revealed their role in pathogenicity and virulence. Gene ontology studies revealed that some of these secretory proteins possessed a role in apoptosis and ceratoplatanin and KP4 killer toxin syntheses. A three-dimensional protein configuration was performed by homology modeling using trRosetta. Further, real-time quantitative PCR (RT-qPCR) studies in F. graminearum-inoculated Arabidopsis and wheat at early time points of inoculation revealed an increased expression of the majority of these genes in Sonalika, suggesting their possible role in pathogenicity, whereas low mRNA abundance was observed for 11 of these genes in the resistant genotype, Nobeoka, compared with Sonalika, indicating their role in virulence of F. graminearum.
Collapse
Affiliation(s)
- Massarat Fatima
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Hanan Anjum Bhat
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| | - Nisha Rebekah
- Indian Agricultural Research Institute, Regional Station, Wellington, The Nilgiris, Tamil Nadu 643231, India
| | - Sivaswamy Murugasamy
- Indian Agricultural Research Institute, Regional Station, Wellington, The Nilgiris, Tamil Nadu 643231, India
| | - Ragiba Makandar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Professor C.R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
5
|
Han Z, Schneiter R. Dual functionality of pathogenesis-related proteins: defensive role in plants versus immunosuppressive role in pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1368467. [PMID: 39157512 PMCID: PMC11327054 DOI: 10.3389/fpls.2024.1368467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024]
Abstract
Plants respond to pathogen exposure by activating the expression of a group of defense-related proteins known as Pathogenesis-Related (PR) proteins, initially discovered in the 1970s. These PR proteins are categorized into 17 distinct families, denoted as PR1-PR17. Predominantly secreted, most of these proteins execute their defensive roles within the apoplastic space. Several PR proteins possess well-defined enzymatic functions, such as β-glucanase (PR2), chitinases (PR3, 4, 8, 11), proteinase (PR7), or RNase (PR10). Enhanced resistance against pathogens is observed upon PR protein overexpression, while their downregulation renders plants more susceptible to pathogen infections. Many of these proteins exhibit antimicrobial activity in vitro, and due to their compact size, some are classified as antimicrobial peptides. Recent research has unveiled that phytopathogens, including nematodes, fungi, and phytophthora, employ analogous proteins to bolster their virulence and suppress plant immunity. This raises a fundamental question: how can these conserved proteins act as antimicrobial agents when produced by the host plant but simultaneously suppress plant immunity when generated by the pathogen? In this hypothesis, we investigate PR proteins produced by pathogens, which we term "PR-like proteins," and explore potential mechanisms by which this class of virulence factors operate. Preliminary data suggests that these proteins may form complexes with the host's own PR proteins, thereby interfering with their defense-related functions. This analysis sheds light on the intriguing interplay between plant and pathogen-derived PR-like proteins, providing fresh insights into the intricate mechanisms governing plant-pathogen interactions.
Collapse
Affiliation(s)
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
6
|
Anuradha C, Mol PP, Chandrasekar A, Backiyarani S, Thangavelu R, Selvarajan R. Unveiling the dynamic expression of PR-1 during Musa spp. infection by Fusarium oxysporum fsp. Cubense: a cloning and characterization study. Mol Biol Rep 2024; 51:362. [PMID: 38403791 DOI: 10.1007/s11033-024-09258-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Pathogen-related proteins (PR) are pivotal in plant defense, combating diverse biotic and abiotic stresses. While multiple gene families contribute to banana resistance against Fusarium oxysporum f sp. cubense (Foc), Pseudocercospora eumusae, and Pratylenchus coffeae, the significance of PR-1 genes in defense is paramount. METHODS Three PR-1 genes, up-regulated under diverse biotic stresses, were cloned from both resistant and susceptible cultivars of Foc, P. eumusae, and P. coffeae. Molecular characterization, phylogenetic analysis, and docking studies with the Foc TR4 CP gene were conducted. RESULTS Through transcriptomic and real-time studies, three PR-1 genes (Ma02_g15050, Ma02_g15060, and Ma04_g34800) from Musa spp. were identified. These genes exhibited significant up-regulation in resistant cultivars when exposed to Foc, P. eumusae, and P. coffeae. Cloning of these genes was successfully performed from both resistant and susceptible cultivars of Foc race 1 and TR4, P. eumusae, and P. coffeae. Distinct characteristics were observed among the PR-1 genes, with groups 1 and 2 being acidic with signal peptides, and group 3 being basic without signal peptides. All cloned PR-1 proteins belonged to the CAP superfamily (PF00188). Phylogenetic analysis revealed clustering patterns for acidic PR-1 proteins, and KEGG orthology showed associations with vital pathways, including MAPK signaling, plant hormone signal transduction, and plant-pathogen interaction. Secondary and tertiary structure analyses confirmed sequence conservation across studied species. Docking studies explored interactions between the cerato-platanin (CP) gene from Foc TR4 and Ma02_g15060 from banana, suggesting the potential hindrance of PR-1 antifungal activity through direct interaction. CONCLUSIONS The findings underscore the crucial role of cloned PR-1 genes in banana plant defense mechanisms against a broad spectrum of biotic stresses. These genes, especially those in groups 1 and 2, hold promise as candidates for developing stress-tolerant banana cultivars. The study provides valuable insights into the molecular aspects of banana defense strategies, emphasizing the potential applications of PR-1 genes in enhancing banana resilience.
Collapse
Affiliation(s)
- Chelliah Anuradha
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu, 620 102, India.
| | - Punchakkara Prashina Mol
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Arumugam Chandrasekar
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Suthanthiram Backiyarani
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Raman Thangavelu
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu, 620 102, India
| | - Ramasamy Selvarajan
- ICAR-National Research Centre for Banana, Thogamalai Road, Thayanur Post, Tiruchirappalli, Tamil Nadu, 620 102, India
| |
Collapse
|
7
|
Zhao S, Li M, Ren X, Wang C, Sun X, Sun M, Yu X, Wang X. Enhancement of broad-spectrum disease resistance in wheat through key genes involved in systemic acquired resistance. FRONTIERS IN PLANT SCIENCE 2024; 15:1355178. [PMID: 38463563 PMCID: PMC10921362 DOI: 10.3389/fpls.2024.1355178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024]
Abstract
Systemic acquired resistance (SAR) is an inducible disease resistance phenomenon in plant species, providing plants with broad-spectrum resistance to secondary pathogen infections beyond the initial infection site. In Arabidopsis, SAR can be triggered by direct pathogen infection or treatment with the phytohormone salicylic acid (SA), as well as its analogues 2,6-dichloroisonicotinic acid (INA) and benzothiadiazole (BTH). The SA receptor non-expressor of pathogenesis-related protein gene 1 (NPR1) protein serves as a key regulator in controlling SAR signaling transduction. Similarly, in common wheat (Triticum aestivum), pathogen infection or treatment with the SA analogue BTH can induce broad-spectrum resistance to powdery mildew, leaf rust, Fusarium head blight, and other diseases. However, unlike SAR in the model plant Arabidopsis or rice, SAR-like responses in wheat exhibit unique features and regulatory pathways. The acquired resistance (AR) induced by the model pathogen Pseudomonas syringae pv. tomato strain DC3000 is regulated by NPR1, but its effects are limited to the adjacent region of the same leaf and not systemic. On the other hand, the systemic immunity (SI) triggered by Xanthomonas translucens pv. cerealis (Xtc) or Pseudomonas syringae pv. japonica (Psj) is not controlled by NPR1 or SA, but rather closely associated with jasmonate (JA), abscisic acid (ABA), and several transcription factors. Furthermore, the BTH-induced resistance (BIR) partially depends on NPR1 activation, leading to a broader and stronger plant defense response. This paper provides a systematic review of the research progress on SAR in wheat, emphasizes the key regulatory role of NPR1 in wheat SAR, and summarizes the potential of pathogenesis-related protein (PR) genes in genetically modifying wheat to enhance broad-spectrum disease resistance. This review lays an important foundation for further analyzing the molecular mechanism of SAR and genetically improving broad-spectrum disease resistance in wheat.
Collapse
Affiliation(s)
- Shuqing Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Mengyu Li
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaopeng Ren
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Chuyuan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China
| | - Manli Sun
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiumei Yu
- College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, Hebei, China
| |
Collapse
|
8
|
Kariyawasam GK, Nelson AC, Williams SJ, Solomon PS, Faris JD, Friesen TL. The Necrotrophic Pathogen Parastagonospora nodorum Is a Master Manipulator of Wheat Defense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:764-773. [PMID: 37581456 DOI: 10.1094/mpmi-05-23-0067-irw] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Parastagonospora nodorum is a necrotrophic pathogen of wheat that is particularly destructive in major wheat-growing regions of the United States, northern Europe, Australia, and South America. P. nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD), resulting in increased colonization of host tissue and, ultimately, sporulation to complete its pathogenic life cycle. Intensive research over the last two decades has led to the functional characterization of five proteinaceous necrotrophic effectors, SnTox1, SnToxA, SnTox267, SnTox3, and SnTox5, and three wheat susceptibility genes, Tsn1, Snn1, and Snn3D-1. Functional characterization has revealed that these effectors, in addition to inducing PCD, have additional roles in pathogenesis, including chitin binding that results in protection from wheat chitinases, blocking defense response signaling, and facilitating plant colonization. There are still large gaps in our understanding of how this necrotrophic pathogen is successfully manipulating wheat defense to complete its life cycle. This review summarizes our current knowledge, identifies knowledge gaps, and provides a summary of well-developed tools and resources currently available to study the P. nodorum-wheat interaction, which has become a model for necrotrophic specialist interactions. Further functional characterization of the effectors involved in this interaction and work toward a complete understanding of how P. nodorum manipulates wheat defense will provide fundamental knowledge about this and other necrotrophic interactions. Additionally, a broader understanding of this interaction will contribute to the successful management of Septoria nodorum blotch disease on wheat. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gayan K Kariyawasam
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Ashley C Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Justin D Faris
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, U.S.A
- Cereal Crops Research Unit, USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, U.S.A
| |
Collapse
|
9
|
Lopes NDS, Santos AS, de Novais DPS, Pirovani CP, Micheli F. Pathogenesis-related protein 10 in resistance to biotic stress: progress in elucidating functions, regulation and modes of action. FRONTIERS IN PLANT SCIENCE 2023; 14:1193873. [PMID: 37469770 PMCID: PMC10352611 DOI: 10.3389/fpls.2023.1193873] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 07/21/2023]
Abstract
Introduction The Family of pathogenesis-related proteins 10 (PR-10) is widely distributed in the plant kingdom. PR-10 are multifunctional proteins, constitutively expressed in all plant tissues, playing a role in growth and development or being induced in stress situations. Several studies have investigated the preponderant role of PR-10 in plant defense against biotic stresses; however, little is known about the mechanisms of action of these proteins. This is the first systematic review conducted to gather information on the subject and to reveal the possible mechanisms of action that PR-10 perform. Methods Therefore, three databases were used for the article search: PubMed, Web of Science, and Scopus. To avoid bias, a protocol with inclusion and exclusion criteria was prepared. In total, 216 articles related to the proposed objective of this study were selected. Results The participation of PR-10 was revealed in the plant's defense against several stressor agents such as viruses, bacteria, fungi, oomycetes, nematodes and insects, and studies involving fungi and bacteria were predominant in the selected articles. Studies with combined techniques showed a compilation of relevant information about PR-10 in biotic stress that collaborate with the understanding of the mechanisms of action of these molecules. The up-regulation of PR-10 was predominant under different conditions of biotic stress, in addition to being more expressive in resistant varieties both at the transcriptional and translational level. Discussion Biological models that have been proposed reveal an intrinsic network of molecular interactions involving the modes of action of PR-10. These include hormonal pathways, transcription factors, physical interactions with effector proteins or pattern recognition receptors and other molecules involved with the plant's defense system. Conclusion The molecular networks involving PR-10 reveal how the plant's defense response is mediated, either to trigger susceptibility or, based on data systematized in this review, more frequently, to have plant resistance to the disease.
