1
|
Luo Y, Liao W, Li Y, Chen W, Zhong S, Wu C, Yao K, Yang R, Ma M, Gong G. A Rapid and Reliable Propidium Monoazide Polymerase Chain Reaction for Detecting Viable Pseudomonas syringae pv. actinidiae. Curr Issues Mol Biol 2025; 47:103. [PMID: 39996824 PMCID: PMC11853844 DOI: 10.3390/cimb47020103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 02/02/2025] [Indexed: 02/26/2025] Open
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for causing kiwifruit canker disease. The detection of Psa is commonly carried out using normal PCR and culture-based isolation. However, normal PCR does not differentiate between live and dead cells, potentially resulting in the incorrect estimation of the amount of infectious substance in a sample. Such an incorrect estimation could result in unnecessary phytosanitary strategies and control measures. This study attempts to establish a specific assay for detecting only live Psa bacterial cells. To achieve this, a pair of strain-specific primers designed from HopZ3 effector were used, and the traditional PCR method was assessed using a nucleic acid-binding dye (propidium monoazide-PMA), establishing a PMA-PCR system and conditions for detecting live Psa in this study. Sensitivity tests showed a detection limit of 10 cfu/mL and 1 pg/μL. This method was also tested in diseased kiwifruit tissues and can be seen as a rapid and dependable replacement to PCR methods for detecting only those infective kiwifruit materials with viable Psa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Guoshu Gong
- Plant Protection Department and Major Crop Disease Laboratory, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (Y.L.); (W.L.); (Y.L.); (W.C.); (S.Z.); (C.W.); (K.Y.); (R.Y.); (M.M.)
| |
Collapse
|
2
|
Liu L, Huang A, Zhang H, Li Y, Wang L. Bacteriophage LDT325 enhances Pseudomonas syringae tolerance by improving antioxidant defense in tea plant [ Camellia sinensis (L.) O. Kuntze]. Front Microbiol 2025; 15:1525040. [PMID: 39850129 PMCID: PMC11756515 DOI: 10.3389/fmicb.2024.1525040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/16/2024] [Indexed: 01/25/2025] Open
Abstract
Bud blight caused by Pseudomonas syringae is a serious disease affecting tea plants and causing severe damage to production output and quality. Phages play an important role in controlling the development of bacterial diseases in plants. Previous studies have shown that the tolerance of phage-treated tea plants to bud blight was notably greater compared with that of the control group. In the present study, we determined the effect of bacteriophage therapy on physiological and biochemical parameters of tea leaves. Transmission electron microscopy (TEM) was used to analyze the cellular structure of tea leaves, and bioinformatics was used to analyze the phage. Results revealed that bacteriophage treatment can enhance the expression of antioxidant enzyme genes (CsSOD, CsCAT, and CsPOD). The levels of osmotic adjustment compounds, including proline and soluble sugars, were also elevated, suggesting that bacteriophage enhances the osmotic adjustment capacity in tea plants. TEM analysis revealed that the integrity of the cell structure of the tea leaves treated with phage was notably better compared with that of the control group. Interestingly, we also observed that the phage lysed the animal pathogen Salmonella as well as the plant pathogen P. syringae. Using NCBI BLASTn to compare the entire genome with other nucleotide sequences, we found that the phage LDT325 exhibited cross-species characteristics that had not been previously reported. In summary, our findings demonstrate that bacteriophages can protect tea plants from damage caused by bacterial diseases by regulating antioxidant systems.
Collapse
Affiliation(s)
- Li Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Anqi Huang
- College of Agriculture and Biology, Liaocheng University, Liaocheng, China
| | - Hua Zhang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Yubao Li
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
| | - Lei Wang
- School of Pharmaceutical Sciences and Food Engineering, Liaocheng University, Liaocheng, China
- National Key Laboratory of Macromolecular Drug Development and Manufacturing, Liaocheng University, Liaocheng, China
| |
Collapse
|
3
|
Hamidizade M, Taghavi SM, Soleimani A, Bouazar M, Abachi H, Portier P, Osdaghi E. Wild mushrooms as potential reservoirs of plant pathogenic bacteria: a case study on Burkholderia gladioli. Microbiol Spectr 2024; 12:e0339523. [PMID: 38380912 PMCID: PMC10986547 DOI: 10.1128/spectrum.03395-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024] Open
Abstract
Fruit bodies (sporocarps) of wild mushrooms growing in natural environments play a substantial role in the preservation of microbial communities, for example, clinical and food-poisoning bacteria. However, the role of wild mushrooms as natural reservoirs of plant pathogenic bacteria remains almost entirely unknown. Furthermore, bacterial transmission from a mushroom species to agricultural plants has rarely been recorded in the literature. In September 2021, a creamy-white Gram-negative bacterial strain was isolated from the sporocarp of Suillus luteus (slippery jack) growing in Bermuda grass (Cynodon dactylon) lawn in Southern Iran. A similar strain was isolated from the same fungus in the same area in September 2022. Both strains were identified as Burkholderia gladioli based on phenotypic features as well as phylogeny of 16S rRNA and three housekeeping genes. The strains were not only pathogenic on white button mushrooms (Agaricus bisporus) but also induced hypersensitive reaction (HR) on tobacco and common bean leaves and caused soft rot on a set of diverse plant species, that is, chili pepper, common bean pod, cucumber, eggplant, garlic, gladiolus, narcissus, onion, potato, spring onion, okra, kohlrabi, mango, and watermelon. Isolation of plant pathogenic B. gladioli strains from sporocarp of S. luteus in two consecutive years in the same area could be indicative of the role of this fungus in the preservation of the bacterium in the natural environment. B. gladioli associated with naturally growing S. luteus could potentially invade neighboring agricultural crops, for example, vegetables and ornamentals. The potential role of wild mushrooms as natural reservoirs of phytopathogenic bacteria is further discussed.IMPORTANCEThe bacterial genus Burkholderia contains biologically heterogeneous strains that can be isolated from diverse habitats, that is, soil, water, diseased plant material, and clinical specimens. In this study, two Gram-negative pectinolytic bacterial strains were isolated from the sporocarps of Suillus luteus in September 2021 and 2022. Molecular phylogenetic analyses revealed that both strains belonged to the complex species Burkholderia gladioli, while the pathovar status of the strains remained undetermined. Biological investigations accomplished with pathogenicity and host range assays showed that B. gladioli strains isolated from S. luteus in two consecutive years were pathogenic on a set of diverse plant species ranging from ornamentals to both monocotyledonous and dicotyledonous vegetables. Thus, B. gladioli could be considered an infectious pathogen capable of being transmitted from wild mushrooms to annual crops. Our results raise a hypothesis that wild mushrooms could be considered as potential reservoirs for phytopathogenic B. gladioli.
Collapse
Affiliation(s)
- Mozhde Hamidizade
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - S. Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Ardavan Soleimani
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Mohammad Bouazar
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hamid Abachi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Perrine Portier
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
- Center for International Scientific Studies and Collaborations (CISSC) of Iran, Tehran, Iran
| |
Collapse
|
4
|
Liu L, Wang B, Huang A, Zhang H, Li Y, Wang L. Biological characteristics of the bacteriophage LDT325 and its potential application against the plant pathogen Pseudomonas syringae. Front Microbiol 2024; 15:1370332. [PMID: 38533332 PMCID: PMC10964948 DOI: 10.3389/fmicb.2024.1370332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024] Open
Abstract
Bud blight disease caused by Pseudomonas syringae is a major bacterial disease of tea plants in China. Concerns regarding the emergence of bacterial resistance to conventional copper controls have indicated the need to devise new methods of disease biocontrol. Phage-based biocontrol may be a sustainable approach to combat bacterial pathogens. In this study, a P. syringae phage was isolated from soil samples. Based on morphological characteristics, bacteriophage vB_PsS_LDT325 belongs to the Siphoviridae family; it has an icosahedral head with a diameter of 53 ± 1 nm and nonretractable tails measuring 110 ± 1 nm. The latent period and burst size of the phage were 10 min and 17 plaque-forming units (PFU)/cell, respectively. Furthermore, an analysis of the biological traits showed that the optimal multiplicity of infection (MOI) of the phage was 0.01. When the temperature exceeded 60°C, the phage titer began to decrease. The phage exhibited tolerance to a wide range of pH (3-11) and maintained relatively stable pH tolerance. It showed a high tolerance to chloroform, but was sensitive to ultraviolet (UV) light. The effects of phage LDT325 in treating P. syringae infections in vivo were evaluated using a tea plant. Plants were inoculated with 2 × 107 colony-forming units (CFU)/mL P. syringae using the needle-prick method and air-dried. Subsequently, plants were inoculated with 2 × 107 PFU/mL LDT325 phage. Compared with control plants, the bacterial count was reduced by 1 log10/0.5 g after 4 days in potted tea plants inoculated with the phage. These results underscore the phage as a potential antibacterial agent for controlling P. syringae.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Wang
- College of Agriculture and Agricultural Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
5
|
Tarakanov RI, Ignatov AN, Dzhalilov FSU. Genetic and phenotypical diversity of Pseudomonas syringae population in the Russian Federation. BRAZ J BIOL 2024; 84:e264224. [DOI: 10.1590/1519-6984.264224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 07/29/2022] [Indexed: 11/07/2022] Open
Abstract
Abstract Proteobacteria comprising species of Pseudomonas syringae group cause diseases of many plants around the world. The phytopathogen has a complex taxonomic structure, which is constantly being revised due to the emergence of new molecular and biochemical diagnostic methods. Here for the first time, we describe the genetic and phenotypic diversity of 57 strains of Pseudomonas syringae isolated from affected soybeans, cereals, sunflowers, and other plants in the Russian Federation from 1950 to 2019. Genetic diversity was assessed by Multi Locus Sequence Analysis (MLSA) using fragments of the genes of glyceraldehyde-3-phosphate dehydrogenase (gapdh), the DNA-directed RNA polymerase subunit D (rpoD), gyrase (topoisomerase) B subunit (gyrB), and citrate synthase I (gltA). The synthesis of syringomycin and coronatine by bacteria was assessed by the reaction of susceptible yeast culture, seedlings of barley, tomato, and sunflower, and by presence of toxin genes confirmed by PCR test. The pathogenicity of the strains was confirmed on seedlings of dicotyledonous and monocotyledonous plants of peas, soybean, sunflowers, barley and wheat, as the most affected crops. The sensitivity of bacteria to 10 antibiotics of the main mechanisms of activity and two bactericidal commercial products was tested by standard disc method. The obtained results showed a high genetic homogeneity of the Russian population of P. syringae, which infects various agricultural crops, and an increase in the proportion of antibiotic-resistant strains over the years.
