1
|
Li Q, Niu C, Guo J, Chen G, Li J, Sun L, Li W, Li T. Physiological regulation underlying the alleviation of cadmium stress in maize seedlings by exogenous glycerol. Sci Rep 2025; 15:11156. [PMID: 40169844 PMCID: PMC11961616 DOI: 10.1038/s41598-025-94385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 03/13/2025] [Indexed: 04/03/2025] Open
Abstract
Cadmium (Cd) contamination in maize poses a significant threat to global food security due to its persistent accumulation in crops. In this study, the effects of foliar application of glycerol on Cd accumulation in maize seedlings were studied. Our results demonstrated that under Cd treatment, biomass, total chlorophyll content, net photosynthetic rate (Pn), Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) activity, Phosphoenolpyruvate carboxylase (PEPC) activity, sucrose levels, and carbohydrate levels in maize seedlings significantly increased after glycerol application. H2O2 and MDA levels in both the aboveground and belowground portions of the maize plants significantly decreased. Moreover, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities in the aboveground parts significantly increased. Notably, maize plants used glycerol to chelate Cd, which was fixed within the cell wall and soluble fraction of the roots, reducing Cd transport to the shoots and significantly lowering the Cd transport coefficient (TF). Transcriptomic data suggested that glycerol-mediated alleviation of Cd stress in maize seedlings may be associated with phenylpropanoid biosynthesis, plant-pathogen interactions and photosynthesis pathways. These molecular patterns align with the observed physiological improvements. This study provided a novel approach to effectively alleviate excessive Cd in maize and suggested possible applications of glycerol in cultivating plant resistance to heavy metals.
Collapse
Affiliation(s)
- Qiao Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chunda Niu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jiaxu Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Geng Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Jingti Li
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Li
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China.
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| | - Tianpu Li
- College of Arts and Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
de Assis Alves T, de Assis Alves T, Gazolla PAR, Lima ÂMA, Belizario de Oliveira M, Aniceto da Silva D, Tebaldi de Queiroz V, Ricardo Teixeira R, Vidal Costa A, Miranda Praça-Fontes M. Phytotoxic and Cytogenetic Assessment of Glycerol Triazole Derivatives in Model Plants and Weeds. Chem Biodivers 2025; 22:e202401755. [PMID: 39353044 DOI: 10.1002/cbdv.202401755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/04/2024]
Abstract
Weed invasion represents a challenge for farmers, who typically manage it with herbicides. However, this approach raises concerns about environmental and human health, as well as increasing resistance in these plants with continued use. Therefore, exploring alternative methods, such as heterocyclic compounds, triazoles, is essential due to their biological and environmental relevance. This study aimed to evaluate the effects of twelve 1,2,3-triazoles on the germination and early development of Lactuca sativa, Bidens pilosa, and Lolium multiflorum, as well as their impact on cell division in the cells of L. sativa. Triazole derivatives 4a, 4b, 4c, 4g, 4h, 4i, 4k, and 4l exhibited phytotoxicity, showing varying levels of inhibition in germination, germination speed index, and root growth. Chlorinated compounds were the most detrimental to lettuce development. B. pilosa was notably affected by compounds 4h, 4i, 4k, and 4l, while L. multiflorum responded most to triazoles 4c and 4l, with effectiveness comparable to that of the herbicide glyphosate. All derivatives, except 4l, exhibited aneugenic mechanisms of action, and 4a, 4b, 4c, 4e, 4f, and 4g showed clastogenic effects. This study demonstrated the potential of triazoles as effective agents against weed growth, with mechanisms that warrant further investigation for agricultural applications.
Collapse
Affiliation(s)
- Thayllon de Assis Alves
- Departamento de Biologia, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Thammyres de Assis Alves
- Departamento de Biologia, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | | | - Ângela Maria Almeida Lima
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Mariana Belizario de Oliveira
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Danilo Aniceto da Silva
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Vagner Tebaldi de Queiroz
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Róbson Ricardo Teixeira
- Departamento de Química, Universidade Federal de Viçosa, Av. P.H. Rolfs, s/n, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adilson Vidal Costa
- Departamento de Química e Física, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| | - Milene Miranda Praça-Fontes
- Departamento de Biologia, Universidade Federal do Espírito Santo, Alto Universitário, s/n, Guararema, 29500-000, Alegre, Espírito Santo, Brazil
| |
Collapse
|
3
|
Liao P, Dan X, Ge W, Zhang Q, Zhao J, Zhou C, Zhou Y. Glycerophosphodiester phosphodiesterase 1 mediates G3P accumulation for Eureka lemon resistance to citrus yellow vein clearing virus. HORTICULTURE RESEARCH 2025; 12:uhae287. [PMID: 39882172 PMCID: PMC11775586 DOI: 10.1093/hr/uhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/02/2024] [Indexed: 01/31/2025]
Abstract
Glycerophosphodiester phosphodiesterase 1 (GDPD1) plays an important function in the abiotic stress responses and participates in the accumulation of sn-glycerol-3-phosphate (G3P) in plants, which is key to plant systemic acquired resistance (SAR). However, the role of GDPD1 in plant responses to biotic stress remains poorly understood. This study characterized the antivirus function of the GDPD1 gene (designated as ClGDPD1) from Eureka lemon. ClGDPD1 is located in the membrane and endoplasmic reticulum, where it interacts with the citrus yellow vein clearing virus (CYVCV) coat protein (CP). Compared to individually expressed ClGDPD1 or coexpressed ClGDPD1 + CP140-326, transiently coexpressed ClGDPD1 + CP or ClGDPD1 + CP1-139 significantly upregulated the key substance contents and genes expression involved in glycerophospholipid metabolism. Over-expression of ClGDPD1 significantly facilitated the accumulation of G3P, upregulated the expression of SAR-related genes, and increased the resistance of transgenic Eureka lemon to CYVCV infection. Furthermore, exogenous glycerol treatment and over-expression of ClGPDH increased the G3P content and reduced CYVCV titers in plants or hairy roots. These results indicated that the enhanced resistance of ClGDPD1 transgenic Eureka lemon to CYVCV may be due to facilitating G3P accumulation through the interaction of ClGDPD1 with CP. Our findings provide novel insights into the role of ClGDPD1 as an important regulatory center in mediating the citrus defense response to viral infections.