Collapse
Affiliation(s)
- Natasha dos Santos Lopes
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Diogo Pereira Silva de Novais
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
| | - Fabienne Micheli
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus-Bahia, Brazil
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Unité Mixte de Recherche Amélioration Génétique et Adaptation des Plantes Meditérranéennes et Tropicales (UMR AGAP Institut), Montpellier, France
| |
Collapse
|
10
|
Han Z, Xiong D, Schneiter R, Tian C. The function of plant PR1 and other members of the CAP protein superfamily in plant-pathogen interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:651-668. [PMID: 36932700 DOI: 10.1111/mpp.13320] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/24/2023] [Accepted: 02/16/2023] [Indexed: 05/18/2023]
Abstract
The pathogenesis-related (PR) proteins of plants have originally been identified as proteins that are strongly induced upon biotic and abiotic stress. These proteins fall into 17 distinct classes (PR1-PR17). The mode of action of most of these PR proteins has been well characterized, except for PR1, which belongs to a widespread superfamily of proteins that share a common CAP domain. Proteins of this family are not only expressed in plants but also in humans and in many different pathogens, including phytopathogenic nematodes and fungi. These proteins are associated with a diverse range of physiological functions. However, their precise mode of action has remained elusive. The importance of these proteins in immune defence is illustrated by the fact that PR1 overexpression in plants results in increased resistance against pathogens. However, PR1-like CAP proteins are also produced by pathogens and deletion of these genes results in reduced virulence, suggesting that CAP proteins can exert both defensive and offensive functions. Recent progress has revealed that plant PR1 is proteolytically cleaved to release a C-terminal CAPE1 peptide, which is sufficient to activate an immune response. The release of this signalling peptide is blocked by pathogenic effectors to evade immune defence. Moreover, plant PR1 forms complexes with other PR family members, including PR5, also known as thaumatin, and PR14, a lipid transfer protein, to enhance the host's immune response. Here, we discuss possible functions of PR1 proteins and their interactors, particularly in light of the fact that these proteins can bind lipids, which have important immune signalling functions.
Collapse
Affiliation(s)
- Zhu Han
- College of Forestry, Beijing Forestry University, Beijing, China
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Dianguang Xiong
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Roger Schneiter
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Chengming Tian
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Li P, Tan X, Liu R, Rahman FU, Jiang J, Sun L, Fan X, Liu J, Liu C, Zhang Y. QTL detection and candidate gene analysis of grape white rot resistance by interspecific grape ( Vitis vinifera L. × Vitis davidii Foex.) crossing. HORTICULTURE RESEARCH 2023; 10:uhad063. [PMID: 37249950 PMCID: PMC10208900 DOI: 10.1093/hr/uhad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Grape white rot, a devastating disease of grapevines caused by Coniella diplodiella (Speg.) Sacc., leads to significant yield losses in grape. Breeding grape cultivars resistant to white rot is essential to reduce the regular use of chemical treatments. In recent years, Chinese grape species have gained more attention for grape breeding due to their high tolerance to various biotic and abiotic factors along with changing climatic conditions. In this study, we employed whole-genome resequencing (WGR) to genotype the parents of 'Manicure Finger' (Vitis vinifera, female) and '0940' (Vitis davidii, male), along with 101 F1 mapping population individuals, thereby constructing a linkage genetic map. The linkage map contained 9337 single-nucleotide polymorphism (SNP) markers with an average marker distance of 0.3 cM. After 3 years of phenotypic evaluation of the progeny for white rot resistance, we confirmed one stable quantitative trait locus (QTL) for white rot resistance on chromosome 3, explaining up to 17.9% of the phenotypic variation. For this locus, we used RNA-seq to detect candidate gene expression and identified PR1 as a candidate gene involved in white rot resistance. Finally, we demonstrated that recombinant PR1 protein could inhibit the growth of C. diplodiella and that overexpression of PR1 in susceptible V. vinifera increased grape resistance to the pathogen.
Collapse
Affiliation(s)
- Peng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430000, China
| | - Xibei Tan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Ruitao Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Faiz Ur Rahman
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Jianfu Jiang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Lei Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | - Xiucai Fan
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450000, China
| | | | | | | |
Collapse
|
12
|
Yin W, Bai Y, Wang S, Xu K, Liang J, Shang Q, Sa W, Wang L. Genome-wide analysis of pathogenesis-related protein-1 (PR-1) genes from Qingke (Hordeum vulgare L. var. nudum) reveals their roles in stress responses. Heliyon 2023; 9:e14899. [PMID: 37025870 PMCID: PMC10070925 DOI: 10.1016/j.heliyon.2023.e14899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Proteins that are pathogenesis-related 1 (PR-1) can accumulate to high levels when plants employ defenses, being major participants in processes critical for stress responses as well as development of many species. Yet we still lack information concerning PR-1 family members in Qingke plants (Hordeum vulgare L. var. nudum). In this work, we distinguished 20 PR-1s from the Qingke genome whose encoded proteins often featured at the N-terminus a signal peptide; all 20 PR-1s were predicted to localize either periplasmically or extracellularly. The CAP domain was confirmed as being highly conserved in all these PR-1s. Phylogeny-based inference revealed that PR-1 proteins clustered into four major clades, with the majority of Qingke PR-1s distributed in clade I (17 out 20), and the other 3 distributed in clade II. Gene structure analysis showed that 16 PR-1s did not contain any introns, whereas the other four had 1-4 introns. We identified a variety of motifs that are cis-acting in the promoter regions of PR-1s; these included those potentially involved in Qingke's light response, hormonal and stress responses, circadian control and regulation of development and growth, in addition to sites where transcription factors bind to. Expression analysis uncovered several members of PR-1 genes that were strongly and rapidly induced by powdery mildew infection, phytohormones, and cold stimulus. Altogether, our study's findings enhance what is known about genetic features of PR-1 family members in H. vulgare plants, especially Qingke, and could thereby facilitate further exploration aiming to elucidate the functioning of these proteins.
Collapse
Affiliation(s)
- Wei Yin
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
- Qinghai Academy of Animal and Veterinary Science, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Yuhai Bai
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Shuai Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Kai Xu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
- College of Eco-Environmental Engineering, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Qianhan Shang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Wei Sa
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
| | - Le Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, 251 Ningda Road, Xi'ning 810016, Qinghai, China
- Corresponding author.
| |
Collapse
|
13
|
Peters Haugrud AR, Zhang Z, Friesen TL, Faris JD. Genetics of resistance to septoria nodorum blotch in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3685-3707. [PMID: 35050394 DOI: 10.1007/s00122-022-04036-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 05/12/2023]
Abstract
Septoria nodorum blotch (SNB) is a foliar disease of wheat caused by the necrotrophic fungal pathogen Parastagonospora nodorum. Research over the last two decades has shown that the wheat-P. nodorum pathosystem mostly follows an inverse gene-for-gene model. The fungus produces necrotrophic effectors (NEs) that interact with specific host gene products encoded by dominant sensitivity (S) genes. When a compatible interaction occurs, a 'defense response' in the host leads to programmed cell death thereby provided dead/dying cells from which the pathogen, being a necrotroph, can acquire nutrients allowing it to grow and sporulate. To date, nine S gene-NE interactions have been characterized in this pathosystem. Five NE-encoding genes, SnTox1, SnTox3, SnToxA, SnTox5, and SnTox267, have been cloned along with three host S genes, Tsn1, Snn1, and Snn3-D1. Studies have shown that P. nodorum hijacks multiple and diverse host targets to cause disease. SNB resistance is often quantitative in nature because multiple compatible interactions usually occur concomitantly. NE gene expression plays a key role in disease severity, and the effect of each compatible interaction can vary depending on the other existing compatible interactions. Numerous SNB-resistance QTL have been identified in addition to the known S genes, and more research is needed to understand the nature of these resistance loci. Marker-assisted elimination of S genes through conventional breeding practices and disruption of S genes using gene editing techniques are both effective strategies for the development of SNB-resistant wheat cultivars, which will become necessary as the global demand for sustenance grows.