Collapse
|
6
|
Zeng Z, Yang Z, Yang A, Li Y, Zhang H. Genetic Evidence for Colletotrichum gloeosporioides Transmission Between the Invasive Plant Ageratina adenophora and Co-occurring Neighbor Plants. MICROBIAL ECOLOGY 2023; 86:2192-2201. [PMID: 37166500 DOI: 10.1007/s00248-023-02237-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/03/2023] [Indexed: 05/12/2023]
Abstract
To understand the disease-mediated invasion of exotic plants and the potential risk of disease transmission in local ecosystems, it is necessary to characterize population genetic structure and spatio-temporal dynamics of fungal community associated with both invasive and co-occurring plants. In this study, multiple genes were used to characterize the genetic diversity of 165 strains of Colletotrichum gloeosporioides species complex (CGSC) isolated from healthy leaves and symptomatic leaves of invasive plant Ageratina adenophora, as well as symptomatic leaves of its neighbor plants from eleven geographic sites in China. The data showed that these CGSC strains had a high genetic diversity in each geographic site (all Hd > 0.67 and Pi > 0.01). Haplotype diversity and nucleotide diversity varied greatly in individual gene locus: gs had the highest haplotype diversity (Hd = 0.8972), gapdh had the highest nucleotide diversity (Pi = 0.0705), and ITS had the lowest nucleotide diversity (Pi = 0.0074). Haplotypes were not clustered by geographic site, invasive age, or isolation source. AMOVA revealed that the genetic variation was mainly from within-populations, regardless of geographic or isolation origin. Both AMOVA and neutrality tests indicated these CGSC strains occurred gene exchange among geographic populations but did not experience population expansion along with A. adenophora invasion progress. Our data indicated that A. adenophora primarily accumulated these CGSC fungi in the introduced range, suggesting a high frequency of CGSC transmission between A. adenophora and co-occurring neighbor plants. This study is valuable for understanding the disease-mediated plant invasion and the potential risk of disease transmission driven by exotic plants in local ecosystems.
Collapse
Affiliation(s)
- ZhaoYing Zeng
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - ZhiPing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - AiLing Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - YuXuan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - HanBo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
7
|
Pei Y, Ma L, Zheng X, Yao K, Fu X, Chen H, Chang X, Zhang M, Gong G. Identification and Genetic Characterization of Pseudomonas syringae pv. actinidiae from Kiwifruit in Sichuan, China. PLANT DISEASE 2023; 107:3248-3258. [PMID: 37005505 DOI: 10.1094/pdis-01-23-0005-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Pseudomonas syringae pv. actinidiae causes kiwifruit bacterial canker and poses a major threat to the kiwifruit industry. This study aimed to investigate the genetic characteristics of the P. syringae pv. actinidiae population from kiwifruit in Sichuan, China. Sixty-seven isolates obtained from diseased plants were characterized using morphological features, multiplex-PCR, and multilocus sequence analysis (MLSA). The isolates exhibited the typical colony morphology of P. syringae pv. actinidiae. Multiplex PCR amplification identified every isolate as P. syringae pv. actinidiae biovar 3. MLSA of the three housekeeping genes gapA, gyrB, and pfk, revealed that the reference strains of the five described biovars were clearly distinguished by a combined phylogenetic tree, and all of the tested isolates clustered with the reference strains of P. syringae pv. actinidiae biovar 3. Through a phylogenetic tree constructed from a single gene, it was found that pkf gene alone could distinguish biovar 3 from the other biovars. Furthermore, all P. syringae pv. actinidiae isolates analyzed by BOX-A1R-based repetitive extragenic palindromic (BOX)-PCR and enterobacterial repetitive intergenic consensus (ERIC)-PCR clustered into four groups. The clustering results of BOX- and ERIC-PCR indicated that group III had the largest number of isolates, accounting for 56.72 and 61.19% of all 67 isolates, respectively, and the two characterization methods were similar and complementary. The results of this study revealed that the genomes of P. syringae pv. actinidiae isolates from Sichuan had rich genetic diversity but no obvious correlation was found between clustering and geographical region. This research provides novel methodologies for rapidly detecting kiwifruit bacterial canker pathogen and a molecular differentiation at genetic level of P. syringae pv. actinidiae biovar diversity in China.
Collapse
Affiliation(s)
- Yangang Pei
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Li Ma
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
- Plant Protection Station, Sichuan Provincial Department of Agriculture and Rural Affairs, Chengdu 610041, P.R. China
| | - Xiaojuan Zheng
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Kaikai Yao
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xiangru Fu
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Huabao Chen
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Xiaoli Chang
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Ming Zhang
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| | - Guoshu Gong
- Department of Plant Pathology, Sichuan Agricultural University, Chengdu 611130, P.R. China
| |
Collapse
|
8
|
Jayaraman J, Yoon M, Hemara LM, Bohne D, Tahir J, Chen RKY, Brendolise C, Rikkerink EHA, Templeton MD. Contrasting effector profiles between bacterial colonisers of kiwifruit reveal redundant roles converging on PTI-suppression and RIN4. THE NEW PHYTOLOGIST 2023; 238:1605-1619. [PMID: 36856342 DOI: 10.1111/nph.18848] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Testing effector knockout strains of the Pseudomonas syringae pv. actinidiae biovar 3 (Psa3) for reduced in planta growth in their native kiwifruit host revealed a number of nonredundant effectors that contribute to Psa3 virulence. Conversely, complementation in the weak kiwifruit pathogen P. syringae pv. actinidifoliorum (Pfm) for increased growth identified redundant Psa3 effectors. Psa3 effectors hopAZ1a and HopS2b and the entire exchangeable effector locus (ΔEEL; 10 effectors) were significant contributors to bacterial colonisation of the host and were additive in their effects on virulence. Four of the EEL effectors (HopD1a, AvrB2b, HopAW1a and HopD2a) redundantly contribute to virulence through suppression of pattern-triggered immunity (PTI). Important Psa3 effectors include several redundantly required effectors early in the infection process (HopZ5a, HopH1a, AvrPto1b, AvrRpm1a and HopF1e). These largely target the plant immunity hub, RIN4. This comprehensive effector profiling revealed that Psa3 carries robust effector redundancy for a large portion of its effectors, covering a few functions critical to disease.
Collapse
Affiliation(s)
- Jay Jayaraman
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Minsoo Yoon
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Lauren M Hemara
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Deborah Bohne
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Jibran Tahir
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Ronan K Y Chen
- The New Zealand Institute for Plant and Food Research Ltd, Food Industry Science Centre, Palmerston North, 4472, New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Erik H A Rikkerink
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
| | - Matthew D Templeton
- The New Zealand Institute for Plant and Food Research Ltd, Mt. Albert Research Centre, Auckland, 1025, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, 1010, New Zealand
- Bioprotection Aotearoa, Lincoln, 7647, New Zealand
| |
Collapse
|
9
|
Hulin MT, Rabiey M, Zeng Z, Vadillo Dieguez A, Bellamy S, Swift P, Mansfield JW, Jackson RW, Harrison RJ. Genomic and functional analysis of phage-mediated horizontal gene transfer in Pseudomonas syringae on the plant surface. THE NEW PHYTOLOGIST 2023; 237:959-973. [PMID: 36285389 PMCID: PMC10107160 DOI: 10.1111/nph.18573] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Many strains of Pseudomonas colonise plant surfaces, including the cherry canker pathogens, Pseudomonas syringae pathovars syringae and morsprunorum. We have examined the genomic diversity of P. syringae in the cherry phyllosphere and focused on the role of prophages in transfer of genes encoding Type 3 secreted effector (T3SE) proteins contributing to the evolution of virulence. Phylogenomic analysis was carried out on epiphytic pseudomonads in the UK orchards. Significant differences in epiphytic populations occurred between regions. Nonpathogenic strains were found to contain reservoirs of T3SE genes. Members of P. syringae phylogroups 4 and 10 were identified for the first time from Prunus. Using bioinformatics, we explored the presence of the gene encoding T3SE HopAR1 within related prophage sequences in diverse P. syringae strains including cherry epiphytes and pathogens. Results indicated that horizontal gene transfer (HGT) of this effector between phylogroups may have involved phage. Prophages containing hopAR1 were demonstrated to excise, circularise and transfer the gene on the leaf surface. The phyllosphere provides a dynamic environment for prophage-mediated gene exchange and the potential for the emergence of new more virulent pathotypes. Our results suggest that genome-based epidemiological surveillance of environmental populations will allow the timely application of control measures to prevent damaging diseases.