Collapse
Affiliation(s)
- Ping Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| | - Xue Dan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| | - Wen Ge
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| | - Qi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| | - Jinfa Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| | - Changyong Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| | - Yan Zhou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
- National Citrus Engineering and Technology Research Center, Citrus Research Institute, Southwest University, Xiema Street, Beibei District, Chongqing 400712, China
| |
Collapse
|
4
|
Tritean N, Trică B, Dima ŞO, Capră L, Gabor RA, Cimpean A, Oancea F, Constantinescu-Aruxandei D. Mechanistic insights into the plant biostimulant activity of a novel formulation based on rice husk nanobiosilica embedded in a seed coating alginate film. FRONTIERS IN PLANT SCIENCE 2024; 15:1349573. [PMID: 38835865 PMCID: PMC11148368 DOI: 10.3389/fpls.2024.1349573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/17/2024] [Indexed: 06/06/2024]
Abstract
Seed coating ensures the targeted delivery of various compounds from the early stages of development to increase crop quality and yield. Silicon and alginate are known to have plant biostimulant effects. Rice husk (RH) is a significant source of biosilica. In this study, we coated mung bean seeds with an alginate-glycerol-sorbitol (AGS) film with embedded biogenic nanosilica (SiNPs) from RH, with significant plant biostimulant activity. After dilute acid hydrolysis of ground RH in a temperature-controlled hermetic reactor, the resulting RH substrate was neutralized and calcined at 650°C. The structural and compositional characteristics of the native RH, the intermediate substrate, and SiNPs, as well as the release of soluble Si from SiNPs, were investigated. The film for seed coating was optimized using a mixture design with three factors. The physiological properties were assessed in the absence and the presence of 50 mM salt added from the beginning. The main parameters investigated were the growth, development, metabolic activity, reactive oxygen species (ROS) metabolism, and the Si content of seedlings. The results evidenced a homogeneous AGS film formation embedding 50-nm amorphous SiNPs having Si-O-Si and Si-OH bonds, 0.347 cm3/g CPV (cumulative pore volume), and 240 m2/g SSA (specific surface area). The coating film has remarkable properties of enhancing the metabolic, proton pump activities and ROS scavenging of mung seedlings under salt stress. The study shows that the RH biogenic SiNPs can be efficiently applied, together with the optimized, beneficial alginate-based film, as plant biostimulants that alleviate saline stress from the first stages of plant development.
Collapse
Affiliation(s)
- Naomi Tritean
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Bogdan Trică
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Ştefan-Ovidiu Dima
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Luiza Capră
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | - Raluca-Augusta Gabor
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
| | | | - Florin Oancea
- National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bucharest, Romania
| | | |
Collapse
|
5
|
Scientific basis for the use of minimally processed homogenates of Kappaphycus alvarezii (red) and Sargassum wightii (brown) seaweeds as crop biostimulants. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
6
|
Zhang H, Yuan M, Tang C, Wang R, Cao M, Chen X, Wang D, Li M, Wu L. A novel nanocomposite that effectively prevents powdery mildew infection in wheat. JOURNAL OF PLANT PHYSIOLOGY 2022; 279:153858. [PMID: 36356512 DOI: 10.1016/j.jplph.2022.153858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
The rapidly growing world population is constantly increasing the demand for food. Being the second most consumed food crop, wheat hold an important economic position. However, powdery mildew is a disease that seriously affects the improvement in the yield and quality of wheat. Currently, triadimefon is the chemical pesticide that is predominantly used to prevent powdery mildew during wheat production. However, using triadimefon not only pollutes the environment, but also deteriorates the quality of harvested wheat grains. In this study, a nanocomposite complex with optimal montmorillonite and dimethyl silicone oil (OMM), which interact with each other through numerous hydrogen bonds. OMM was sprayed onto the surface of the wheat leaves to ensure a uniform nano isolation film that was found to effectively inhibit the contact germination of powdery mildew spores and reduce the disease index by 99.30%. OMM also significantly alleviated both physiological and biochemical stress of powdery mildew infection on the wheat. Furthermore, OMM treatment was found to significantly improve the processed quality of harvested grains. These results demonstrate that OMM treatment is an efficient and environmentally sustainable approach that is suitable for the large-scale prevention of powdery mildew infection in wheat.