Collapse
Affiliation(s)
| | - Zengcui Zhang
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Timothy L Friesen
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Justin D Faris
- USDA-ARS Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA.
| |
Collapse
|
14
|
Rocha ADJ, Soares JMDS, Nascimento FDS, Rocha ADS, de Amorim VBO, Ramos APDS, Ferreira CF, Haddad F, Amorim EP. Molecular, Histological and Histochemical Responses of Banana Cultivars Challenged with Fusarium oxysporum f. sp. cubense with Different Levels of Virulence. PLANTS (BASEL, SWITZERLAND) 2022; 11:2339. [PMID: 36145741 PMCID: PMC9500910 DOI: 10.3390/plants11182339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most limiting factor in the banana agribusiness worldwide. Therefore, studies regarding pathogen attack mechanisms, and especially host defense responses, in this pathosystem are of utmost importance for genetic breeding programs in the development of Foc-resistant banana cultivars. In this study, analysis at the molecular, histological and histochemical levels of the Musa spp. x Foc interaction was performed. Three Foc isolates representative of race 1 (R1), subtropical race 4 (ST4) and isolate 229A, which is a putative ST4, were inoculated in two Prata-type cultivars (Prata-Anã and BRS Platina) and one cultivar of the Cavendish type (Grand Naine). Of seven genes related to plant-pathogen interactions, five were overexpressed in 'BRS Platina' 12 h after inoculation (HAI) with Foc R1 and ST4 but had reduced or negative expression after inoculation with Foc 229A, according to RT-qPCR analyses. While hyphae, mycelia and spores of the Foc 229A isolate grow towards the central cylinder of the Grand Naine and Prata-Anã cultivars, culminating in the occlusion of the xylem vessels, the BRS Platina cultivar responds with increased presence of cellulose, phenolic compounds and calcium oxalate crystals, reducing colonization within 30 days after inoculation (DAI). In general, these data indicate that the cultivar BRS Platina has potential for use in banana-breeding programs focused on resistance to Foc tropical race 4 (TR4) and in aggregating information on the virulence relationships of the Foc pathogen and the defense responses of banana plants after infection.
Collapse
Affiliation(s)
- Anelita de Jesus Rocha
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil
| | - Julianna Matos da Silva Soares
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil
| | - Fernanda dos Santos Nascimento
- Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, Feira de Santana 44036-900, Bahia, Brazil
| | - Adailson dos Santos Rocha
- Departamento de Ciências Biológicas, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, Bahia, Brazil
| | | | | | | | - Fernando Haddad
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, Bahia, Brazil
| | | |
Collapse
|
15
|
AlHudaib KA, Alanazi NA, Ghorbel M, El-Ganainy SM, Brini F. Isolation and Characterization of a Novel Pathogenesis-Related Protein-1 Gene ( AvPR-1) with Induced Expression in Oat ( Avena sativa L.) during Abiotic and Hormonal Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11172284. [PMID: 36079666 PMCID: PMC9460936 DOI: 10.3390/plants11172284] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/27/2022] [Indexed: 05/04/2023]
Abstract
Pathogenesis-related protein-1 (PR-1) plays crucial roles in regulating plant responses to biotic and abiotic stresses. This study aimed to isolate and characterize the first PR-1 (AvPR-1) gene in oat (Avena sativa L.). AvPR-1 presented conserved signal peptide motifs and core amino acid composition in the functional protein domains as the protein sequence of AvPR-1 presented 98.28%, 97.7%, and 95.4% identity with known PR1 proteins isolated from Triticum aestivum PRB1-2-like, Triticum dicoccoides PRB1-2-like, and Aegilops tauschii subsp. tauschii, respectively. Bioinformatic analysis showed that the AvPR-1 protein belongs to the CAP superfamily (PF00188). Secondary and 3D structure analyses of the AvPR-1 protein were also conducted, confirming sequence conservation of PR-1 among studied species. The AvPR-1 protein harbors a calmodulin-binding domain located in its C-terminal part as previously shown for its wheat homolog TdPR1.2. Moreover, gene expression analysis showed that AvPR-1 was induced in response to many abiotic and hormonal stresses especially in leaves after treatment for 48 h. This is the first study exhibiting the expression profiles of the AvPR-1 gene under different stresses in oat.
Collapse
Affiliation(s)
- Khalid A. AlHudaib
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | - Naimah Asid Alanazi
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia
| | - Mouna Ghorbel
- Department of Biology, College of Sciences, University of Hail, P.O. Box 2440, Ha’il City 81451, Saudi Arabia
| | - Sherif Mohamed El-Ganainy
- Department of Arid Land Agriculture, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
- Pests and Plant Diseases Unit, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa 31982, Saudi Arabia
| | - Faiçal Brini
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, University of Sfax, P.O. Box 1177, Sfax 3018, Tunisia
| |
Collapse
|
16
|
Genome-wide analysis of pathogenesis-related protein 1 (PR-1) gene family from Musa spp. and its role in defense response during stresses. Gene X 2022; 821:146334. [PMID: 35181501 DOI: 10.1016/j.gene.2022.146334] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 12/17/2022] Open
Abstract
Pathogenesis related protein-1 (PR-1) is the most abundantly produced protein during defense response against many biotic and abiotic stresses. However, knowledge on PR-1 gene family and its evolutionary relationship in banana is very limited. In order to study the potential role of PR-1 genes in banana, genome wide identification, structure analysis and expressions were performed. A total of 15 and 11 PR-1 genes were identified from A and B genomes of banana and the proteins encoded by this gene family are of varying lengths and harbor conserved domains and motifs. PR-1 genes are unevenly dispersed on 11 chromosomes with segmental duplication in both A and B genome, suggesting an important contribution of duplication in expansion of PR-1 gene family in banana. qRT-PCR analysis of PR-1 gene showed positive correlation with the RNAseq data under various stresses and examination of expression pattern of selected MaPR-1 genes in banana revealed its role in biotic and abiotic stresses in general and fusarium wilt in particular. This study provides significant insight into the functions of PR-1 genes which can be further exploited as a promising candidate for developing multiple stress tolerant banana varieties.
Collapse
|
17
|
Dagvadorj B, Outram MA, Williams SJ, Solomon PS. The necrotrophic effector ToxA from Parastagonospora nodorum interacts with wheat NHL proteins to facilitate Tsn1-mediated necrosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:407-418. [PMID: 35061310 DOI: 10.1111/tpj.15677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/06/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
The plant pathogen Parastagonospora nodorum secretes necrotrophic effectors to promote disease. These effectors induce cell death on wheat cultivars carrying dominant susceptibility genes in an inverse gene-for-gene manner. However, the molecular mechanisms underpinning these interactions and resulting cell death remain unclear. Here, we used a yeast two-hybrid library approach to identify wheat proteins that interact with the necrotrophic effector ToxA. Using this strategy, we identified an interaction between ToxA and a wheat transmembrane NDR/HIN1-like protein (TaNHL10) and confirmed the interaction using in planta co-immunoprecipitation and confocal microscopy co-localization analysis. We showed that the C-terminus of TaNHL10 is extracellular whilst the N-terminus is localized in the cytoplasm. Further analyses using yeast two-hybrid and confocal microscopy co-localization showed that ToxA interacts with the C-terminal LEA2 extracellular domain of TaNHL10. Random mutagenesis was then used to identify a ToxA mutant, ToxAN109D , which was unable to interact with TaNHL10 in yeast two-hybrid assays. Subsequent heterologous expression and purification of ToxAN109D in Nicotiania benthamiana revealed that the mutated protein was unable to induce necrosis on Tsn1-dominant wheat cultivars, confirming that the interaction of ToxA with TaNHL10 is required to induce cell death. Collectively, these data advance our understanding on how ToxA induces cell death during infection and further highlight the importance of host cell surface interactions in necrotrophic pathosystems.
Collapse
Affiliation(s)
- Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
18
|
Guo J, Bai Y, Wei Y, Dong Y, Zeng H, Reiter RJ, Shi H. Fine-tuning of pathogenesis-related protein 1 (PR1) activity by the melatonin biosynthetic enzyme ASMT2 in defense response to cassava bacterial blight. J Pineal Res 2022; 72:e12784. [PMID: 34936113 DOI: 10.1111/jpi.12784] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
Melatonin is widely involved in plant disease resistance through modulation of immune responses. Pathogenesis-related (PR) proteins play important roles in plant immune responses. However, the direct association between melatonin biosynthetic enzyme and PR protein remains elusive in plants. In this study, we found that N-acetylserotonin O-methyltransferase 2 (MeASMT2) physically interacted with MePR1 in vitro and in vivo, thereby promoting the anti-bacterial activity of MePR1 against Xanthomonas axonopodis pv. manihotis (Xam). Consistently, MeASMT2 improved the effect of MePR1 on positively regulating cassava disease resistance. In addition, we found that type 2C protein phosphatase 1 (MePP2C1) interacted with MeASMT2 to interfere with MePR1-MeASMT2 interaction, so as to inhibiting the effect of MeASMT2 and MePR1 on positively regulating cassava disease resistance. In contrast to the increased transcripts of MeASMT2 and MePR1 in response to Xam infection, the transcript of MePP2C1 was decreased upon Xam infection. Therefore, disease activated MeASMT2 was released from disease inhibited MePP2C1, so as to improving the anti-bacterial activity of MePR1, resulting in improved immune response. In summary, this study illustrates the dynamic modulation of the MePP2C1-MeASMT2-MePR1 module on cassava defense response against cassava bacterial blight (CBB), extending the understanding of the correlation between melatonin biosynthetic enzyme and PR in plants.