Collapse
Affiliation(s)
- Michelle T. Hulin
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- The Sainsbury LaboratoryNorwichNR4 7UHUK
| | - Mojgan Rabiey
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Ziyue Zeng
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
| | | | | | - Phoebe Swift
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | | | - Robert W. Jackson
- School of Biosciences and the Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamB15 2TTUK
| | - Richard J. Harrison
- NIABLawrence Weaver RoadCambridgeCB3 0LEUK
- Present address:
Plant Science GroupWageningen University and ResearchWageningen6708WBthe Netherlands
| |
Collapse
|
10
|
Ishiga T, Sakata N, Usuki G, Nguyen VT, Gomi K, Ishiga Y. Large-Scale Transposon Mutagenesis Reveals Type III Secretion Effector HopR1 Is a Major Virulence Factor in Pseudomonas syringae pv. actinidiae. PLANTS (BASEL, SWITZERLAND) 2022; 12:plants12010141. [PMID: 36616271 PMCID: PMC9823363 DOI: 10.3390/plants12010141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 05/27/2023]
Abstract
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production worldwide. Four biovars (Psa biovar 1; Psa1, Psa biovar 3; Psa3, Psa biovar 5; Psa5, and Psa biovar 6; Psa6) were reported in Japan, and virulent Psa3 strains spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the dynamic interactions between Psa and kiwifruit. To investigate the molecular mechanism of Psa3 infection, we developed a rapid and reliable high-throughput flood-inoculation method using kiwifruit seedlings. Using this inoculation method, we screened 3000 Psa3 transposon insertion mutants and identified 91 reduced virulence mutants and characterized the transposon insertion sites in these mutants. We identified seven type III secretion system mutants, and four type III secretion effectors mutants including hopR1. Mature kiwifruit leaves spray-inoculated with the hopR1 mutant showed significantly reduced virulence compared to Psa3 wild-type, indicating that HopR1 has a critical role in Psa3 virulence. Deletion mutants of hopR1 in Psa1, Psa3, Psa5, and Psa6 revealed that the type III secretion effector HopR1 is a major virulence factor in these biovars. Moreover, hopR1 mutants of Psa3 failed to reopen stomata on kiwifruit leaves, suggesting that HopR1 facilitates Psa entry through stomata into plants. Furthermore, defense related genes were highly expressed in kiwifruit plants inoculated with hopR1 mutant compared to Psa wild-type, indicating that HopR1 suppresses defense-related genes of kiwifruit. These results suggest that HopR1 universally contributes to virulence in all Psa biovars by overcoming not only stomatal-based defense, but also apoplastic defense.
Collapse
Affiliation(s)
- Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Giyu Usuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| | - Viet Tru Nguyen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
- Western Highlands Agriculture and Forestry Science Institute, 53 Nguyen Luong Bang Street, Buon Ma Thuot City 630000, Vietnam
| | - Kenji Gomi
- Faculty of Agriculture, Kagawa University, Miki 761-0795, Kagawa, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Ibaraki, Japan
| |
Collapse
|
11
|
Mariz-Ponte N, Gimranov E, Rego R, Moura L, Santos C, Tavares F. Distinct phenotypic behaviours within a clonal population of Pseudomonas syringae pv. actinidiae. PLoS One 2022; 17:e0269343. [PMID: 35679321 PMCID: PMC9182710 DOI: 10.1371/journal.pone.0269343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Bacterial canker of the kiwifruit caused by the etiological agent Pseudomonas syringae pv. actinidiae is the most severe disease in kiwifruit production. Since 2008 a hypervirulent Psa biovar 3 has spread rapidly worldwide. Different genomic and phenotypic approaches have been used to understand the origin of the dissemination and geographical evolution of populations associated with this pandemic. This study aimed to characterize the genetic and phenotypic diversity of 22 Psa isolates collected in different regions of Portugal between 2013 and 2017. Genotypic and phenotypic characterization was based on Multi-Locus Sequence Analysis (MLSA), motility, IAA production, Biolog GEN III, and copper sensitivity. No polymorphisms were detected for the concatenated sequence (1950 bp) of the housekeeping genes gltA, gapA, gyrB, and rpoD. Results support the analysed Portuguese Psa isolates (2013–2017) belonging to Psa3, and MLSA indicates high genetic clonality and stability of these populations. The phenotypic analysis through Biolog revealed a heterogeneous pattern in the Psa collection and its position in the Pseudomonas complex. This heterogeneity reflects a genomic diversity that may reflect distinct adaptive trends associated with the environmental conditions and widespread. The Portuguese Psa collection showed no resistance to copper. This information is relevant to kiwi producers that predominantly use Cu-treatments to control kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Nuno Mariz-Ponte
- Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
- CIBIO-Research Centre in Biodiversity and Genetic Resources, In-BIO-Associate Laboratory, Campus de Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
- * E-mail:
| | - Emil Gimranov
- Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
| | - Rute Rego
- CISAS—Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Luísa Moura
- CISAS—Centre for Research and Development in Agrifood Systems and Sustainability, Instituto Politécnico de Viana do Castelo, Viana do Castelo, Portugal
| | - Conceição Santos
- Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
- LAQV-REQUIMTE, Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
| | - Fernando Tavares
- Biology Department, Faculty of Sciences, University of Porto (FCUP), Porto, Portugal
- CIBIO-Research Centre in Biodiversity and Genetic Resources, In-BIO-Associate Laboratory, Campus de Vairão, University of Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
| |
Collapse
|
12
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative Genomics of Prunus-Associated Members of the Pseudomonas syringae Species Complex Reveals Traits Supporting Co-evolution and Host Adaptation. Front Microbiol 2022; 13:804681. [PMID: 35592008 PMCID: PMC9111521 DOI: 10.3389/fmicb.2022.804681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
13
|
Hu M, Li C, Zhou X, Xue Y, Wang S, Hu A, Chen S, Mo X, Zhou J. Microbial Diversity Analysis and Genome Sequencing Identify Xanthomonas perforans as the Pathogen of Bacterial Leaf Canker of Water Spinach ( Ipomoea aquatic). Front Microbiol 2021; 12:752760. [PMID: 34777306 PMCID: PMC8579042 DOI: 10.3389/fmicb.2021.752760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ipomoea aquatica is a leafy vegetable widely cultivated in tropical Asia, Africa, and Oceania. Bacterial leaf canker disease has been attacking the planting fields and seriously affecting the quality of I. aquatica in epidemic areas in China. This study examined the microbial composition of I. aquatica leaves with classical symptoms of spot disease. The results showed that Xanthomonas was overwhelmingly dominant in all four diseased leaf samples but rarely present in rhizospheric soil or irrigation water samples. In addition, Pantoea was also detected in two of the diseased leaf samples. Pathogen isolation, identification, and inoculation revealed that both Xanthomonas sp. TC2-1 and P. ananatis were pathogenic to the leaves of I. aquatic, causing crater-shaped ulcerative spots and yellowing with big brown rot lesions on leaves, respectively. We further sequenced the whole genome of strain TC2-1 and showed that it is a member of X. perforans. Overall, this study identified X. perforans as the causal pathogen of I. aquatica bacterial leaf canker, and P. ananatis as a companion pathogen causing yellowing and brown rot on leaves. The correct identification of the pathogens will provide important basis for future efforts to formulate targeted application strategy for bacterial disease control.
Collapse
Affiliation(s)
- Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Si Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiuwen Mo
- Agricultural Technology Service Centre of Daojiao Town, Dongguan, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Sebastià P, de Pedro-Jové R, Daubech B, Kashyap A, Coll NS, Valls M. The Bacterial Wilt Reservoir Host Solanum dulcamara Shows Resistance to Ralstonia solanacearum Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:755708. [PMID: 34868145 PMCID: PMC8636001 DOI: 10.3389/fpls.2021.755708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/04/2021] [Indexed: 06/12/2023]
Abstract
Ralstonia solanacearum causes bacterial wilt, a devastating plant disease, responsible for serious losses on many crop plants. R. solanacearum phylotype II-B1 strains have caused important outbreaks in temperate regions, where the pathogen has been identified inside asymptomatic bittersweet (Solanum dulcamara) plants near rivers and in potato fields. S. dulcamara is a perennial species described as a reservoir host where R. solanacearum can overwinter, but their interaction remains uncharacterised. In this study, we have systematically analysed R. solanacearum infection in S. dulcamara, dissecting the behaviour of this plant compared with susceptible hosts such as tomato cv. Marmande, for which the interaction is well described. Compared with susceptible tomatoes, S. dulcamara plants (i) show delayed symptomatology and bacterial progression, (ii) restrict bacterial movement inside and between xylem vessels, (iii) limit bacterial root colonisation, and (iv) show constitutively higher lignification in the stem. Taken together, these results demonstrate that S. dulcamara behaves as partially resistant to bacterial wilt, a property that is enhanced at lower temperatures. This study proves that tolerance (i.e., the capacity to reduce the negative effects of infection) is not required for a wild plant to act as a reservoir host. We propose that inherent resistance (impediment to colonisation) and a perennial habit enable bittersweet plants to behave as reservoirs for R. solanacearum.