Collapse
Affiliation(s)
- Huilan Zhang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Meng Yuan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Ren Wang
- Anhui Guotaizhongxin Testing Technology Co., LTD, Baohe District Dalian Road, Hefei, 230051, Anhui, PR China
| | - Minghui Cao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Xu Chen
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; School of Life Sciences, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, 230027, Anhui, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; Institute of Physical Science and Information Technology, Anhui University, 111 Jiulong Road, Hefei, 230601, PR China
| | - Minghao Li
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei, 230031, Anhui, PR China; Zhongke Taihe Experimental Station, Jiuxian Town G105 East Side of the National Road, Taihe, 236626, PR China.
| |
Collapse
|
7
|
Xiao X, Wang R, Khaskhali S, Gao Z, Guo W, Wang H, Niu X, He C, Yu X, Chen Y. A Novel Glycerol Kinase Gene OsNHO1 Regulates Resistance to Bacterial Blight and Blast Diseases in Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:800625. [PMID: 35126424 PMCID: PMC8811351 DOI: 10.3389/fpls.2021.800625] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Glycerol-induced resistance to various pathogens has been reported in different plants. Glycerol kinase (GK), a vital rate-limiting enzyme that catalyzes glycerol conversion to glycerol-3-phosphate (G3P), participates in responses to both abiotic and biotic stresses. However, its physiological importance in rice defenses against pathogens remains unclear. In this research, quantification analysis revealed that GK levels were significantly induced in rice leaves infected by Xanthomonas oryzae pv. oryzae (Xoo) strain PXO99. A typical GK-encoding gene OsNHO1 was cloned in rice. The transcriptional levels of OsNHO1 were significantly induced by salicylic acid, jasmonic acid, and Xoo-PXO99. Ectopic expression of OsNHO1 partially rescued the resistance to P. s. pv. phaseolicola in the Arabidopsis nho1 mutant. In the overexpressing transgenic rice lines (OsNHO1-OE), the content of GK and the transcriptional level of OsNHO1 were increased and the resistance to bacterial blight and blast was improved, while reduced OsNHO1 expression impaired the resistance in OsNHO1-RNAi lines. The wax contents and expression of the wax synthesis regulatory genes were significantly increased in the overexpression lines but decreased in the OsNHO1-RNAi lines. We then confirmed the interaction partner of OsNHO1 using yeast two-hybrid and bimolecular fluorescence complementation assays. The transcription of the interaction partner-encoding genes OsSRC2 and OsPRs in OsNHO1-RNAi lines was downregulated but upregulated in OsNHO1-OE lines. Thus, we concluded that OsNHO1 provided disease resistance by affecting the wax content and modulating the transcription levels of PR genes.
Collapse
Affiliation(s)
- Xiaorong Xiao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
- Cereal Crops Institute, Hainan Academy of Agricultural Sciences/Sanya Institute, Hainan Academy of Agricultural Sciences, Sanya, China
| | - Rui Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Shahneela Khaskhali
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Zhiliang Gao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Wenya Guo
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
| | - Honggang Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaolei Niu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Chaoze He
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaohui Yu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Yinhua Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
- School of Life Science, Hainan University, Haikou, China
| |
Collapse
|
8
|
Assessment of Biodegradation and Eco-Toxic Properties of Novel Starch and Gelatine Blend Bioplastics. RECYCLING 2021. [DOI: 10.3390/recycling6040081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To combat the release of petroleum-derived plastics into the environment the European Commission has adopted the EU plastics strategy, which aims for a complete ban on single-use plastics by 2030. Environmentally friendly and sustainable packaging like bioplastic is being up taken at significant levels by companies and consumers. In this study, the environmental impact of novel gelatine–starch blend bioplastics is investigated. The assessments included ecotoxicology with different species that can be found in marine and soil environments to simulate natural conditions. Microalgae, plant, and nematode species were chosen as these are representative of their habitats and are known for their sensitivity to pollutants. Degradation rates of these novel bioplastics were assessed as well as microbiome analysis of the soil before and after bioplastic degradation. The main findings of this study are that (i) the bioplastic generated can be fully biodegraded in soil environments at moderate conditions (20 °C) leaving no physical traces; (ii) bioplastic did not exhibit significantly adverse effects on any organisms assessed in this study; (iii) microbiome analysis of the soil after biodegradation showed a decrease in alpha diversity and a significant increase of Actinobacteria and Firmicutes phyla, which were dominative in the soil.