Collapse
Affiliation(s)
- Jingru Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yujing Bai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yunxie Wei
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Yabin Dong
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Hongqiu Zeng
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, Texas, USA
| | - Haitao Shi
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, Hainan Province, China
| |
Collapse
|
19
|
Luo X, Tian T, Feng L, Yang X, Li L, Tan X, Wu W, Li Z, Treves H, Serneels F, Ng IS, Tanaka K, Ren M. Pathogenesis-related protein 1 suppresses oomycete pathogen by targeting against AMPK kinase complex. J Adv Res 2022; 43:13-26. [PMID: 36585103 PMCID: PMC9811325 DOI: 10.1016/j.jare.2022.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 01/14/2022] [Accepted: 02/02/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood. OBJECTIVES The present study was aimed to investigate the anti-oomycete activity of secretory PR1 proteins and elaborate their underlying mechanisms. METHODS This study was conducted in the potato-Phytophthora infestans pathosystem. After being induced by the pathogen infection, the cross-kingdom translocation of secretory PR1 was demonstrated by histochemical assays and western blot, and their targets in P. infestans were identified by yeast-two-hybrid assays, bimolecular fluorescence complementation assays, and co-immunoprecipitation assay. RESULTS The results showed that the expression of secretory PR1-encoding genes was induced during pathogen infection, and the host could deliver PR1 into P. infestans to inhibit its vegetative growth and pathogenicity. The translocated secretory PR1 targeted the subunits of the AMPK kinase complex in P. infestans, thus affecting the AMPK-driven phosphorylation of downstream target proteins, preventing ROS homeostasis, and down-regulating the expression of RxLR effectors. CONCLUSION The results provide novel insights into the molecular function of PR1 in protecting plants against pathogen infection, and uncover a potential target for preventing pre- and post-harvest late blight.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China; Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Xingyong Yang
- School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Linxuan Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Francois Serneels
- Centre for agriculture and agro-industry of Hainaut Province, Ath 7800, Belgium
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Taiwan 701, China
| | - Kan Tanaka
- Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology Zhengzhou Research Base, State Key Laboratory of Cotton Biology; School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China; Hainan Yazhou Bay Seed Laboratory, Hainan 572025, China.
| |
Collapse
|
20
|
Zhang Q, Guo N, Zhang Y, Yu Y, Liu S. Genome-Wide Characterization and Expression Analysis of Pathogenesis-Related 1 ( PR-1) Gene Family in Tea Plant ( Camellia sinensis (L.) O. Kuntze) in Response to Blister-Blight Disease Stress. Int J Mol Sci 2022; 23:ijms23031292. [PMID: 35163217 PMCID: PMC8836084 DOI: 10.3390/ijms23031292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/13/2023] Open
Abstract
Pathogenesis-related 1 (PR-1) proteins, which are defense proteins in plant–pathogen interactions, play an important role in the resistance and defense of plants against diseases. Blister blight disease is caused by Exobasidium vexans Massee and a major leaf disease of tea plants (Camellia sinensis (L.) O. Kuntze). However, the systematic characterization and analysis of the PR-1 gene family in tea plants is still lacking, and the defense mechanism of this family remains unknown. In this study, 17 CsPR-1 genes were identified from the tea plant genome and classified into five groups based on their signal peptide, isoelectric point, and C-terminus extension. Most of the CsPR-1 proteins contained an N-terminal signal peptide and a conserved PR-1 like domain. CsPR-1 genes comprised multiple cis-acting elements and were closely related to the signal-transduction pathways involving TCA, NPR1, EDS16, BGL2, PR4, and HCHIB. These characteristics imply an important role of the genes in the defense of the tea plant. In addition, the RNA-seq data and real-time PCR analysis demonstrated that the CsPR-1-2, -4, -6, -7, -8, -9, -10, -14, -15, and -17 genes were significantly upregulated under tea blister-blight stress. This study could help to increase understanding of CsPR-1 genes and their defense mechanism in response to tea blister blight.
Collapse
|
21
|
Kanyuka K, Igna AA, Solomon PS, Oliver RP. The rise of necrotrophic effectors. THE NEW PHYTOLOGIST 2022; 233:11-14. [PMID: 34723389 DOI: 10.1111/nph.17811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 JQ, UK
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | - Alina A Igna
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 JQ, UK
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Richard P Oliver
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
22
|
Kariyawasam GK, Richards JK, Wyatt NA, Running KLD, Xu SS, Liu Z, Borowicz P, Faris JD, Friesen TL. The Parastagonospora nodorum necrotrophic effector SnTox5 targets the wheat gene Snn5 and facilitates entry into the leaf mesophyll. THE NEW PHYTOLOGIST 2022; 233:409-426. [PMID: 34231227 PMCID: PMC9291777 DOI: 10.1111/nph.17602] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/27/2021] [Indexed: 05/11/2023]
Abstract
Parastagonospora nodorum is an economically important necrotrophic fungal pathogen of wheat. Parastagonospora nodorum secretes necrotrophic effectors that target wheat susceptibility genes to induce programmed cell death (PCD). In this study, we cloned and functionally validated SnTox5 and characterized its role in pathogenesis. We used whole genome sequencing, genome-wide association study (GWAS) mapping, CRISPR-Cas9-based gene disruption, gain-of-function transformation, quantitative trait locus (QTL) analysis, haplotype and isoform analysis, protein modeling, quantitative PCR, and laser confocal microscopy to validate SnTox5 and functionally characterize SnTox5. SnTox5 is a mature 16.26 kDa protein with high structural similarity to SnTox3. Wild-type and mutant P. nodorum strains and wheat genotypes of SnTox5 and Snn5, respectively, were used to show that SnTox5 not only targets Snn5 to induce PCD but also facilitates the colonization of the mesophyll layer even in the absence of Snn5. Here we show that SnTox5 facilitates the efficient colonization of the mesophyll tissue and elicits PCD specific to host lines carrying Snn5. The homology to SnTox3 and the ability of SnTox5 to facilitate the colonizing of the mesophyll also suggest a role in the suppression of host defense before PCD induction.
Collapse
Affiliation(s)
| | - Jonathan K. Richards
- Department of Plant Pathology and Crop PhysiologyLouisiana State University – Agricultural CenterBaton RougeLA70803USA
| | - Nathan A. Wyatt
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | | | - Steven S. Xu
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| | - Zhaohui Liu
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
| | - Pawel Borowicz
- Department of Animal SciencesNorth Dakota State UniversityFargoND58102USA
| | - Justin D. Faris
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
- Department of Plant ScienceNorth Dakota State UniversityFargoND58102USA
| | - Timothy L. Friesen
- Department of Plant PathologyNorth Dakota State UniversityFargoND58102USA
- Cereal Crops Research UnitUnited States Department of Agriculture‐Agricultural Research ServiceEdward T. Schafer Agricultural Research CenterFargoND58102USA
| |
Collapse
|
23
|
Bauters L, Stojilković B, Gheysen G. Pathogens pulling the strings: Effectors manipulating salicylic acid and phenylpropanoid biosynthesis in plants. MOLECULAR PLANT PATHOLOGY 2021; 22:1436-1448. [PMID: 34414650 PMCID: PMC8518561 DOI: 10.1111/mpp.13123] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 08/01/2021] [Indexed: 06/01/2023]
Abstract
During evolution, plants have developed sophisticated ways to cope with different biotic and abiotic stresses. Phytohormones and secondary metabolites are known to play pivotal roles in defence responses against invading pathogens. One of the key hormones involved in plant immunity is salicylic acid (SA), of which the role in plant defence is well established and documented. Plants produce an array of secondary metabolites categorized in different classes, with the phenylpropanoids as major players in plant immunity. Both SA and phenylpropanoids are needed for an effective immune response by the plant. To successfully infect the host, pathogens secrete proteins, called effectors, into the plant tissue to lower defence. Secreted effectors can interfere with several metabolic or signalling pathways in the host to facilitate infection. In this review, we will focus on the different strategies pathogens have developed to affect the levels of SA and phenylpropanoids to increase plant susceptibility.
Collapse
Affiliation(s)
- Lander Bauters
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Boris Stojilković
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| | - Godelieve Gheysen
- Department of BiotechnologyFaculty of Bioscience EngineeringGhent UniversityGhentBelgium
| |
Collapse
|
24
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
25
|
Luo X, Wu W, Feng L, Treves H, Ren M. Short Peptides Make a Big Difference: The Role of Botany-Derived AMPs in Disease Control and Protection of Human Health. Int J Mol Sci 2021; 22:11363. [PMID: 34768793 PMCID: PMC8583512 DOI: 10.3390/ijms222111363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/16/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022] Open
Abstract
Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses. With their diverse molecular structures, broad-spectrum antimicrobial activity, multiple mechanisms of action, and low cytotoxicity, BAMPs provide ideal backbones for drug design, and are potential candidates for plant protection and disease treatment. Lots of original research has elucidated the properties and antimicrobial mechanisms of BAMPs, and characterized their surface receptors and in vivo targets in pathogens. In this paper, we review and introduce five kinds of representative BAMPs belonging to the pathogenesis-related protein family, dissect their antifungal, antiviral, and anticancer mechanisms, and forecast their prospects in agriculture and global human health. Through the deeper understanding of BAMPs, we provide novel insights for their applications in broad-spectrum and durable plant disease prevention and control, and an outlook on the use of BAMPs in anticancer and antiviral drug design.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
| | - Wenxian Wu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Li Feng
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
| | - Haim Treves
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv 69978, Israel;
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu Agricultural Science and Technology Center, Chengdu 610000, China; (X.L.); (W.W.); (L.F.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Science of Zhengzhou University, Zhengzhou 450000, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
| |
Collapse
|
26
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
27
|
Friesen TL, Faris JD. Characterization of Effector-Target Interactions in Necrotrophic Pathosystems Reveals Trends and Variation in Host Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:77-98. [PMID: 33909478 DOI: 10.1146/annurev-phyto-120320-012807] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Great strides have been made in defining the details of the plant defense response involving biotrophic fungal and bacterial pathogens. The groundwork for the current model was laid by H.H. Flor and others who defined the gene-for-gene hypothesis, which is now known to involve effector-triggered immunity (ETI). PAMP-triggered immunity (PTI) is also a highly effective response to most pathogens because of the recognition of common pathogen molecules by pattern recognition receptors. In this article, we consider the three pathogens that make up the foliar disease complex of wheat, Zymoseptoria tritici, Pyrenophora tritici-repentis, and Parastagonospora nodorum, to review the means by which necrotrophic pathogens circumvent, or outright hijack, the ETI and PTI pathways to cause disease.