Collapse
Affiliation(s)
- Pau Sebastià
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| | - Benoit Daubech
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Anurag Kashyap
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Spain
- Department of Genetics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
15
|
Bautista-Jalón LS, Frenkel O, Tsror Lahkim L, Malcolm GM, Gugino BK, Lebiush S, Hazanovsky M, Milgroom MG, Del Mar Jiménez-Gasco M. Genetic Differentiation of Verticillium dahliae Populations Recovered from Symptomatic and Asymptomatic Hosts. PHYTOPATHOLOGY 2021; 111:149-159. [PMID: 33079020 DOI: 10.1094/phyto-06-20-0230-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Verticillium dahliae is a soilborne fungal pathogen affecting many economically important crops that can also infect weeds and rotational crops with no apparent disease symptoms. The main research goal was to test the hypothesis that V. dahliae populations recovered from asymptomatic rotational crops and weed species are evolutionarily and genetically distinct from symptomatic hosts. We collected V. dahliae isolates from symptomatic and asymptomatic hosts growing in fields with histories of Verticillium wilt of potato in Israel and Pennsylvania (United States), and used genotyping-by-sequencing to analyze the evolutionary history and genetic differentiation between populations of different hosts. A phylogeny inferred from 26,934 single-nucleotide polymorphisms (SNPs) in 126 V. dahliae isolates displayed a highly clonal structure correlated with vegetative compatibility groups, and isolates grouped in lineages 2A, 2B824, 4A, and 4B, with 77% of the isolates in lineage 4B. The lineages identified in this study were differentiated by host of origin; we found 2A, 2B824, and 4A only in symptomatic hosts but isolates from asymptomatic hosts (weeds, oat, and sorghum) grouped exclusively within lineage 4B, and were genetically indistinguishable from 4B isolates sampled from symptomatic hosts (potato, eggplant, and avocado). Using coalescent analysis of 158 SNPs of lineage 4B, we inferred a genealogy with clades that correlated with geographic origin. In contrast, isolates from asymptomatic and symptomatic hosts shared some of the same haplotypes and were not differentiated. We conclude that asymptomatic weeds and rotational hosts may be potential reservoirs for V. dahliae populations of lineage 4B, which are pathogenic to many cultivated hosts.
Collapse
Affiliation(s)
- Laura S Bautista-Jalón
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Volcani Center, Rishon Lezion 7528809, Israel
| | - Leah Tsror Lahkim
- Department of Plant Pathology and Weed Research, Gilat Center, M.P. Negev, 8531100, Israel
| | - Glenna M Malcolm
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Beth K Gugino
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Sara Lebiush
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Marina Hazanovsky
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Michael G Milgroom
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY 14853, U.S.A
| | - María Del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
16
|
Hulin MT, Jackson RW, Harrison RJ, Mansfield JW. Cherry picking by pseudomonads: After a century of research on canker, genomics provides insights into the evolution of pathogenicity towards stone fruits. PLANT PATHOLOGY 2020; 69:962-978. [PMID: 32742023 PMCID: PMC7386918 DOI: 10.1111/ppa.13189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 05/10/2023]
Abstract
Bacterial canker disease is a major limiting factor in the growing of cherry and other Prunus species worldwide. At least five distinct clades within the bacterial species complex Pseudomonas syringae are known to be causal agents of the disease. The different pathogens commonly coexist in the field. Reducing canker is a challenging prospect as the efficacy of chemical controls and host resistance may vary against each of the diverse clades involved. Genomic analysis has revealed that the pathogens use a variable repertoire of virulence factors to cause the disease. Significantly, strains of P. syringae pv. syringae possess more genes for toxin biosynthesis and fewer encoding type III effector proteins. There is also a shared pool of key effector genes present on mobile elements such as plasmids and prophages that may have roles in virulence. By contrast, there is evidence that absence or truncation of certain effector genes, such as hopAB, is characteristic of cherry pathogens. Here we highlight how recent research, underpinned by the earlier epidemiological studies, is allowing significant progress in our understanding of the canker pathogens. This fundamental knowledge, combined with emerging insights into host genetics, provides the groundwork for development of precise control measures and informed approaches to breed for disease resistance.
Collapse
Affiliation(s)
| | - Robert W. Jackson
- Birmingham Institute of Forest Research (BIFoR), University of BirminghamBirminghamUK
- School of Biosciences, University of BirminghamBirminghamUK
| | | | | |
Collapse
|
17
|
Donati I, Cellini A, Sangiorgio D, Vanneste JL, Scortichini M, Balestra GM, Spinelli F. Pseudomonas syringae pv. actinidiae: Ecology, Infection Dynamics and Disease Epidemiology. MICROBIAL ECOLOGY 2020; 80:81-102. [PMID: 31897570 PMCID: PMC7223186 DOI: 10.1007/s00248-019-01459-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 11/04/2019] [Indexed: 05/06/2023]
Abstract
Since 2008, the kiwifruit industry has been devastated by a pandemic outbreak of Pseudomonas syringae pv. actinidiae (Psa), the causal agent of bacterial canker. This disease has become the most significant limiting factor in kiwifruit production. Psa colonizes different organs of the host plant, causing a specific symptomatology on each of them. In addition, the systemic invasion of the plant may quickly lead to plant death. Despite the massive risk that this disease poses to the kiwifruit industry, studies focusing on Psa ecology have been sporadic, and a comprehensive description of the disease epidemiology is still missing. Optimal environmental conditions for infection, dispersal and survival in the environment, or the mechanisms of penetration and colonization of host tissues have not been fully elucidated yet. The present work aims to provide a synthesis of the current knowledge, and a deeper understanding of the epidemiology of kiwifruit bacterial canker based on new experimental data. The pathogen may survive in the environment or overwinter in dormant tissues and be dispersed by wind or rain. Psa was observed in association with several plant structures (stomata, trichomes, lenticels) and wounds, which could represent entry points for apoplast infection. Environmental conditions also affect the bacterial colonization, with lower optimum values of temperature and humidity for epiphytic than for endophytic growth, and disease incidence requiring a combination of mild temperature and leaf wetness. By providing information on Psa ecology, these data sets may contribute to plan efficient control strategies for kiwifruit bacterial canker.
Collapse
Affiliation(s)
- Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy
| | - Daniela Sangiorgio
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy
| | - Joel L Vanneste
- The New Zealand Institute for Plant & Food Research Ltd, Ruakura Research Centre, Bisley Road, Ruakura, Private Bag 3123, Hamilton, 3240, New Zealand
| | - Marco Scortichini
- Council for research in agriculture and economics (CREA), Research Centre for Olive, Fruit Trees and Citrus, Via di Fioranello, 52, I-00134, Rome, Italy
| | - Giorgio M Balestra
- Department for Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis snc -, 01100, Viterbo, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum-University of Bologna, viale Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
18
|
Ishiga T, Sakata N, Nguyen VT, Ishiga Y. Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit. JOURNAL OF GENERAL PLANT PATHOLOGY : JGPP 2020; 86:257-265. [PMID: 32412555 PMCID: PMC7222055 DOI: 10.1007/s10327-020-00916-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/12/2019] [Indexed: 06/01/2023]
Abstract
Bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae (Psa) is a serious threat to kiwifruit production. Highly virulent strains of Psa biovar3 (Psa3) have spread rapidly to kiwifruit production areas worldwide. Therefore, there is an urgent need to develop critical management strategies for bacterial canker based on dissecting the interactions between Psa and kiwifruit. Here, we developed a rapid and reliable flood-inoculation method using kiwifruit seedlings grown on Murashige and Skoog medium. This method has several advantages over inoculation of conventional soil-grown plants. We demonstrated the utility of a kiwifruit seedling assay to study the virulence of Psa biovars and Psa3 virulence factors, including the type III secretion system (T3SS). Kiwifruit seedlings inoculated with Psa3 developed severe necrosis within 1 week, whereas those inoculated with a T3SS-deficient hrcN mutant of Psa3 did not. This method was also useful for analyzing expression profiles of genes involved in Psa3 virulence during infection, and revealed that the expression of genes encoding the T3SS and type III secreted effectors were strongly induced in planta. Our results indicate that the T3SS has an important role in Psa3 virulence, and the flood-inoculation assay using kiwifruit seedling is suitable for analyzing Psa and kiwifruit interactions.