Collapse
|
9
|
Mo S, Zhang Y, Wang X, Yang J, Sun Z, Zhang D, Chen B, Wang G, Ke H, Liu Z, Meng C, Li Z, Wu L, Zhang G, Duan H, Ma Z. Cotton GhSSI2 isoforms from the stearoyl acyl carrier protein fatty acid desaturase family regulate Verticillium wilt resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:1041-1056. [PMID: 34169624 PMCID: PMC8358998 DOI: 10.1111/mpp.13093] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 05/04/2023]
Abstract
Lipids are major and essential constituents of plant cells and provide energy for various metabolic processes. However, the function of the lipid signal in defence against Verticillium dahliae, a hemibiotrophic pathogen, remains unknown. Here, we characterized 19 conserved stearoyl-ACP desaturase family proteins from upland cotton (Gossypium hirsutum). We further confirmed that GhSSI2 isoforms, including GhSSI2-A, GhSSI2-B, and GhSSI2-C located on chromosomes A10, D10, and A12, respectively, played a dominant role to the cotton 18:1 (oleic acid) pool. Suppressing the expression of GhSSI2s reduced the 18:1 level, which autoactivated the hypersensitive response (HR) and enhanced cotton Verticillium wilt and Fusarium wilt resistance. We found that low 18:1 levels induced phenylalanine ammonia-lyase-mediated salicylic acid (SA) accumulation and activated a SA-independent defence response in GhSSI2s-silenced cotton, whereas suppressing expression of GhSSI2s affected PDF1.2-dependent jasmonic acid (JA) perception but not the biosynthesis and signalling cascade of JA. Further investigation showed that structurally divergent resistance-related genes and nitric oxide (NO) signal were activated in GhSSI2s-silenced cotton. Taken together, these results indicate that SA-independent defence response, multiple resistance-related proteins, and elevated NO level play an important role in GhSSI2s-regulated Verticillium wilt resistance. These findings broaden our knowledge regarding the lipid signal in disease resistance and provide novel insights into the molecular mechanism of cotton fungal disease resistance.
Collapse
Affiliation(s)
- Shaojing Mo
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Jun Yang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Dongmei Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhengwen Liu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Chengsheng Meng
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and RegulationNorth China Key Laboratory for Crop Germplasm Resources of Education MinistryHebei Agricultural UniversityBaodingChina
| |
Collapse
|
10
|
Wang Y, Chen S, Deng C, Shi X, Cota-Ruiz K, White JC, Zhao L, Gardea-Torresdey JL. Metabolomic analysis reveals dose-dependent alteration of maize (Zea mays L.) metabolites and mineral nutrient profiles upon exposure to zerovalent iron nanoparticles. NANOIMPACT 2021; 23:100336. [PMID: 35559837 DOI: 10.1016/j.impact.2021.100336] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/09/2021] [Accepted: 06/14/2021] [Indexed: 05/15/2023]
Abstract
Nanoscale zero-valent iron (nZVI) has been widely applied in the environmental field to degrade organic pollutants. The potential risk posed from nZVI on crop species is not well understood and is critical for sustainable application in the future. In this study, maize (Zea mays L.) plants were cultivated in field soils mixed with nZVI at 0, 50, and 500 mg/kg soil for four weeks. Upon exposure to 500 mg/kg nZVI, ICP-MS results showed that Fe accumulated by roots and translocated to leaves was increased by 36% relative to untreated controls. At 50 mg/kg, root elongation was enhanced by 150-200%; at 500 mg/kg, pigments, lipid peroxidation, and polyphenolic levels in leaves were increased by 12, 87 and 23%, respectively, whereas the accumulation of Al, Ca, and P were decreased by 62.2%, 19.7%, and 13.3%, respectively. A gas chromatography-mass spectrometry (GC-MS) based metabolomics analysis of maize roots revealed that antioxidants and stress signaling-associated metabolites were downregulated at 50 mg/kg, but were upregulated at 500 mg/kg. At 50 mg/kg, the content of glutamate was increased by 11-fold, whereas glutamine was decreased by 99% with respect to controls. Interestingly, eight metabolic pathways were disturbed at 50 mg/kg, but none at 500 mg/kg. This metabolic reprogramming at the lower dose represented potential risks to the health of exposed plants, which could be particularly important although no phenotypic impacts were noted. Overall, metabolites analysis provides a deeper understanding at the molecular level of plant response to nZVI and is a powerful tool for full characterization of risk posed to crop species as part of food safety assessment.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States; The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Si Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chaoyi Deng
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Xiaoxia Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Keni Cota-Ruiz
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06504, United States
| | - Lijuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Jorge L Gardea-Torresdey
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, United States.