Collapse
Affiliation(s)
- Timothy L Friesen
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, North Dakota 58102, USA; ,
| | - Justin D Faris
- Edward T. Schafer Agricultural Research Center, USDA-ARS, Fargo, North Dakota 58102, USA; ,
| |
Collapse
|
28
|
Kattupalli D, Srinivasan A, Soniya EV. A Genome-Wide Analysis of Pathogenesis-Related Protein-1 ( PR-1) Genes from Piper nigrum Reveals Its Critical Role during Phytophthora capsici Infection. Genes (Basel) 2021; 12:1007. [PMID: 34208836 PMCID: PMC8303604 DOI: 10.3390/genes12071007] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/10/2021] [Accepted: 06/16/2021] [Indexed: 11/25/2022] Open
Abstract
Black pepper (Piper nigrum L.) is a prominent spice that is an indispensable ingredient in cuisine and traditional medicine. Phytophthora capsici, the causative agent of footrot disease, causes a drastic constraint in P. nigrum cultivation and productivity. To counterattack various biotic and abiotic stresses, plants employ a broad array of mechanisms that includes the accumulation of pathogenesis-related (PR) proteins. Through a genome-wide survey, eleven PR-1 genes that belong to a CAP superfamily protein with a caveolin-binding motif (CBM) and a CAP-derived peptide (CAPE) were identified from P. nigrum. Despite the critical functional domains, PnPR-1 homologs differ in their signal peptide motifs and core amino acid composition in the functional protein domains. The conserved motifs of PnPR-1 proteins were identified using MEME. Most of the PnPR-1 proteins were basic in nature. Secondary and 3D structure analyses of the PnPR-1 proteins were also predicted, which may be linked to a functional role in P. nigrum. The GO and KEGG functional annotations predicted their function in the defense responses of plant-pathogen interactions. Furthermore, a transcriptome-assisted FPKM analysis revealed PnPR-1 genes mapped to the P. nigrum-P. capsici interaction pathway. An altered expression pattern was detected for PnPR-1 transcripts among which a significant upregulation was noted for basic PnPR-1 genes such as CL10113.C1 and Unigene17664. The drastic variation in the transcript levels of CL10113.C1 was further validated through qRT-PCR and it showed a significant upregulation in infected leaf samples compared with the control. A subsequent analysis revealed the structural details, phylogenetic relationships, conserved sequence motifs and critical cis-regulatory elements of PnPR-1 genes. This is the first genome-wide study that identified the role of PR-1 genes during P. nigrum-P. capsici interactions. The detailed in silico experimental analysis revealed the vital role of PnPR-1 genes in regulating the first layer of defense towards a P. capsici infection in Panniyur-1 plants.
Collapse
Affiliation(s)
| | | | - Eppurath Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; (D.K.); (A.S.)
| |
Collapse
|
29
|
Ngaki MN, Sahoo DK, Wang B, Bhattacharyya MK. Overexpression of a plasma membrane protein generated broad-spectrum immunity in soybean. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:502-516. [PMID: 32954627 PMCID: PMC7957895 DOI: 10.1111/pbi.13479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/17/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
Plants fight-off pathogens and pests by manifesting an array of defence responses using their innate immunity mechanisms. Here we report the identification of a novel soybean gene encoding a plasma membrane protein, transcription of which is suppressed following infection with the fungal pathogen, Fusarium virguliforme. Overexpression of the protein led to enhanced resistance against not only against F. virguliforme, but also against spider mites (Tetranychus urticae, Koch), soybean aphids (Aphis glycines, Matsumura) and soybean cyst nematode (Heterodera glycines). We, therefore, name this protein as Glycine max disease resistance 1 (GmDR1; Glyma.10g094800). The homologues of GmDR1 have been detected only in legumes, cocoa, jute and cotton. The deduced GmDR1 protein contains 73 amino acids. GmDR1 is predicted to contain an ecto- and two transmembrane domains. Transient expression of the green fluorescent protein fused GmDR1 protein in soybean leaves showed that it is a plasma membrane protein. We investigated if chitin, a pathogen-associated molecular pattern (PAMP), common to all pathogen and pests considered in this study, can significantly enhance defence pathways among the GmDR1-overexpressed transgenic soybean lines. Chitin induces marker genes of the salicylic- and jasmonic acid-mediated defence pathways, but suppresses the defence pathway regulated by ethylene. Chitin induced SA- and JA-regulated defence pathways may be one of the mechanisms involved in generating broad-spectrum resistance among the GmDR1-overexpressed transgenic soybean lines against two serious pathogens and two pests including spider mites, against which no known resistance genes have been identified in soybean and among the most other crop species.
Collapse
Affiliation(s)
| | | | - Bing Wang
- Department of AgronomyIowa State UniversityAmesIAUSA
- Present address:
Department of EnergyJoint Genome InstituteWalnut CreekCAUSA
| | | |
Collapse
|
30
|
Sung YC, Outram MA, Breen S, Wang C, Dagvadorj B, Winterberg B, Kobe B, Williams SJ, Solomon PS. PR1-mediated defence via C-terminal peptide release is targeted by a fungal pathogen effector. THE NEW PHYTOLOGIST 2021; 229:3467-3480. [PMID: 33277705 DOI: 10.1111/nph.17128] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/24/2020] [Indexed: 05/22/2023]
Abstract
The effector SnTox3 from Parastagonospora nodorum elicits a strong necrotic response in susceptible wheat and also interacts with wheat pathogenesis-related protein 1 (TaPR-1), although the function of this interaction in disease is unclear. Here, we dissect TaPR1 function by studying SnTox3-TaPR1 interaction and demonstrate the dual functionality of SnTox3. We utilized site-directed mutagenesis to identify an SnTox3 variant, SnTox3P173S , that was unable to interact with TaPR1 in yeast-two-hybrid assays. Additionally, using recombinant proteins we established a novel protein-mediated phenotyping assay allowing functional studies to be undertaken in wheat. Wheat leaves infiltrated with TaPR1 proteins showed significantly less disease compared to control leaves, correlating with a strong increase in defence gene expression. This activity was dependent on release of the TaCAPE1 peptide embedded within TaPR1 by an unidentified serine protease. The priming activity of TaPR1 was compromised by SnTox3 but not the noninteracting variant SnTox3P173S , and we demonstrate that SnTox3 prevents TaCAPE1 release from TaPR1 in vitro. SnTox3 independently functions to induce necrosis through recognition by Snn3 and also suppresses host defence through a direct interaction with TaPR1 proteins. Importantly, this study also advances our understanding of the role of PR1 proteins in host-microbe interactions as inducers of host defence signalling.
Collapse
Affiliation(s)
- Yi-Chang Sung
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Megan A Outram
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Susan Breen
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Chen Wang
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bayantes Dagvadorj
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Britta Winterberg
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - Simon J Williams
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Peter S Solomon
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
31
|
Qiao F, Yang X, Xu F, Huang Y, Zhang J, Song M, Zhou S, Zhang M, He D. TMT-based quantitative proteomic analysis reveals defense mechanism of wheat against the crown rot pathogen Fusarium pseudograminearum. BMC PLANT BIOLOGY 2021; 21:82. [PMID: 33557748 PMCID: PMC7869478 DOI: 10.1186/s12870-021-02853-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/24/2021] [Indexed: 05/24/2023]
Abstract
BACKGROUND Fusarium crown rot is major disease in wheat. However, the wheat defense mechanisms against this disease remain poorly understood. RESULTS Using tandem mass tag (TMT) quantitative proteomics, we evaluated a disease-susceptible (UC1110) and a disease-tolerant (PI610750) wheat cultivar inoculated with Fusarium pseudograminearum WZ-8A. The morphological and physiological results showed that the average root diameter and malondialdehyde content in the roots of PI610750 decreased 3 days post-inoculation (dpi), while the average number of root tips increased. Root vigor was significantly increased in both cultivars, indicating that the morphological, physiological, and biochemical responses of the roots to disease differed between the two cultivars. TMT analysis showed that 366 differentially expressed proteins (DEPs) were identified by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in the two comparison groups, UC1110_3dpi/UC1110_0dpi (163) and PI610750_3dpi/PI610750_0dpi (203). It may be concluded that phenylpropanoid biosynthesis (8), secondary metabolite biosynthesis (12), linolenic acid metabolites (5), glutathione metabolism (8), plant hormone signal transduction (3), MAPK signaling pathway-plant (4), and photosynthesis (12) contributed to the defense mechanisms in wheat. Protein-protein interaction network analysis showed that the DEPs interacted in both sugar metabolism and photosynthesis pathways. Sixteen genes were validated by real-time quantitative polymerase chain reaction and were found to be consistent with the proteomics data. CONCLUSION The results provided insight into the molecular mechanisms of the interaction between wheat and F. pseudograminearum.
Collapse
Affiliation(s)
- Fangfang Qiao
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Xiwen Yang
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Fengdan Xu
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Yuan Huang
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Jiemei Zhang
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Miao Song
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Sumei Zhou
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China
| | - Meng Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| | - Dexian He
- College of Agronomy, Henan Agricultural University/ National Engineering Research Center for Wheat/ Co-construction State Key Laboratory of Wheat and Maize Crop Science/ Collaborative Innovation Center of Henan Grain Crops, 15 Longzihu College District, Zhengzhou, 450046, China.
| |
Collapse
|
32
|
Sheng J, Olrichs NK, Gadella BM, Kaloyanova DV, Helms JB. Regulation of Functional Protein Aggregation by Multiple Factors: Implications for the Amyloidogenic Behavior of the CAP Superfamily Proteins. Int J Mol Sci 2020; 21:E6530. [PMID: 32906672 PMCID: PMC7554809 DOI: 10.3390/ijms21186530] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/13/2022] Open
Abstract
The idea that amyloid fibrils and other types of protein aggregates are toxic for cells has been challenged by the discovery of a variety of functional aggregates. However, an identification of crucial differences between pathological and functional aggregation remains to be explored. Functional protein aggregation is often reversible by nature in order to respond properly to changing physiological conditions of the cell. In addition, increasing evidence indicates that fast fibril growth is a feature of functional amyloids, providing protection against the long-term existence of potentially toxic oligomeric intermediates. It is becoming clear that functional protein aggregation is a complexly organized process that can be mediated by a multitude of biomolecular factors. In this overview, we discuss the roles of diverse biomolecules, such as lipids/membranes, glycosaminoglycans, nucleic acids and metal ions, in regulating functional protein aggregation. Our studies on the protein GAPR-1 revealed that several of these factors influence the amyloidogenic properties of this protein. These observations suggest that GAPR-1, as well as the cysteine-rich secretory proteins, antigen 5 and pathogenesis-related proteins group 1 (CAP) superfamily of proteins that it belongs to, require the assembly into an amyloid state to exert several of their functions. A better understanding of functional aggregate formation may also help in the prevention and treatment of amyloid-related diseases.