Collapse
Affiliation(s)
- Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Viet Tru Nguyen
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572 Japan
| |
Collapse
|
19
|
Gerin D, Cariddi C, de Miccolis Angelini RM, Rotolo C, Dongiovanni C, Faretra F, Pollastro S. First Report of Pseudomonas Grapevine Bunch Rot Caused by Pseudomonas syringae pv. syringae. PLANT DISEASE 2019; 103:1954-1960. [PMID: 31169085 DOI: 10.1094/pdis-11-18-1992-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas syringae pv. syringae, a Gammaproteobacterium belonging to genomospecies 2 within the P. syringae complex, is distributed worldwide, and it is responsible for bacterial canker on >100 different hosts, including the grapevine. P. syringae pv. syringae induces necrotic lesions in the leaf blades, veins, petioles, shoots, rachis, and tendrils on grapevine cultivars in different areas. P. syringae pv. syringae has been associated with severe economic losses in different grape cultivars in Australia, where it causes inflorescence rot. In midsummer to late summer 2017, symptoms of berry rots differing from those caused by the common berry rots agents were observed in different cultivar Red Globe vineyards of Apulia (southern Italy). As proven by fulfillment of Koch's postulates, these symptoms were caused by a bacterium that, according to the results of biochemical, physiological, nutritional, antimicrobial activity, and pathogenicity tests and sequencing of 16S ribosomal DNA, gyrB, rpoB, and rpoD genes, was identified as P. syringae pv. syringae. This is the first report of Pseudomonas grapevine bunch rot.
Collapse
Affiliation(s)
- D Gerin
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - C Cariddi
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - R M de Miccolis Angelini
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- 2Selge Network, University of Bari Aldo Moro, 70126 Bari, Italy
| | - C Rotolo
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - C Dongiovanni
- 3Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile Caramia," 70010 Locorotondo, Italy
| | - F Faretra
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- 2Selge Network, University of Bari Aldo Moro, 70126 Bari, Italy
| | - S Pollastro
- 1Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
- 2Selge Network, University of Bari Aldo Moro, 70126 Bari, Italy
| |
Collapse
|
20
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp. BMC Genomics 2019; 20:172. [PMID: 30836956 PMCID: PMC6402114 DOI: 10.1186/s12864-019-5555-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 02/22/2019] [Indexed: 11/22/2022] Open
Abstract
Background Diseases on Prunus spp. have been associated with a large number of phylogenetically different pathovars and species within the P. syringae species complex. Despite their economic significance, there is a severe lack of genomic information of these pathogens. The high phylogenetic diversity observed within strains causing disease on Prunus spp. in nature, raised the question whether other strains or species within the P. syringae species complex were potentially pathogenic on Prunus spp. Results To gain insight into the genomic potential of adaptation and virulence in Prunus spp., a total of twelve de novo whole genome sequences of P. syringae pathovars and species found in association with diseases on cherry (sweet, sour and ornamental-cherry) and peach were sequenced. Strains sequenced in this study covered three phylogroups and four clades. These strains were screened in vitro for pathogenicity on Prunus spp. together with additional genome sequenced strains thus covering nine out of thirteen of the currently defined P. syringae phylogroups. Pathogenicity tests revealed that most of the strains caused symptoms in vitro and no obvious link was found between presence of known virulence factors and the observed pathogenicity pattern based on comparative genomics. Non-pathogenic strains were displaying a two to three times higher generation time when grown in rich medium. Conclusion In this study, the first set of complete genomes of cherry associated P. syringae strains as well as the draft genome of the quarantine peach pathogen P. syringae pv. persicae were generated. The obtained genomic data were matched with phenotypic data in order to determine factors related to pathogenicity to Prunus spp. Results of this study suggest that the inability to cause disease on Prunus spp. in vitro is not the result of host specialization but rather linked to metabolic impairments of individual strains. Electronic supplementary material The online version of this article (10.1186/s12864-019-5555-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences, CH-8820, Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, 35392, Giessen, Germany
| | - Theo H M Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences, CH-8820, Wädenswil, Switzerland.
| | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences, CH-8820, Wädenswil, Switzerland
| |
Collapse
|
21
|
Hulin MT, Armitage AD, Vicente JG, Holub EB, Baxter L, Bates HJ, Mansfield JW, Jackson RW, Harrison RJ. Comparative genomics of Pseudomonas syringae reveals convergent gene gain and loss associated with specialization onto cherry (Prunus avium). THE NEW PHYTOLOGIST 2018; 219:672-696. [PMID: 29726587 DOI: 10.1111/nph.15182] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/22/2018] [Indexed: 05/12/2023]
Abstract
Genome-wide analyses of the effector- and toxin-encoding genes were used to examine the phylogenetics and evolution of pathogenicity amongst diverse strains of Pseudomonas syringae causing bacterial canker of cherry (Prunus avium), including pathovars P. syringae pv morsprunorum (Psm) races 1 and 2, P. syringae pv syringae (Pss) and P. syringae pv avii. Phylogenetic analyses revealed Psm races and P. syringae pv avii clades were distinct and were each monophyletic, whereas cherry-pathogenic strains of Pss were interspersed amongst strains from other host species. A maximum likelihood approach was used to predict effectors associated with pathogenicity on cherry. Pss possesses a smaller repertoire of type III effectors but has more toxin biosynthesis clusters than Psm and P. syringae pv avii. Evolution of cherry pathogenicity was correlated with gain of genes such as hopAR1 and hopBB1 through putative phage transfer and horizontal transfer respectively. By contrast, loss of the avrPto/hopAB redundant effector group was observed in cherry-pathogenic clades. Ectopic expression of hopAB and hopC1 triggered the hypersensitive reaction in cherry leaves, confirming computational predictions. Cherry canker provides a fascinating example of convergent evolution of pathogenicity that is explained by the mix of effector and toxin repertoires acting on a common host.
Collapse
Affiliation(s)
- Michelle T Hulin
- NIAB EMR, New Road, East Malling, ME19 6BJ, UK
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | | | - Joana G Vicente
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Eric B Holub
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | - Laura Baxter
- School of Life Sciences, Warwick Crop Centre, University of Warwick, Wellesbourne, CV35 9EF, UK
| | | | - John W Mansfield
- Faculty of Natural Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| | - Richard J Harrison
- NIAB EMR, New Road, East Malling, ME19 6BJ, UK
- School of Biological Sciences, University of Reading, Reading, RG6 6AJ, UK
| |
Collapse
|
22
|
Soubeyrand S, de Jerphanion P, Martin O, Saussac M, Manceau C, Hendrikx P, Lannou C. Inferring pathogen dynamics from temporal count data: the emergence of Xylella fastidiosa in France is probably not recent. THE NEW PHYTOLOGIST 2018; 219:824-836. [PMID: 29689134 PMCID: PMC6032966 DOI: 10.1111/nph.15177] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/16/2018] [Indexed: 05/08/2023]
Abstract
Unravelling the ecological structure of emerging plant pathogens persisting in multi-host systems is challenging. In such systems, observations are often heterogeneous with respect to time, space and host species, and may lead to biases of perception. The biased perception of pathogen ecology may be exacerbated by hidden fractions of the whole host population, which may act as infection reservoirs. We designed a mechanistic-statistical approach to help understand the ecology of emerging pathogens by filtering out some biases of perception. This approach, based on SIR (Susceptible-Infected-Removed) models and a Bayesian framework, disentangles epidemiological and observational processes underlying temporal counting data. We applied our approach to French surveillance data on Xylella fastidiosa, a multi-host pathogenic bacterium recently discovered in Corsica, France. A model selection led to two diverging scenarios: one scenario without a hidden compartment and an introduction around 2001, and the other with a hidden compartment and an introduction around 1985. Thus, Xylella fastidiosa was probably introduced into Corsica much earlier than its discovery, and its control could be arduous under the hidden compartment scenario. From a methodological perspective, our approach provides insights into the dynamics of emerging plant pathogens and, in particular, the potential existence of infection reservoirs.
Collapse
Affiliation(s)
| | | | | | - Mathilde Saussac
- Unit of Coordination and Support to SurveillanceANSES69364LyonFrance
| | | | - Pascal Hendrikx
- Unit of Coordination and Support to SurveillanceANSES69364LyonFrance
| | | |
Collapse
|
23
|
Baltrus DA, Orth KN. Understanding genomic diversity in Pseudomonas syringae throughout the forest and on the trees. THE NEW PHYTOLOGIST 2018; 219:482-484. [PMID: 29927494 DOI: 10.1111/nph.15269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kelly N Orth
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
24
|
Karakkat BB, Jackson VL, Koch PL. Incidence and Distribution of Puccinia coronata and P. graminis on Turfgrass in the Midwestern United States. PLANT DISEASE 2018; 102:955-963. [PMID: 30673379 DOI: 10.1094/pdis-09-17-1353-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crown rust (caused by Puccinia coronata) and stem rust (caused by P. graminis) are two common and destructive diseases of turfgrass in the United States. Crown rust has been associated with perennial ryegrass and stem rust with Kentucky bluegrass when identified based solely on fungal morphology. However, recent studies using molecular identification methods have indicated the host-pathogen relationship of rusts on turf to be more complex. Our primary objective was to quickly and accurately identify P. coronata and P. graminis in symptomatic turfgrass leaves over 3 years on turfgrass samples from across the Midwestern United States. Between 2013 and 2015, 413 samples of symptomatic cool-season turfgrass from Wisconsin and surrounding states were screened using real-time polymerase chain reaction. Of these samples, 396 were Kentucky bluegrass and 17% of them contained P. coronata, 69% contained P. graminis, and 13% contained both P. coronata and P. graminis. In addition, both year and location effects were observed on the distribution of Puccinia spp. collected annually from two locations in southern Wisconsin. This research supports previous conclusions that have identified variability among P. graminis and P. coronata host relationships on turfgrass, and further demonstrates that rust fungal populations on Kentucky bluegrass may not be consistent between locations in the same year or over multiple years at the same location. The increasing evidence of variation in the turfgrass rust populations will likely affect future rust management and turfgrass breeding efforts.