| |
Collapse
|
11
|
Castro-Moretti FR, Cocuron JC, Cia MC, Cataldi TR, Labate CA, Alonso AP, Camargo LEA. Targeted Metabolic Profiles of the Leaves and Xylem Sap of Two Sugarcane Genotypes Infected with the Vascular Bacterial Pathogen Leifsonia xyli subsp. xyli. Metabolites 2021; 11:metabo11040234. [PMID: 33921244 PMCID: PMC8069384 DOI: 10.3390/metabo11040234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023] Open
Abstract
Ratoon stunt (RS) is a worldwide disease that reduces biomass up to 80% and is caused by the xylem-dwelling bacterium Leifsonia xyli subsp. xyli. This study identified discriminant metabolites between a resistant (R) and a susceptible (S) sugarcane variety at the early stages of pathogen colonization (30 and 120 days after inoculation—DAI) by untargeted and targeted metabolomics of leaves and xylem sap using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), respectively. Bacterial titers were quantified in sugarcane extracts at 180 DAI through real-time polymerase chain reaction. Bacterial titers were at least four times higher on the S variety than in the R one. Global profiling detected 514 features in the leaves and 68 in the sap, while 119 metabolites were quantified in the leaves and 28 in the sap by targeted metabolomics. Comparisons between mock-inoculated treatments indicated a greater abundance of amino acids in the leaves of the S variety and of phenolics, flavonoids, and salicylic acid in the R one. In the xylem sap, fewer differences were detected among phenolics and flavonoids, but also included higher abundances of the signaling molecule sorbitol and glycerol in R. Metabolic changes in the leaves following pathogen inoculation were detected earlier in R than in S and were mostly related to amino acids in R and to phosphorylated compounds in S. Differentially represented metabolites in the xylem sap included abscisic acid. The data represent a valuable resource of potential biomarkers for metabolite-assisted selection of resistant varieties to RS.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- Department of Biological Sciences, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA; (F.R.C.-M.); (J.-C.C.); (A.P.A.)
- BioDiscovery Institute, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA
| | - Jean-Christophe Cocuron
- Department of Biological Sciences, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA; (F.R.C.-M.); (J.-C.C.); (A.P.A.)
| | - Mariana C. Cia
- Centro de Tecnologia Canavieira, Fazenda Santo Antonio, Piracicaba 13418-970, Brazil;
| | - Thais R. Cataldi
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba 13418-900, Brazil; (T.R.C.); (C.A.L.)
| | - Carlos A. Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba 13418-900, Brazil; (T.R.C.); (C.A.L.)
| | - Ana Paula Alonso
- Department of Biological Sciences, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA; (F.R.C.-M.); (J.-C.C.); (A.P.A.)
- BioDiscovery Institute, University of North Texas, 1504 W Mulberry St., Denton, TX 76201, USA
| | - Luis E. A. Camargo
- Department of Plant Pathology and Nematology, Luiz de Queiroz College of Agriculture, University of São Paulo, Avenue Pádua Dias 11, Piracicaba 13418-900, Brazil
- Correspondence: ; Tel.: +55-(19)-3429-4124
| |
Collapse
|
12
|
Panda A, Rangani J, Parida AK. Unraveling salt responsive metabolites and metabolic pathways using non-targeted metabolomics approach and elucidation of salt tolerance mechanisms in the xero-halophyte Haloxylon salicornicum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:284-296. [PMID: 33239222 DOI: 10.1016/j.plaphy.2020.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/11/2020] [Indexed: 05/22/2023]
Abstract
Haloxylon salicornicum is a xero-halophyte growing in saline and arid regions of the world. Metabolite profiling was carried out in shoot of both control and salinity treated (400 mM NaCl) samples by GC-QTOF-MS and HPLC-DAD analysis to decipher the salinity tolerance mechanism in this xero-halophyte. The present study investigates the alteration in metabolite profile of H. salicornicum that support the salinity tolerance of the plant. The metabolomic analysis of H. salicornicum shoot identified 56 metabolites, of which 47 metabolites were significantly changed in response to salinity. These metabolites were mainly included in the category of amino acids, organic acids, amines, sugar alcohols, sugars, fatty acids, alkaloids, and phytohormones. In response to salinity, most of the amino acids were down-regulated except alanine, phenylalanine, lysine, and tyramine, which were up-regulated in H. salicornicum. In contrast to amino acids, most sugars and organic acids were up-regulated in response to salinity. Correlation and pathway enrichment analysis identified important biological pathways playing significant roles in conferring salt tolerance of H. salicornicum. These biological pathways include amino sugar and nucleotide sugar metabolism, citrate cycle (TCA cycle), starch and sucrose metabolism, phenylalanine metabolism, cysteine, methionine, glycine, serine, and threonine metabolism, etc. The data presented here suggest that the modulations of various metabolic pathways facilitate H. salicornicum to survive and grow optimally even under high salinity condition. This study offers comprehensive information on metabolic adaptations and overall salt tolerance mechanisms in H. salicornicum. The information gained through this study will provide guidance to plant breeders and molecular biologists to develop salinity tolerant crop varieties.