Collapse
Affiliation(s)
| | | | | | | | - J. Bernd Helms
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands; (J.S.); (N.K.O.); (B.M.G.); (D.V.K.)
| |
Collapse
|
33
|
Faris JD, Friesen TL. Plant genes hijacked by necrotrophic fungal pathogens. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:74-80. [PMID: 32492572 DOI: 10.1016/j.pbi.2020.04.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 05/22/2023]
Abstract
Plant fungal pathogens can be classified according to their lifestyles. Biotrophs feed on living tissue and constitute an economically significant group of pathogens historically. Necrotrophs, which feed on dead tissue, have become economically significant over recent decades, especially those of the Dothideomycetes, which produce necrotrophic effectors (NEs) to modulate the host response. Some of these pathogens interact with their hosts in an inverse gene-for-gene manner, where NEs are recognized by specific dominant genes in the host leading to host-mediated programmed cell death allowing the pathogen to cause disease. Whereas the NE genes tend to be unique, several of the plant 'susceptibility' genes belong to the nucleotide-binding leucine-rich repeat class of disease 'resistance' genes, and one is a wall-associated kinase. These susceptible interactions exhibit hallmarks of defense responses to biotrophic pathogens. Therefore, there is now accumulating evidence that many necrotrophic specialists hijack the resistance mechanisms that are effective against biotrophic pathogens.
Collapse
Affiliation(s)
- Justin D Faris
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States.
| | - Timothy L Friesen
- USDA-Agricultural Research Service, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND 58102, United States
| |
Collapse
|
34
|
Rocafort M, Fudal I, Mesarich CH. Apoplastic effector proteins of plant-associated fungi and oomycetes. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:9-19. [PMID: 32247857 DOI: 10.1016/j.pbi.2020.02.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 05/23/2023]
Abstract
The outcome of an interaction between a plant and a fungus or an oomycete, whether compatibility or incompatibility, is often determined in the hostile extracellular spaces and matrices of the apoplast. Indeed, for compatibility to occur, many plant-associated fungi and oomycetes must first neutralize the apoplast, which is both monitored by plant cell-surface immune receptors, and enriched in plant (and frequently, competitor)-derived antimicrobial compounds. Research is highlighting the diverse roles that fungal and oomycete effector proteins play in the apoplast to promote compatibility, with most recent progress made towards understanding the role of these proteins in evading chitin-triggered immunity. Research is also showcasing the ability of apoplastic effector proteins to bring about incompatibility upon recognition by diverse plant cell-surface immune receptors, and the use of effectoromics to rapidly identify apoplastic effector protein-cell-surface immune receptor interactions.
Collapse
Affiliation(s)
- Mercedes Rocafort
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand; Bio-Protection Research Centre, Massey University, Private Bag 11222, Palmerston North 4442, New Zealand.
| |
Collapse
|
35
|
TaTLP1 interacts with TaPR1 to contribute to wheat defense responses to leaf rust fungus. PLoS Genet 2020; 16:e1008713. [PMID: 32658889 PMCID: PMC7357741 DOI: 10.1371/journal.pgen.1008713] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 03/11/2020] [Indexed: 11/19/2022] Open
Abstract
Thaumatin-like proteins (TLPs), which are defined as pathogenesis-related protein family 5 (PR5) members, are common plant proteins involved in defense responses and confer antifungal activity against many plant pathogens. Our earlier studies have reported that the TaTLP1 gene was isolated from wheat and proved to be involved in wheat defense in response to leaf rust attack. The present study aims to identify the interacting proteins of TaTLP1 and characterize the role of the interaction between wheat and Puccinia triticina (Pt). Pull-down experiments designed to isolate the molecular target of TaTLP1 in tobacco resulted in the identification of TaPR1, a pathogenesis-related protein of family 1, and the interaction between TaTLP1 and TaPR1 was confirmed by yeast two-hybrid experiments (Y2H), bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP). In vitro, TaTLP1 and TaPR1 together increased antifungal activity against Pt. In vivo, the disease resistance phenotype, histological observations of fungal growth and host responses, and accumulation of H2O2 in TaTLP1-TaPR1 in co-silenced plants indicated that co-silencing significantly enhanced wheat susceptibility compared to single knockdown TaTLP1 or TaPR1 plants. The accumulation of reactive oxygen species (ROS) was significantly reduced in co-silenced plants compared to controls during Pt infection, which suggested that the TaTLP1-TaPR1 interaction positively modulates wheat resistance to Pt in an ROS-dependent manner. Our findings provide new insights for understanding the roles of two different PRs, TaTLP1 and TaPR1, in wheat resistance to leaf rust.
Collapse
|
36
|
Wei M, Wang A, Liu Y, Ma L, Niu X, Zheng A. Identification of the Novel Effector RsIA_NP8 in Rhizoctonia solani AG1 IA That Induces Cell Death and Triggers Defense Responses in Non-Host Plants. Front Microbiol 2020; 11:1115. [PMID: 32595615 PMCID: PMC7303267 DOI: 10.3389/fmicb.2020.01115] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022] Open
Abstract
Rhizoctonia solani AG1 IA is a necrotrophic fungus that causes rice sheath blight, one of the most significant rice diseases in the world. However, little is known about the pathogenic mechanisms and functions of effectors in R. solani AG1 IA. We performed functional studies on effectors in R. solani AG1 IA and found that, of 11 putative effectors tested, only RsIA_NP8 caused necrosis in the leaves of Nicotiana benthamiana. The predicted signal peptide of this protein was required to induce cell death, whereas predicted N-glycosylation sites were not required. RsIA_NP8 was upregulated during early infection, and the encoded protein was secreted. Furthermore, the ability of RsIA_NP8 to trigger cell death in N. benthamiana depended on suppressor of G2 allele of Skp1 (SGT1) and heat shock protein 90 (HSP90), but not on Mla12 resistance (RAR1) and somatic embryogenesis receptor-like kinase (SERK3). A natural variation that prevents the triggering of cell death in N. benthamiana was found in RsIA_NP8 in 25 R. solani AG1 IA strains. It is important to note that RsIA_NP8 induced the immune response in N. benthamiana leaves. Collectively, these results show that RsIA_NP8 is a possible effector that plays a key role in R. solani AG1 IA–host interactions.
Collapse
Affiliation(s)
- Miaomiao Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Yao Liu
- Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Li Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Xianyu Niu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.,Rice Research Institute of Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Sichuan Crop Major Disease, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
37
|
Corsi B, Percival-Alwyn L, Downie RC, Venturini L, Iagallo EM, Campos Mantello C, McCormick-Barnes C, See PT, Oliver RP, Moffat CS, Cockram J. Genetic analysis of wheat sensitivity to the ToxB fungal effector from Pyrenophora tritici-repentis, the causal agent of tan spot. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:935-950. [PMID: 31915874 PMCID: PMC7021774 DOI: 10.1007/s00122-019-03517-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/17/2019] [Indexed: 05/05/2023]
Abstract
Genetic mapping of sensitivity to the Pyrenophora tritici-repentis effector ToxB allowed development of a diagnostic genetic marker, and investigation of wheat pedigrees allowed transmission of sensitive alleles to be tracked. Tan spot, caused by the necrotrophic fungal pathogen Pyrenophora tritici-repentis, is a major disease of wheat (Triticum aestivum). Secretion of the P. tritici-repentis effector ToxB is thought to play a part in mediating infection, causing chlorosis of plant tissue. Here, genetic analysis using an association mapping panel (n = 480) and a multiparent advanced generation intercross (MAGIC) population (n founders = 8, n progeny = 643) genotyped with a 90,000 feature single nucleotide polymorphism (SNP) array found ToxB sensitivity to be highly heritable (h2 ≥ 0.9), controlled predominantly by the Tsc2 locus on chromosome 2B. Genetic mapping of Tsc2 delineated a 1921-kb interval containing 104 genes in the reference genome of ToxB-insensitive variety 'Chinese Spring'. This allowed development of a co-dominant genetic marker for Tsc2 allelic state, diagnostic for ToxB sensitivity in the association mapping panel. Phenotypic and genotypic analysis in a panel of wheat varieties post-dated the association mapping panel further supported the diagnostic nature of the marker. Combining ToxB phenotype and genotypic data with wheat pedigree datasets allowed historic sources of ToxB sensitivity to be tracked, finding the variety 'Maris Dove' to likely be the historic source of sensitive Tsc2 alleles in the wheat germplasm surveyed. Exploration of the Tsc2 region gene space in the ToxB-sensitive line 'Synthetic W7984' identified candidate genes for future investigation. Additionally, a minor ToxB sensitivity QTL was identified on chromosome 2A. The resources presented here will be of immediate use for marker-assisted selection for ToxB insensitivity and the development of germplasm with additional genetic recombination within the Tsc2 region.