Collapse
Affiliation(s)
- Brijesh B Karakkat
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - Vonte L Jackson
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| | - Paul L Koch
- Department of Plant Pathology, University of Wisconsin-Madison, Madison 53706
| |
Collapse
|
25
|
Straub C, Colombi E, Li L, Huang H, Templeton MD, McCann HC, Rainey PB. The ecological genetics ofPseudomonas syringaefrom kiwifruit leaves. Environ Microbiol 2018. [DOI: 10.1111/1462-2920.14092] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christina Straub
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Elena Colombi
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Li Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan People's Republic of China
| | - Hongwen Huang
- Key Laboratory of Plant Germplasm Enhancement and Specialty AgricultureWuhan Botanical Garden, Chinese Academy of SciencesWuhan People's Republic of China
- Key Laboratory of Plant Resources Conservation and Sustainable UtilizationSouth China Botanical Garden, Chinese Academy of SciencesGuangzhou People's Republic of China
| | | | - Honour C. McCann
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
| | - Paul B. Rainey
- New Zealand Institute for Advanced Study, Massey UniversityAuckland New Zealand
- Max Planck Institute for Evolutionary Biology, Department of Microbial Population BiologyPlön Germany
- École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris Tech), Laboratoire de Génétique de l'EvolutionParis France
| |
Collapse
|
26
|
Caballo-Ponce E, Murillo J, Martínez-Gil M, Moreno-Pérez A, Pintado A, Ramos C. Knots Untie: Molecular Determinants Involved in Knot Formation Induced by Pseudomonas savastanoi in Woody Hosts. FRONTIERS IN PLANT SCIENCE 2017; 8:1089. [PMID: 28680437 PMCID: PMC5478681 DOI: 10.3389/fpls.2017.01089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/06/2017] [Indexed: 05/10/2023]
Abstract
The study of the molecular basis of tree diseases is lately receiving a renewed attention, especially with the emerging perception that pathogens require specific pathogenicity and virulence factors to successfully colonize woody hosts. Pathosystems involving woody plants are notoriously difficult to study, although the use of model bacterial strains together with genetically homogeneous micropropagated plant material is providing a significant impetus to our understanding of the molecular determinants leading to disease. The gammaproteobacterium Pseudomonas savastanoi belongs to the intensively studied Pseudomonas syringae complex, and includes three pathogenic lineages causing tumorous overgrowths (knots) in diverse economically relevant trees and shrubs. As it occurs with many other bacteria, pathogenicity of P. savastanoi is dependent on a type III secretion system, which is accompanied by a core set of at least 20 effector genes shared among strains isolated from olive, oleander, and ash. The induction of knots of wild-type size requires that the pathogen maintains adequate levels of diverse metabolites, including the phytohormones indole-3-acetic acid and cytokinins, as well as cyclic-di-GMP, some of which can also regulate the expression of other pathogenicity and virulence genes and participate in bacterial competitiveness. In a remarkable example of social networking, quorum sensing molecules allow for the communication among P. savastanoi and other members of the knot microbiome, while at the same time are essential for tumor formation. Additionally, a distinguishing feature of bacteria from the P. syringae complex isolated from woody organs is the possession of a 15 kb genomic island (WHOP) carrying four operons and three other genes involved in degradation of phenolic compounds. Two of these operons mediate the catabolism of anthranilate and catechol and, together with another operon, are required for the induction of full-size tumors in woody hosts, but not in non-woody micropropagated plants. The use of transposon mutagenesis also uncovered a treasure trove of additional P. savastanoi genes affecting virulence and participating in diverse bacterial processes. Although there is still much to be learned on what makes a bacterium a successful pathogen of trees, we are already untying the knots.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga–Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Jesús Murillo
- Departamento de Producción Agraria, ETS de Ingenieros Agrónomos, Universidad Pública de NavarraPamplona, Spain
| | - Marta Martínez-Gil
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga–Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Alba Moreno-Pérez
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga–Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Adrián Pintado
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga–Consejo Superior de Investigaciones CientíficasMálaga, Spain
| | - Cayo Ramos
- Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’, Universidad de Málaga–Consejo Superior de Investigaciones CientíficasMálaga, Spain
| |
Collapse
|
27
|
Lindow SE. Horizontal gene transfer gone wild: promiscuity in a kiwifruit pathogen leads to resistance to chemical control. Environ Microbiol 2017; 19:1363-1365. [PMID: 28262000 DOI: 10.1111/1462-2920.13717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Steven E Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
28
|
Fones HN, Fisher MC, Gurr SJ. Emerging Fungal Threats to Plants and Animals Challenge Agriculture and Ecosystem Resilience. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0027-2016. [PMID: 28361733 PMCID: PMC11687465 DOI: 10.1128/microbiolspec.funk-0027-2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Indexed: 11/20/2022] Open
Abstract
While fungi can make positive contributions to ecosystems and agro-ecosystems, for example, in mycorrhizal associations, they can also have devastating impacts as pathogens of plants and animals. In undisturbed ecosystems, most such negative interactions will be limited through the coevolution of fungi with their hosts. In this article, we explore what happens when pathogenic fungi spread beyond their natural ecological range and become invasive on naïve hosts in new ecosystems. We will see that such invasive pathogens have been problematic to humans and their domesticated plant and animal species throughout history, and we will discuss some of the most pressing fungal threats of today.
Collapse
Affiliation(s)
- Helen N Fones
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, St Mary's Hospital, London W2 1PG, United Kingdom
| | - Sarah J Gurr
- Department of Biosciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- University of Utrecht, 3584 CH, Utrecht, The Netherlands
- Rothamsted Research, North Wyke, Okehampton, EX20 2SB, United Kingdom
| |
Collapse
|
29
|
Caballo-Ponce E, van Dillewijn P, Wittich RM, Ramos C. WHOP, a Genomic Region Associated With Woody Hosts in the Pseudomonas syringae Complex Contributes to the Virulence and Fitness of Pseudomonas savastanoi pv. savastanoi in Olive Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:113-126. [PMID: 28027024 DOI: 10.1094/mpmi-11-16-0233-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacteria from the Pseudomonas syringae complex belonging to phylogroups 1 and 3 (PG1 and PG3, respectively) isolated from woody hosts share a genomic region herein referred to as WHOP (from woody host and Pseudomonas spp.), which is absent in strains infecting herbaceous organs. In this work, we show that this region is also encoded in P. syringae pv. actinidifoliorum (PG1) and six additional members of PG3, namely, Pseudomonas savastanoi pv. retacarpa, three P. syringae pathovars, Pseudomonas meliae, and Pseudomonas amygdali. Partial conservation of the WHOP occurs in only a few PG2 strains. In P. savastanoi pv. savastanoi NCPPB 3335, the WHOP region is organized into four operons and three independently transcribed genes. While the antABC and catBCA operons mediate the catabolism of anthranilate and catechol, respectively, the ipoABC operon confers oxygenase activity to aromatic compounds. The deletion of antABC, catBCA, or ipoABC in NCPPB 3335 caused reduced virulence in woody olive plants without affecting knot formation in nonwoody plants; catBCA, dhoAB, and PSA3335_3206 (encoding a putative aerotaxis receptor) were also required for the full fitness of this strain exclusively in woody olive plants. Overall, this study sheds light on the evolution and adaptation of bacteria from the P. syringae complex to woody hosts and highlights the enzymatic activities encoded within the WHOP region that are essential for this process.
Collapse
Affiliation(s)
- Eloy Caballo-Ponce
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| | - Pieter van Dillewijn
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Regina Michaela Wittich
- 2 Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Profesor Albareda, 1. E-18008, Granada, Spain
| | - Cayo Ramos
- 1 Área de Genética, Facultad de Ciencias, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora", Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Campus Teatinos s/n, E-29010 Málaga, Spain and
| |
Collapse
|
30
|
Morris CE, Barny M, Berge O, Kinkel LL, Lacroix C. Frontiers for research on the ecology of plant‐pathogenic bacteria: fundamentals for sustainability. MOLECULAR PLANT PATHOLOGY 2017; 18:308-319. [PMID: 27862839 PMCID: PMC6638276 DOI: 10.1111/mpp.12508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 05/02/2023]
Abstract
Methods to ensure the health of crops owe their efficacy to the extent to which we understand the ecology and biology of environmental microorganisms and the conditions under which their interactions with plants lead to losses in crop quality or yield. However, in the pursuit of this knowledge, notions of the ecology of plant‐pathogenic microorganisms have been reduced to a plant‐centric and agro‐centric focus. With increasing global change, i.e. changes that encompass not only climate, but also biodiversity, the geographical distribution of biomes, human demographic and socio‐economic adaptations and land use, new plant health problems will emerge via a range of processes influenced by these changes. Hence, knowledge of the ecology of plant pathogens will play an increasingly important role in the anticipation and response to disease emergence. Here, we present our opinion on the major challenges facing the study of the ecology of plant‐pathogenic bacteria. We argue that the discovery of markedly novel insights into the ecology of plant‐pathogenic bacteria is most likely to happen within a framework of more extensive scales of space, time and biotic interactions than those that currently guide much of the research on these bacteria. This will set a context that is more propitious for the discovery of unsuspected drivers of the survival and diversification of plant‐pathogenic bacteria and of the factors most critical for disease emergence, and will set the foundation for new approaches to the sustainable management of plant health. We describe the contextual background of, justification for and specific research questions with regard to the following challenges:
Development of terminology to describe plant–bacterial relationships in terms of bacterial fitness. Definition of the full scope of the environments in which plant‐pathogenic bacteria reside or survive. Delineation of pertinent phylogenetic contours of plant‐pathogenic bacteria and naming of strains independent of their presumed life style. Assessment of how traits of plant‐pathogenic bacteria evolve within the overall framework of their life history. Exploration of possible beneficial ecosystem services contributed to by plant‐pathogenic bacteria.