Collapse
Affiliation(s)
- Ashok Panda
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Jaykumar Rangani
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Asish Kumar Parida
- Plant Omics Division, CSIR- Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Gijubhai Badheka Marg, Bhavnagar, 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India.
| |
Collapse
|
13
|
Yang J, Chen X, Lu W, Chen R, Liu M, Yao H, Li J, Hong J, Mao X. Reducing Cd accumulation in rice grain with foliar application of glycerol and its mechanisms of Cd transport inhibition. CHEMOSPHERE 2020; 258:127135. [PMID: 32535432 DOI: 10.1016/j.chemosphere.2020.127135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Excessive cadmium (Cd) in rice grain has become a major global public health problem. Here, the effect of foliar glycerol application on Cd accumulation in brown rice was examined. Various spraying concentrations of glycerol between 0.4mM and 50mM were investigated and the results showed that 0.8 mM was the best application concentration for decreasing Cd content in brown rice. After different application period experiment, filling stage was considered as the optimal spraying time. 0.4mM-5mM glycerol application one time at the filling stage could significantly reduce Cd concentration in brown rice by 28.5%-60.4%. Cd transport factors (the ratio of brown rice and flag leaf/node) were decreased by 48.5% and 27.3%, respectively, with glycerol application. Glycerol application also significantly increased Cd concentration in soluble fraction in flag leaf while reduced inorganic Cd and water-soluble Cd in both flag leaf and stem. Our results showed foliar spraying glycerol inhibited Cd transport to brown rice through Cd compartmentalisation in the vacuole and transformation of cadmium chemical form. This study may provide a new method to effectively alleviate the problem of excessive Cd in rice.
Collapse
Affiliation(s)
- Junying Yang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xian Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Wencong Lu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Runcheng Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Mengnan Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Huanli Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jihong Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jiale Hong
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoyun Mao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Li Y, Qiu L, Liu X, Zhang Q, Zhuansun X, Fahima T, Krugman T, Sun Q, Xie C. Glycerol-Induced Powdery Mildew Resistance in Wheat by Regulating Plant Fatty Acid Metabolism, Plant Hormones Cross-Talk, and Pathogenesis-Related Genes. Int J Mol Sci 2020; 21:ijms21020673. [PMID: 31968554 PMCID: PMC7013599 DOI: 10.3390/ijms21020673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/14/2020] [Accepted: 01/17/2020] [Indexed: 11/16/2022] Open
Abstract
Our previous study indicated that glycerol application induced resistance to powdery mildew (Bgt) in wheat by regulating two important signal molecules, glycerol-3-phosphate (G3P) and oleic acid (OA18:1). Transcriptome analysis of wheat leaves treated by glycerol and inoculated with Bgt was performed to identify the activated immune response pathways. We identified a set of differentially expressed transcripts (e.g., TaGLI1, TaACT1, and TaSSI2) involved in glycerol and fatty acid metabolism that were upregulated in response to Bgt infection and might contribute to G3P and OA18:1 accumulation. Gene Ontology (GO) enrichment analysis revealed GO terms induced by glycerol, such as response to jasmonic acid (JA), defense response to bacterium, lipid oxidation, and growth. In addition, glycerol application induced genes (e.g., LOX, AOS, and OPRs) involved in the metabolism pathway of linolenic and alpha-linolenic acid, which are precursor molecules of JA biosynthesis. Glycerol induced JA and salicylic acid (SA) levels, while glycerol reduced the auxin (IAA) level in wheat. Glycerol treatment also induced pathogenesis related (PR) genes, including PR-1, PR-3, PR-10, callose synthase, PRMS, RPM1, peroxidase, HSP70, HSP90, etc. These results indicate that glycerol treatment regulates fatty acid metabolism and hormones cross-talk and induces the expression of PR genes that together contribute to Bgt resistance in wheat.
Collapse
Affiliation(s)
- Yinghui Li
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Lina Qiu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Xinye Liu
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Zhang
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Xiangxi Zhuansun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, 199 Abba-Hushi Avenue, Mt. Carmel, Haifa 3498838, Israel
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
| | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China (Q.S.)
- Correspondence: ; Tel.: +86-10-62732922
| |
Collapse
|
15
|
Fister AS, Landherr L, Maximova SN, Guiltinan MJ. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 Enhances Defense Response in Theobroma cacao. FRONTIERS IN PLANT SCIENCE 2018; 9:268. [PMID: 29552023 PMCID: PMC5841092 DOI: 10.3389/fpls.2018.00268] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/14/2018] [Indexed: 05/19/2023]
Abstract
Theobroma cacao, the source of cocoa, suffers significant losses to a variety of pathogens resulting in reduced incomes for millions of farmers in developing countries. Development of disease resistant cacao varieties is an essential strategy to combat this threat, but is limited by sources of genetic resistance and the slow generation time of this tropical tree crop. In this study, we present the first application of genome editing technology in cacao, using Agrobacterium-mediated transient transformation to introduce CRISPR/Cas9 components into cacao leaves and cotyledon cells. As a first proof of concept, we targeted the cacao Non-Expressor of Pathogenesis-Related 3 (TcNPR3) gene, a suppressor of the defense response. After demonstrating activity of designed single-guide RNAs (sgRNA) in vitro, we used Agrobacterium to introduce a CRISPR/Cas9 system into leaf tissue, and identified the presence of deletions in 27% of TcNPR3 copies in the treated tissues. The edited tissue exhibited an increased resistance to infection with the cacao pathogen Phytophthora tropicalis and elevated expression of downstream defense genes. Analysis of off-target mutagenesis in sequences similar to sgRNA target sites using high-throughput sequencing did not reveal mutations above background sequencing error rates. These results confirm the function of NPR3 as a repressor of the cacao immune system and demonstrate the application of CRISPR/Cas9 as a powerful functional genomics tool for cacao. Several stably transformed and genome edited somatic embryos were obtained via Agrobacterium-mediated transformation, and ongoing work will test the effectiveness of this approach at a whole plant level.