Collapse
Affiliation(s)
- Beatrice Corsi
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
| | | | - Rowena C Downie
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Plant Sciences Department, University of Cambridge, Cambridge, UK
| | - Luca Venturini
- Life Sciences Department, Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Elyce M Iagallo
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Camila Campos Mantello
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Genetracer Biotech, Calle Albert Einstein 22, 39011, Santander, Spain
| | - Charlie McCormick-Barnes
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Pao Theen See
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Richard P Oliver
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia
| | - Caroline S Moffat
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Perth, Australia.
| | - James Cockram
- John Bingham Laboratory, NIAB, Huntingdon Road, Cambridge, CB3 0LE, UK.
| |
Collapse
|
38
|
Sheng J, Olrichs NK, Geerts WJ, Kaloyanova DV, Helms JB. Metal ions and redox balance regulate distinct amyloid-like aggregation pathways of GAPR-1. Sci Rep 2019; 9:15048. [PMID: 31636315 PMCID: PMC6803662 DOI: 10.1038/s41598-019-51232-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/26/2019] [Indexed: 01/10/2023] Open
Abstract
Members of the CAP superfamily (Cysteine-rich secretory proteins, Antigen 5, and Pathogenesis-Related 1 proteins) are characterized by the presence of a structurally conserved CAP domain. The common structure-function relationship of this domain is still poorly understood. In this study, we unravel specific molecular mechanisms modulating the quaternary structure of the mammalian CAP protein GAPR-1 (Golgi-Associated plant Pathogenesis-Related protein 1). Copper ions are shown to induce a distinct amyloid-like aggregation pathway of GAPR-1 in the presence of heparin. This involves an immediate shift from native multimers to monomers which are prone to form amyloid-like fibrils. The Cu2+-induced aggregation pathway is independent of a conserved metal-binding site and involves the formation of disulfide bonds during the nucleation process. The elongation process occurs independently of the presence of Cu2+ ions, and amyloid-like aggregation can proceed under oxidative conditions. In contrast, the Zn2+-dependent aggregation pathway was found to be independent of cysteines and was reversible upon removal of Zn2+ ions. Together, our results provide insight into the regulation of the quaternary structure of GAPR-1 by metal ions and redox homeostasis with potential implications for regulatory mechanisms of other CAP proteins.
Collapse
Affiliation(s)
- Jie Sheng
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Nick K Olrichs
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Willie J Geerts
- Biomolecular Imaging, Bijvoet Center, Utrecht University, Utrecht, The Netherlands
| | - Dora V Kaloyanova
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - J Bernd Helms
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
39
|
Li S, Peng X, Wang Y, Hua K, Xing F, Zheng Y, Liu W, Sun W, Wei S. The Effector AGLIP1 in Rhizoctonia solani AG1 IA Triggers Cell Death in Plants and Promotes Disease Development Through Inhibiting PAMP-Triggered Immunity in Arabidopsis thaliana. Front Microbiol 2019; 10:2228. [PMID: 31611861 PMCID: PMC6775501 DOI: 10.3389/fmicb.2019.02228] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/11/2019] [Indexed: 11/13/2022] Open
Abstract
Rhizoctonia solani, one of the most detrimental necrotrophic pathogens, causes rice sheath blight and poses a severe threat to production. Focus on the function of effectors secreted by necrotrophic pathogens during infection has grown rapidly in recent years. However, little is known about the virulence and mechanisms of these proteins. In this study, we performed functional studies on putative effectors in R. solani and revealed that AGLIP1 out of 13 putative effectors induced cell death in Nicotiana benthamiana. AGLIP1 was also demonstrated to trigger cell death in rice protoplasts. The predicted lipase active sites and signal peptide (SP) of this protein were required for the cell death-inducing ability. AGLIP1 was greatly induced during R. solani infection in rice sheath. The AGLIP1's virulence function was further demonstrated by transgenic technology. The pathogenesis-related genes induced by pathogen-associated molecular pattern and bacteria were remarkably inhibited in AGLIP1-expressing transgenic Arabidopsis lines. Ectopic expression of AGLIP1 strongly facilitated disease progression in Arabidopsis caused by the type III secretion system-defective mutant from Pseudomonas syringae pv. tomato DC3000. Collectively, these results indicate that AGLIP1 is a possible effector that plays a significant role in pathogen virulence through inhibiting basal defenses and promoting disease development in plants.
Collapse
Affiliation(s)
- Shuai Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xunwen Peng
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yingling Wang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Kangyu Hua
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Fan Xing
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Yuanyuan Zheng
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wei Liu
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun, China
| | - Songhong Wei
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
40
|
Ribeiro S, Tran DM, Déon M, Clément-Demange A, Garcia D, Soumahoro M, Masson A, Pujade-Renaud V. Gene deletion of Corynespora cassiicola cassiicolin Cas1 suppresses virulence in the rubber tree. Fungal Genet Biol 2019; 129:101-114. [PMID: 31108193 DOI: 10.1016/j.fgb.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/30/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022]
Abstract
Corynespora cassiicola is an ascomycete fungus causing important damages in a wide range of plant hosts, including rubber tree. The small secreted protein cassiicolin is suspected to play a role in the onset of the disease in rubber tree, based on toxicity and gene expression profiles. However, its exact contribution to virulence, compared to other putative effectors, remains unclear. We created a deletion mutant targeting the cassiicolin gene Cas1 from the highly aggressive isolate CCP. Wild-type CCP and mutant ccpΔcas1 did not differ in terms of mycelium growth, sporulation, and germination rate in vitro. Cas1 gene deletion induced a complete loss of virulence on the susceptible clones PB260 and IRCA631, as revealed by inoculation experiments on intact (non-detached) leaves. However, residual symptoms persisted when inoculations were conducted on detached leaves, notably with longer incubation times. Complementation with exogenous cassiicolin restored the mutant capacity to colonize the leaf tissues. We also compared the toxicity of CCP and ccpΔcas1 culture filtrates, through electrolyte leakage measurements on abraded detached leaves, over a range of clones as well as an F1 population derived from the cross between the clones PB260 (susceptible) and RRIM600 (tolerant). On average, filtrate toxicity was lower but not fully suppressed in ccpΔcas1 compared to CCP, with clone-dependent variations. The two QTL, previously found associated with sensitivity to CPP filtrate or to the purified cassiicolin, were no longer detected with the mutant filtrate, while new QTL were revealed. Our results demonstrate that: (1) cassiicolin is a necrotrophic effector conferring virulence to the CCP isolate in susceptible rubber clones and (2) other effectors produced by CCP contribute to residual filtrate toxicity and virulence in senescing/wounded tissues. These other effectors may be involved in saprotrophy rather than necrotrophy.
Collapse
Affiliation(s)
- Sébastien Ribeiro
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France; CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Dinh Minh Tran
- CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France; Rubber Research Institute of Vietnam, Ho Chi Minh City, Viet Nam
| | - Marine Déon
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France
| | - André Clément-Demange
- CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Dominique Garcia
- CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France
| | - Mouman Soumahoro
- Société Africaine de Plantations d'Hévéas, 01 BP 1322 Abidjan 01, Cote d'Ivoire
| | - Aurélien Masson
- Société des Caoutchoucs de Grand-Béréby, Grand Béréby, Cote d'Ivoire
| | - Valérie Pujade-Renaud
- Université Clermont Auvergne, Institut National de la Recherche Agronomique, UMR PIAF, Clermont-Ferrand, France; CIRAD, UMR AGAP, F-63000 Clermont-Ferrand, France; AGAP, Université Montpellier, CIRAD, Institut National de la Recherche Agronomique, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
41
|
Lorang J. Necrotrophic Exploitation and Subversion of Plant Defense: A Lifestyle or Just a Phase, and Implications in Breeding Resistance. PHYTOPATHOLOGY 2019; 109:332-346. [PMID: 30451636 DOI: 10.1094/phyto-09-18-0334-ia] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Breeding disease-resistant plants is a critical, environmentally friendly component of any strategy to sustainably feed and clothe the 9.8 billion people expected to live on Earth by 2050. Here, I review current literature detailing plant defense responses as they relate to diverse biological outcomes; disease resistance, susceptibility, and establishment of mutualistic plant-microbial relationships. Of particular interest is the degree to which these outcomes are a function of plant-associated microorganisms' lifestyles; biotrophic, hemibiotrophic, necrotrophic, or mutualistic. For the sake of brevity, necrotrophic pathogens and the necrotrophic phase of pathogenicity are emphasized in this review, with special attention given to the host-specific pathogens that exploit defense. Defense responses related to generalist necrotrophs and mutualists are discussed in the context of excellent reviews by others. In addition, host evolutionary trade-offs of disease resistance with other desirable traits are considered in the context of breeding for durable disease resistance.
Collapse
Affiliation(s)
- Jennifer Lorang
- Department of Botany, 2082 Cordley Hall, Oregon State University, Corvallis 97331
| |
Collapse
|
42
|
Liu Y, Liu Q, Tang Y, Ding W. NtPR1a regulates resistance to Ralstonia solanacearum in Nicotiana tabacum via activating the defense-related genes. Biochem Biophys Res Commun 2019; 508:940-945. [PMID: 30545635 DOI: 10.1016/j.bbrc.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/23/2022]
Abstract
Pathogenesis-related proteins (PRs) are associated with the development of systemic acquired resistance (SAR) against further infection enforced by fungi, bacteria and viruses. PR1a is the first PR-1 member that could be purified and characterized. Previous studies have reported its role in plants' resistance system against oomycete pathogens. However, the role of PR1a in Solanaceae plants against the bacterial wilt pathogen Ralstonia solanacearum remains unclear. To assess roles of NtPR1a in tobacco responding to R. solanacearum, we performed overexpression experiments in Yunyan 87 plants (a susceptible tobacco cultivar). The results illuminated that overexpression of NtPR1a contributed to improving resistance to R. solanacearum in tobacco Yunyan 87. Specifically speaking, NtPR1a gene could be induced by exogenous hormones like salicylic acid (SA) and pathogenic bacteria R. Solanacearum. Moreover, NtPR1a-overexpressing tobacco significantly reduced multiple of R. solanacearum and inhibited the development of disease symptoms compared with wild-type plants. Importantly, overexpression of NtPR1a activated a series of defense-related genes expression, including the hypersensitive response (HR)-associated genes NtHSR201 and NtHIN1, SA-, JA- and ET-associated genes NtPR2, NtCHN50, NtPR1b, NtEFE26, and Ntacc oxidase, and detoxification-associated gene NtGST1. In summary, our results suggested that NtPR1a-enhanced tobacco resistance to R. solanacearum may be mainly dependent on activation of the defense-related genes.