Collapse
Affiliation(s)
- Cindy E. Morris
- INRA, UR0407 Plant Pathology Research UnitMontfavet84143France
| | - Marie‐Anne Barny
- Sorbonne Universités, UMR1392 INRA, UPMC Université Paris 06, CNRS, IRDDiderot Université Paris 07, UPEC Université Paris 12, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Case 237, 4 place Jussieu75252ParisFrance
| | - Odile Berge
- INRA, UR0407 Plant Pathology Research UnitMontfavet84143France
| | - Linda L. Kinkel
- University of Minnesota1991 Upper Buford Circle, 495 Borlaug HallSt PaulMN55108‐0010USA
| | | |
Collapse
|
31
|
Baltrus DA, McCann HC, Guttman DS. Evolution, genomics and epidemiology of Pseudomonas syringae: Challenges in Bacterial Molecular Plant Pathology. MOLECULAR PLANT PATHOLOGY 2017; 18:152-168. [PMID: 27798954 PMCID: PMC6638251 DOI: 10.1111/mpp.12506] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
A remarkable shift in our understanding of plant-pathogenic bacteria is underway. Until recently, nearly all research on phytopathogenic bacteria was focused on a small number of model strains, which provided a deep, but narrow, perspective on plant-microbe interactions. Advances in genome sequencing technologies have changed this by enabling the incorporation of much greater diversity into comparative and functional research. We are now moving beyond a typological understanding of a select collection of strains to a more generalized appreciation of the breadth and scope of plant-microbe interactions. The study of natural populations and evolution has particularly benefited from the expansion of genomic data. We are beginning to have a much deeper understanding of the natural genetic diversity, niche breadth, ecological constraints and defining characteristics of phytopathogenic species. Given this expanding genomic and ecological knowledge, we believe the time is ripe to evaluate what we know about the evolutionary dynamics of plant pathogens.
Collapse
Affiliation(s)
| | - Honour C. McCann
- New Zealand Institute for Advanced StudyMassey UniversityAuckland 0632New Zealand
| | - David S. Guttman
- Department of Cell and Systems BiologyUniversity of TorontoTorontoON M5S 3B2Canada
- Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoON M5S 3B2Canada
| |
Collapse
|
32
|
Nowell RW, Laue BE, Sharp PM, Green S. Comparative genomics reveals genes significantly associated with woody hosts in the plant pathogen Pseudomonas syringae. MOLECULAR PLANT PATHOLOGY 2016; 17:1409-1424. [PMID: 27145446 PMCID: PMC5132102 DOI: 10.1111/mpp.12423] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The diversification of lineages within Pseudomonas syringae has involved a number of adaptive shifts from herbaceous hosts onto various species of tree, resulting in the emergence of highly destructive diseases such as bacterial canker of kiwi and bleeding canker of horse chestnut. This diversification has involved a high level of gene gain and loss, and these processes are likely to play major roles in the adaptation of individual lineages onto their host plants. In order to better understand the evolution of P. syringae onto woody plants, we have generated de novo genome sequences for 26 strains from the P. syringae species complex that are pathogenic on a range of woody species, and have looked for statistically significant associations between gene presence and host type (i.e. woody or herbaceous) across a phylogeny of 64 strains. We have found evidence for a common set of genes associated with strains that are able to colonize woody plants, suggesting that divergent lineages have acquired similarities in genome composition that may form the genetic basis of their adaptation to woody hosts. We also describe in detail the gain, loss and rearrangement of specific loci that may be functionally important in facilitating this adaptive shift. Overall, our analyses allow for a greater understanding of how gene gain and loss may contribute to adaptation in P. syringae.
Collapse
Affiliation(s)
- Reuben W Nowell
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Bridget E Laue
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Sarah Green
- Centre for Ecosystems, Society and Biosecurity, Forest Research, Midlothian EH25 9SY, UK
| |
Collapse
|
33
|
Monteil CL, Yahara K, Studholme DJ, Mageiros L, Méric G, Swingle B, Morris CE, Vinatzer BA, Sheppard SK. Population-genomic insights into emergence, crop adaptation and dissemination of Pseudomonas syringae pathogens. Microb Genom 2016; 2:e000089. [PMID: 28348830 PMCID: PMC5359406 DOI: 10.1099/mgen.0.000089] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022] Open
Abstract
Many bacterial pathogens are well characterized but, in some cases, little is known about the populations from which they emerged. This limits understanding of the molecular mechanisms underlying disease. The crop pathogen Pseudomonas syringae sensu lato has been widely isolated from the environment, including wild plants and components of the water cycle, and causes disease in several economically important crops. Here, we compared genome sequences of 45 P. syringae crop pathogen outbreak strains with 69 closely related environmental isolates. Phylogenetic reconstruction revealed that crop pathogens emerged many times independently from environmental populations. Unexpectedly, differences in gene content between environmental populations and outbreak strains were minimal with most virulence genes present in both. However, a genome-wide association study identified a small number of genes, including the type III effector genes hopQ1 and hopD1, to be associated with crop pathogens, but not with environmental populations, suggesting that this small group of genes may play an important role in crop disease emergence. Intriguingly, genome-wide analysis of homologous recombination revealed that the locus Psyr 0346, predicted to encode a protein that confers antibiotic resistance, has been frequently exchanged among lineages and thus may contribute to pathogen fitness. Finally, we found that isolates from diseased crops and from components of the water cycle, collected during the same crop disease epidemic, form a single population. This provides the strongest evidence yet that precipitation and irrigation water are an overlooked inoculum source for disease epidemics caused by P. syringae.
Collapse
Affiliation(s)
- Caroline L Monteil
- 4Laboratoire de Bioénergétique Cellulaire, Institut de Biosciences et Biotechnologies d'Aix-Marseille, CEA, 13108, Saint-Paul-lès-Durance, France.,3INRA, UR0407 Pathologie Végétale, Montfavet cedex, France.,1Institute of Life Science, College of Medicine, Swansea University, Swansea, UK.,2Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Koji Yahara
- 1Institute of Life Science, College of Medicine, Swansea University, Swansea, UK.,5National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Leonardos Mageiros
- 1Institute of Life Science, College of Medicine, Swansea University, Swansea, UK
| | - Guillaume Méric
- 7The Milner Centre for Evolution, Department of Biology and Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - Bryan Swingle
- 8School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY, USA
| | - Cindy E Morris
- 3INRA, UR0407 Pathologie Végétale, Montfavet cedex, France
| | - Boris A Vinatzer
- 2Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Samuel K Sheppard
- 7The Milner Centre for Evolution, Department of Biology and Biotechnology, University of Bath, Claverton Down, Bath, UK.,9Department of Zoology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Baltrus DA. Divorcing Strain Classification from Species Names. Trends Microbiol 2016; 24:431-439. [PMID: 26947794 DOI: 10.1016/j.tim.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 02/01/2023]
Abstract
Confusion about strain classification and nomenclature permeates modern microbiology. Although taxonomists have traditionally acted as gatekeepers of order, the numbers of, and speed at which, new strains are identified has outpaced the opportunity for professional classification for many lineages. Furthermore, the growth of bioinformatics and database-fueled investigations have placed metadata curation in the hands of researchers with little taxonomic experience. Here I describe practical challenges facing modern microbial taxonomy, provide an overview of complexities of classification for environmentally ubiquitous taxa like Pseudomonas syringae, and emphasize that classification can be independent of nomenclature. A move toward implementation of relational classification schemes based on inherent properties of whole genomes could provide sorely needed continuity in how strains are referenced across manuscripts and data sets.