Collapse
Affiliation(s)
- Andrew S. Fister
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Lena Landherr
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
| | - Siela N. Maximova
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| | - Mark J. Guiltinan
- Department of Plant Science, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
- *Correspondence: Mark J. Guiltinan
| |
Collapse
|
16
|
Li Y, Song N, Zhao C, Li F, Geng M, Wang Y, Liu W, Xie C, Sun Q. Application of Glycerol for Induced Powdery Mildew Resistance in Triticum aestivum L. Front Physiol 2016; 7:413. [PMID: 27708588 PMCID: PMC5030236 DOI: 10.3389/fphys.2016.00413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/05/2016] [Indexed: 01/05/2023] Open
Abstract
Previous work has demonstrated that glycerol-3-phosphate (G3P) and oleic acid (18:1) are two important signal molecules associated with plant resistance to fungi. In this article, we provide evidence that a 3% glycerol spray application 1-2 days before powdery mildew infection and subsequent applications once every 4 days was sufficient to stimulate the plant defense responses without causing any significant damage to wheat leaves. We found that G3P and oleic acid levels were markedly induced by powdery mildew infection. In addition, TaGLI1 (encoding a glycerol kinase) and TaSSI2 (encoding a stearoylacyl carrier protein fatty acid desaturase), two genes associated with the glycerol and fatty acid (FA) pathways, respectively, were induced by powdery mildew infection, and their promoter regions contain some fungal response elements. Moreover, exogenous application of glycerol increased the G3P level and decreased the level of oleic acid (18:1). Glycerol application induced the expression of pathogenesis-related (PR) genes (TaPR-1, TaPR-2, TaPR-3, TaPR-4, and TaPR-5), induced the generation of reactive oxygen species (ROS) before powdery mildew infection, and induced salicylic acid (SA) accumulation in wheat leaves. Further, we sprayed glycerol in a wheat field and found that it significantly (p < 0.05) reduced the severity of powdery mildew disease and lessened disease-associated kernel weight loss, all without causing any noticeable degradation in wheat seed quality.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaojie Xie
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| | - Qixin Sun
- Key Laboratory of Crop Heterosis and Utilization (MOE) and State Key Laboratory for Agrobiotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural UniversityBeijing, China
| |
Collapse
|
17
|
Fister AS, Mejia LC, Zhang Y, Herre EA, Maximova SN, Guiltinan MJ. Theobroma cacao L. pathogenesis-related gene tandem array members show diverse expression dynamics in response to pathogen colonization. BMC Genomics 2016; 17:363. [PMID: 27189060 PMCID: PMC4869279 DOI: 10.1186/s12864-016-2693-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/05/2016] [Indexed: 01/14/2023] Open
Abstract
Background The pathogenesis-related (PR) group of proteins are operationally defined as polypeptides that increase in concentration in plant tissues upon contact with a pathogen. To date, 17 classes of highly divergent proteins have been described that act through multiple mechanisms of pathogen resistance. Characterizing these families in cacao, an economically important tree crop, and comparing the families to those in other species, is an important step in understanding cacao’s immune response. Results Using publically available resources, all members of the 17 recognized pathogenesis-related gene families in the genome of Theobroma cacao were identified and annotated resulting in a set of ~350 members in both published cacao genomes. Approximately 50 % of these genes are organized in tandem arrays scattered throughout the genome. This feature was observed in five additional plant taxa (three dicots and two monocots), suggesting that tandem duplication has played an important role in the evolution of the PR genes in higher plants. Expression profiling captured the dynamics and complexity of PR genes expression at basal levels and after induction by two cacao pathogens (the oomycete, Phytophthora palmivora, and the fungus, Colletotrichum theobromicola), identifying specific genes within families that are more responsive to pathogen challenge. Subsequent qRT-PCR validated the induction of several PR-1, PR-3, PR-4, and PR-10 family members, with greater than 1000 fold induction detected for specific genes. Conclusions We describe candidate genes that are likely to be involved in cacao’s defense against Phytophthora and Colletotrichum infection and could be potentially useful for marker-assisted selection for breeding of disease resistant cacao varieties. The data presented here, along with existing cacao—omics resources, will enable targeted functional genetic screening of defense genes likely to play critical functions in cacao’s defense against its pathogens. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2693-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew S Fister
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA
| | - Luis C Mejia
- Institute for Scientific Research and High Technology Services (INDICASAT-AIP), Panama City, Panama.,Smithsonian Tropical Research Institute (STRI), Unit 9100, Box 0948, Balboa, Ancon, DPO AA 34002-9998, Panama
| | - Yufan Zhang
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute (STRI), Unit 9100, Box 0948, Balboa, Ancon, DPO AA 34002-9998, Panama
| | - Siela N Maximova
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA.,The Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA
| | - Mark J Guiltinan
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA. .,The Department of Plant Science, The Pennsylvania State University, 422 Life Sciences Building, University Park, 16802, PA, USA.