Collapse
Affiliation(s)
- Ying Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Qiuping Liu
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Yuanman Tang
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China
| | - Wei Ding
- Laboratory of Natural Products Pesticides, College of Plant Protection, Southwest University, Chongqing, China.
| |
Collapse
|
43
|
Han X, Kahmann R. Manipulation of Phytohormone Pathways by Effectors of Filamentous Plant Pathogens. FRONTIERS IN PLANT SCIENCE 2019; 10:822. [PMID: 31297126 PMCID: PMC6606975 DOI: 10.3389/fpls.2019.00822] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/07/2019] [Indexed: 05/19/2023]
Abstract
Phytohormones regulate a large variety of physiological processes in plants. In addition, salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) are responsible for primary defense responses against abiotic and biotic stresses, while plant growth regulators, such as auxins, brassinosteroids (BRs), cytokinins (CKs), abscisic acid (ABA), and gibberellins (GAs), also contribute to plant immunity. To successfully colonize plants, filamentous pathogens like fungi and oomycetes have evolved diverse strategies to interfere with phytohormone pathways with the help of secreted effectors. These include proteins, toxins, polysaccharides as well as phytohormones or phytohormone mimics. Such pathogen effectors manipulate phytohormone pathways by directly altering hormone levels, by interfering with phytohormone biosynthesis, or by altering or blocking important components of phytohormone signaling pathways. In this review, we outline the various strategies used by filamentous phytopathogens to manipulate phytohormone pathways to cause disease.
Collapse
|
44
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
45
|
Figueroa M, Hammond‐Kosack KE, Solomon PS. A review of wheat diseases-a field perspective. MOLECULAR PLANT PATHOLOGY 2018; 19:1523-1536. [PMID: 29045052 PMCID: PMC6638159 DOI: 10.1111/mpp.12618] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/10/2017] [Accepted: 09/22/2017] [Indexed: 05/19/2023]
Abstract
Wheat is one of the primary staple foods throughout the planet. Significant yield gains in wheat production over the past 40 years have resulted in a steady balance of supply versus demand. However, predicted global population growth rates and dietary changes mean that substantial yield gains over the next several decades will be needed to meet this escalating demand. A key component to meeting this challenge is better management of fungal incited diseases, which can be responsible for 15%-20% yield losses per annum. Prominent diseases of wheat that currently contribute to these losses include the rusts, blotches and head blight/scab. Other recently emerged or relatively unnoticed diseases, such as wheat blast and spot blotch, respectively, also threaten grain production. This review seeks to provide an overview of the impact, distribution and management strategies of these diseases. In addition, the biology of the pathogens and the molecular basis of their interaction with wheat are discussed.
Collapse
Affiliation(s)
- Melania Figueroa
- Department of Plant PathologyStakman‐Borlaug Center for Sustainable Plant Health, University of MinnesotaSt. PaulMN 55108USA
| | - Kim E. Hammond‐Kosack
- Department of Biointeractions and Crop ProtectionRothamsted Research, West CommonHarpendenHertfordshire AL5 2JQUK
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of BiologyThe Australian National UniversityCanberraACT 2601Australia
| |
Collapse
|
46
|
Zhang J, Wang F, Liang F, Zhang Y, Ma L, Wang H, Liu D. Functional analysis of a pathogenesis-related thaumatin-like protein gene TaLr35PR5 from wheat induced by leaf rust fungus. BMC PLANT BIOLOGY 2018; 18:76. [PMID: 29728059 PMCID: PMC5935958 DOI: 10.1186/s12870-018-1297-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 04/26/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plants have evolved multifaceted defence mechanisms to resist pathogen infection. Production of the pathogenesis-related (PR) proteins in response to pathogen attack has been implicated in plant disease resistance specialized in systemic-acquired resistance (SAR). Our earlier studies have reported that a full length TaLr35PR5 gene, encoding a protein exhibiting amino acid and structural similarity to a sweet protein thaumatin, was isolated from wheat near-isogenic line TcLr35. The present study aims to understand the function of TaLr35PR5 gene in Lr35-mediated adult resistance to Puccinia triticina. RESULTS We determined that the TaLr35PR5 protein contained a functional secretion peptide by utilizing the yeast signal sequence trap system. Using a heterologous expression assay on onion epidermal cells we found that TaLr35PR5 protein was secreted into the apoplast of onion cell. Expression of TaLr35PR5 was significantly reduced in BSMV-induced gene silenced wheat plants, and pathology test on these silenced plants revealed that Lr35-mediated resistance phenotype was obviously altered, indicating that Lr35-mediated resistance was compromised. CONCLUSIONS All these findings strongly suggest that TaLr35PR5 is involved in Lr35-mediated adult wheat defense in response to leaf rust attack.
Collapse
Affiliation(s)
- Jiarui Zhang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Fei Wang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Fang Liang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Yanjun Zhang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Lisong Ma
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
- Division of Plant Science, Research School of Biology, Australian National University, ACT, Acton, 2601, Australia.
| | - Haiyan Wang
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
| | - Daqun Liu
- Center of Plant Disease and Plant Pests of Hebei Province, College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China.
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
47
|
Lin SY, Chooi YH, Solomon PS. The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum. Mol Microbiol 2018; 109:78-90. [PMID: 29722915 DOI: 10.1111/mmi.13968] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2018] [Indexed: 01/24/2023]
Abstract
To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction.
Collapse
Affiliation(s)
- Shao-Yu Lin
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
48
|
Lu S, Edwards MC. Molecular Characterization and Functional Analysis of PR-1-Like Proteins Identified from the Wheat Head Blight Fungus Fusarium graminearum. PHYTOPATHOLOGY 2018; 108:510-520. [PMID: 29117786 DOI: 10.1094/phyto-08-17-0268-r] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The group 1 pathogenesis-related (PR-1) proteins originally identified from plants and their homologs are also found in other eukaryotic kingdoms. Studies on nonplant PR-1-like (PR-1L) proteins have been pursued widely in humans and animals but rarely in filamentous ascomycetes. Here, we report the characterization of four PR-1L proteins identified from the ascomycete fungus Fusarium graminearum, the primary cause of Fusarium head blight of wheat and barley (designated FgPR-1L). Molecular cloning revealed that the four FgPR-1L proteins are all encoded by small open reading frames (612 to 909 bp) that are often interrupted by introns, in contrast to plant PR-1 genes that lack introns. Sequence analysis indicated that all FgPR-1L proteins contain the PR-1-specific three-dimensional structure, and one of them features a C-terminal transmembrane (TM) domain that has not been reported for any stand-alone PR-1 proteins. Transcriptional analysis revealed that the four FgPR-1L genes are expressed in axenic cultures and in planta with different spatial or temporal expression patterns. Phylogenetic analysis indicated that fungal PR-1L proteins fall into three major groups, one of which harbors FgPR-1L-2-related TM-containing proteins from both phytopathogenic and human-pathogenic ascomycetes. Low-temperature sodium dodecyl sulfate polyacrylamide gel electrophoresis and proteolytic assays indicated that the recombinant FgPR-1L-4 protein exists as a monomer and is resistant to subtilisin of the serine protease family. Functional analysis confirmed that deletion of the FgPR-1L-4 gene from the fungal genome results in significantly reduced virulence on susceptible wheat. This study provides the first example that the F. graminearum-wheat interaction involves a pathogen-derived PR-1L protein that affects fungal virulence on the host.
Collapse
Affiliation(s)
- Shunwen Lu
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765
| | - Michael C Edwards
- United States Department of Agriculture-Agricultural Research Service, Cereal Crops Research Unit, Fargo, ND 58102-2765
| |
Collapse
|
49
|
McDonald MC, Solomon PS. Just the surface: advances in the discovery and characterization of necrotrophic wheat effectors. Curr Opin Microbiol 2018; 46:14-18. [PMID: 29452845 DOI: 10.1016/j.mib.2018.01.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 02/04/2023]
Abstract
For many years pathogens of wheat have remained poorly understood. Hindered by an inaccessible host and the obligate nature of many of the pathogens, our understanding of these interactions has been limited compared to other more amenable pathosystems. However, breakthroughs over recent years have shed new light on diseases of wheat, particularly those caused by the genetically tractable necrotrophic pathogens. We now understand that many of the necrotrophic fungal pathogens do interact with wheat in a strict gene-for-gene relationship, and that pathogen and host partners in these interactions have now been identified. This improved understanding of necrotrophic effector biology has fundamentally changed the way we consider these important wheat diseases.
Collapse
Affiliation(s)
- Megan C McDonald
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Peter S Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
50
|
Plett JM, Martin FM. Know your enemy, embrace your friend: using omics to understand how plants respond differently to pathogenic and mutualistic microorganisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:729-746. [PMID: 29265527 DOI: 10.1111/tpj.13802] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 05/21/2023]
Abstract
Microorganisms, or 'microbes', have formed intimate associations with plants throughout the length of their evolutionary history. In extant plant systems microbes still remain an integral part of the ecological landscape, impacting plant health, productivity and long-term fitness. Therefore, to properly understand the genetic wiring of plants, we must first determine what perception systems plants have evolved to parse beneficial from commensal from pathogenic microbes. In this review, we consider some of the most recent advances in how plants respond at the molecular level to different microbial lifestyles. Further, we cover some of the means by which microbes are able to manipulate plant signaling pathways through altered destructiveness and nutrient sinks, as well as the use of effector proteins and micro-RNAs (miRNAs). We conclude by highlighting some of the major questions still to be answered in the field of plant-microbe research, and suggest some of the key areas that are in greatest need of further research investment. The results of these proposed studies will have impacts in a wide range of plant research disciplines and will, ultimately, translate into stronger agronomic crops and forestry stock, with immune perception and response systems bred to foster beneficial microbial symbioses while repudiating pathogenic symbioses.
Collapse
Affiliation(s)
- Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Francis M Martin
- Institut National de la Recherche Agronomique (INRA), Unité Mixte de Recherche, 1136 INRA-Université de Lorraine, Interactions Arbres/Microorganismes, Laboratoire d'excellence ARBRE, Centre INRA-Grand Est-Nancy, 54280, Champenoux, France
| |
Collapse
|