| |
Collapse
|
18
|
Greenslade A, Ward J, Martin J, Corol D, Clark S, Smart L, Aradottir G. Triticum monococcum lines with distinct metabolic phenotypes and phloem-based partial resistance to the bird cherry-oat aphid Rhopalosiphum padi. THE ANNALS OF APPLIED BIOLOGY 2016; 168:435-449. [PMID: 27570248 PMCID: PMC4982108 DOI: 10.1111/aab.12274] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 10/15/2015] [Accepted: 07/14/2015] [Indexed: 05/10/2023]
Abstract
Crop protection is an integral part of establishing food security, by protecting the yield potential of crops. Cereal aphids cause yield losses by direct damage and transmission of viruses. Some wild relatives of wheat show resistance to aphids but the mechanisms remain unresolved. In order to elucidate the location of the partial resistance to the bird cherry-oat aphid, Rhopalosiphum padi, in diploid wheat lines of Triticum monococcum, we conducted aphid performance studies using developmental bioassays and electrical penetration graphs, as well as metabolic profiling of partially resistant and susceptible lines. This demonstrated that the partial resistance is related to a delayed effect on the reproduction and development of R. padi. The observed partial resistance is phloem based and is shown by an increase in number of probes before the first phloem ingestion, a higher number and duration of salivation events without subsequent phloem feeding and a shorter time spent phloem feeding on plants with reduced susceptibility. Clear metabolic phenotypes separate partially resistant and susceptible lines, with the former having lower levels of the majority of primary metabolites, including total carbohydrates. A number of compounds were identified as being at different levels in the susceptible and partially resistant lines, with asparagine, octopamine and glycine betaine elevated in less susceptible lines without aphid infestation. In addition, two of those, asparagine and octopamine, as well as threonine, glutamine, succinate, trehalose, glycerol, guanosine and choline increased in response to infestation, accumulating in plant tissue localised close to aphid feeding after 24 h. There was no clear evidence of systemic plant response to aphid infestation.
Collapse
Affiliation(s)
- A.F.C. Greenslade
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHertfordshireAL5 5JQUK
| | - J.L. Ward
- Department of Plant Biology and Crop ScienceRothamsted ResearchHertfordshireAL5 5JQUK
| | - J.L. Martin
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHertfordshireAL5 5JQUK
| | - D.I. Corol
- Department of Plant Biology and Crop ScienceRothamsted ResearchHertfordshireAL5 5JQUK
| | - S.J. Clark
- Department of Computational and Systems BiologyRothamsted ResearchHertfordshireAL5 2JQUK
| | - L.E. Smart
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHertfordshireAL5 5JQUK
| | - G.I. Aradottir
- Department of Biological Chemistry and Crop ProtectionRothamsted ResearchHertfordshireAL5 5JQUK
| |
Collapse
|
19
|
Zhang Y, Maximova SN, Guiltinan MJ. Characterization of a stearoyl-acyl carrier protein desaturase gene family from chocolate tree, Theobroma cacao L. FRONTIERS IN PLANT SCIENCE 2015; 6:239. [PMID: 25926841 PMCID: PMC4396352 DOI: 10.3389/fpls.2015.00239] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/25/2015] [Indexed: 05/07/2023]
Abstract
In plants, the conversion of stearoyl-ACP to oleoyol-ACP is catalyzed by a plastid-localized soluble stearoyl-acyl carrier protein (ACP) desaturase (SAD). The activity of SAD significantly impacts the ratio of saturated and unsaturated fatty acids, and is thus a major determinant of fatty acid composition. The cacao genome contains eight putative SAD isoforms with high amino acid sequence similarities and functional domain conservation with SAD genes from other species. Sequence variation in known functional domains between different SAD family members suggested that these eight SAD isoforms might have distinct functions in plant development, a hypothesis supported by their diverse expression patterns in various cacao tissues. Notably, TcSAD1 is universally expressed across all the tissues, and its expression pattern in seeds is highly correlated with the dramatic change in fatty acid composition during seed maturation. Interestingly, TcSAD3 and TcSAD4 appear to be exclusively and highly expressed in flowers, functions of which remain unknown. To test the function of TcSAD1 in vivo, transgenic complementation of the Arabidopsis ssi2 mutant was performed, demonstrating that TcSAD1 successfully rescued all AtSSI2 related phenotypes further supporting the functional orthology between these two genes. The identification of the major SAD gene responsible for cocoa butter biosynthesis provides new strategies for screening for novel genotypes with desirable fatty acid compositions, and for use in breeding programs to help pyramid genes for quality and other traits such as disease resistance.
Collapse
Affiliation(s)
- Yufan Zhang
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Siela N. Maximova
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
| | - Mark J. Guiltinan
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University ParkPA, USA
- Department of Plant Science, The Pennsylvania State University, University ParkPA, USA
- *Correspondence: Mark J. Guiltinan, Huck Institutes of the Life Sciences, Department of Plant Science, The Pennsylvania State University, University Park, 422 Life Sciences Building, PA 16802, USA
| |
Collapse
|