Collapse
Affiliation(s)
- David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
35
|
Borschinger B, Bartoli C, Chandeysson C, Guilbaud C, Parisi L, Bourgeay JF, Buisson E, Morris CE. A set of PCRs for rapid identification and characterization of Pseudomonas syringae phylogroups. J Appl Microbiol 2016; 120:714-23. [PMID: 26661140 DOI: 10.1111/jam.13017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/29/2015] [Accepted: 11/26/2015] [Indexed: 12/13/2022]
Abstract
AIMS The aim of this study was to develop a rapid PCR-based method for the specific detection of individual phylogroups of the Pseudomonas syringae complex. METHODS AND RESULTS Seven primer pairs were developed by analysing whole genomes of 54 Ps. syringae strains. The specificity and sensitivity of these primer pairs were assessed on 236 strains from a large and comprehensive Ps. syringae collection. The method was also validated by characterizing the phylogenetic diversity of 174 putative Ps. syringae isolates from kiwifruit and apricot orchards of southeastern France. CONCLUSION Our PCR-based method allows for the detection and characterization of nine of the 13 Ps. syringae phylogroups (phylogroups 1, 2, 3, 4, 7, 8, 9, 10 and 13). SIGNIFICANCE AND IMPACT OF THE STUDY To date, phylogenetic affiliation within the Ps. syringae complex was only possible by sequencing housekeeping genes. Here, we propose a rapid PCR-based method for the detection of specific phylogroups of the Ps. syringae complex. Furthermore, for the first time we reveal the presence of Ps. syringae strains belonging to phylogroups 10 and 13 as epiphytes on plants, whereas they had previously only been observed in aquatic habitats.
Collapse
Affiliation(s)
- B Borschinger
- Unité de Pathologie Végétale, INRA, Montfavet, France.,IMBE, Université d'Avignon et des Pays de Vaucluse, UMR CNRS IRD Aix Marseille Université, Avignon, France
| | - C Bartoli
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, Castanet-Tolosan, France.,Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, Castanet-Tolosan, France
| | - C Chandeysson
- Unité de Pathologie Végétale, INRA, Montfavet, France
| | - C Guilbaud
- Unité de Pathologie Végétale, INRA, Montfavet, France
| | - L Parisi
- Unité de Pathologie Végétale, INRA, Montfavet, France
| | - J F Bourgeay
- Unité de Pathologie Végétale, INRA, Montfavet, France
| | - E Buisson
- IMBE, Université d'Avignon et des Pays de Vaucluse, UMR CNRS IRD Aix Marseille Université, Avignon, France
| | - C E Morris
- Unité de Pathologie Végétale, INRA, Montfavet, France
| |
Collapse
|
36
|
Lamichhane JR, Bartoli C, Varvaro L. Extensive Field Survey, Laboratory and Greenhouse Studies Reveal Complex Nature of Pseudomonas syringae-Associated Hazelnut Decline in Central Italy. PLoS One 2016; 11:e0147584. [PMID: 26840951 PMCID: PMC4739619 DOI: 10.1371/journal.pone.0147584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 01/04/2016] [Indexed: 12/01/2022] Open
Abstract
Pseudomonas avellanae (Pav) has been reported as the causal agent of bacterial decline and bacterial canker of hazelnut in Italy and Greece, respectively. Both hazelnut diseases were reported to be similar in terms of symptoms, severity and persistence. In this study, we found that both symptomatic and asymptomatic trees in the field were colonized by Pav. Multilocus Sequence Typing (MLST) analysis showed that Pav strains isolated during this study in Italy belong to the P. syringae phylogroup 1 and they are closely related to Pav strains previously isolated in Greece from hazelnut bacterial canker. On the other hand, strains isolated in earlier studies from hazelnut decline in Italy belong to both phylogroup 1 and 2 of P. syringae. Both phylogroup 1 strains of P. syringae from Greece and Italy are different than strains isolated in this study in terms of their capacity to excrete fluorescent pigments on different media. Despite the same plant genotype and cropping practices adopted, the incidence of hazelnut decline ranged from nearly 0 to 91% across our study sites. No disease developed on plants inoculated with Pav through wounding while leaf scar inoculations produced only mild disease symptoms. Based on our results and the previously reported correlation between pedo-climatic conditions and hazelnut decline, we conclude that hazelnut decline in central Italy could be incited by a combination of predisposing (adverse pedo-climatic conditions) and contributing factors (Pav). Because this is a true decline different from “bacterial canker” described in Greece, we refer to it as hazelnut decline (HD).
Collapse
Affiliation(s)
- Jay Ram Lamichhane
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
- Hazelnut Research Center, Viterbo, Italy
- INRA, UAR 1240 Eco-Innov, BP 01, Thiverval-Grignon, France
- * E-mail:
| | - Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, France
- CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, France
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, Viterbo, Italy
- Hazelnut Research Center, Viterbo, Italy
| |
Collapse
|
37
|
Vilhelmsson O, Sigurbjörnsdóttir A, Grube M, Höfte M. Are lichens potential natural reservoirs for plant pathogens? MOLECULAR PLANT PATHOLOGY 2016; 17:143-145. [PMID: 26806074 PMCID: PMC6638420 DOI: 10.1111/mpp.12344] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Revised: 11/11/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Affiliation(s)
- Oddur Vilhelmsson
- Faculty of Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- Biomedical Center, University of Iceland, Reykjavik, Iceland
| | | | - Martin Grube
- Institut für Pflanzenwissenschaften Karl-Franzens-Universität Graz, Graz, Austria
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
38
|
Bartoli C, Roux F, Lamichhane JR. Molecular mechanisms underlying the emergence of bacterial pathogens: an ecological perspective. MOLECULAR PLANT PATHOLOGY 2016; 17:303-10. [PMID: 26062772 PMCID: PMC6638374 DOI: 10.1111/mpp.12284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human- and plant-pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant-pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant-pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops.
Collapse
Affiliation(s)
- Claudia Bartoli
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France
| | - Fabrice Roux
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), INRA, UMR441, F-31326, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), CNRS, UMR2594, F-31326, Castanet-Tolosan, France
| | | |
Collapse
|
39
|
Guilbaud C, Morris CE, Barakat M, Ortet P, Berge O. Isolation and identification of Pseudomonas syringae facilitated by a PCR targeting the whole P. syringae group. FEMS Microbiol Ecol 2015; 92:fiv146. [PMID: 26610434 DOI: 10.1093/femsec/fiv146] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 11/13/2022] Open
Abstract
We present a reliable PCR-based method to avoid the biases related to identification based on the conventional phenotypes currently used in the identification of Pseudomonas syringae sensu lato, a ubiquitous environmental bacterium including plant pathogens. We identified a DNA target suitable for this purpose by applying a comparative genomic pipeline to Pseudomonas genomes. We designed primers and developed PCR conditions that led to a clean and strong PCR product from 97% of the 185 strains of P. syringae strains tested and gave a clear negative result for the 31 non-P. syringae strains tested. The sensitivity of standard PCR was determined with pure strains to be 10(6) bacteria mL(-1) or 0.4 ng of DNA μL(-1). Sensitivity could be improved with the touchdown method. The new PCR-assisted isolation of P. syringae was efficient when deployed on an environmental sample of river water as compared to the isolation based on phenotypes. This innovation eliminates the need for extensive expertise in isolating P. syringae colonies, was simpler, faster and very reliable. It will facilitate discovery of more diversity of P. syringae and research on emergence, dispersion and evolution to understand the varied functions of this environmental bacterium.
Collapse
Affiliation(s)
| | - Cindy E Morris
- INRA, UR0407 Pathologie Végétale, F-84143 Montfavet cedex, France
| | - Mohamed Barakat
- CEA, IBEB, Lab Ecol Microb Rhizosphere and Environ Extrem, Saint-Paul-lez-Durance, F-13108, France CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France Aix Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - Philippe Ortet
- CEA, IBEB, Lab Ecol Microb Rhizosphere and Environ Extrem, Saint-Paul-lez-Durance, F-13108, France CNRS, UMR 7265 Biol Veget and Microbiol Environ, Saint-Paul-lez-Durance, F-13108, France Aix Marseille Université, BVME UMR7265, Marseille, F-13284, France
| | - Odile Berge
- INRA, UR0407 Pathologie Végétale, F-84143 Montfavet cedex, France
| |
Collapse
|
40
|
Barzman M, Bàrberi P, Birch ANE, Boonekamp P, Dachbrodt-Saaydeh S, Graf B, Hommel B, Jensen JE, Kiss J, Kudsk P, Lamichhane JR, Messéan A, Moonen AC, Ratnadass A, Ricci P, Sarah JL, Sattin M. Eight principles of integrated pest management. AGRONOMY FOR SUSTAINABLE DEVELOPMENT 2015; 35:1199-1215. [PMID: 0 DOI: 10.1007/s13593-015-0327-9] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
41
|
Bartoli C, Lamichhane JR, Berge O, Varvaro L, Morris CE. Mutability in Pseudomonas viridiflava as a programmed balance between antibiotic resistance and pathogenicity. MOLECULAR PLANT PATHOLOGY 2015; 16:860-9. [PMID: 25649542 PMCID: PMC6638476 DOI: 10.1111/mpp.12243] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mutable bacterial cells are defective in their DNA repair system and often have a phenotype different from that of their wild-type counterparts. In human bacterial pathogens, the mutable and hypermutable phenotypes are often associated with general antibiotic resistance. Here, we quantified the occurrence of mutable cells in Pseudomonas viridiflava, a phytopathogenic bacterium in the P. syringae complex with a broad host range and capacity to live as a saprophyte. Two phenotypic variants (transparent and mucoid) were produced by this bacterium. The transparent variant had a mutator phenotype, showed general antibiotic resistance and could not induce disease on the plant species tested (bean). In contrast, the mucoid variant did not display mutability or resistance to antibiotics and was capable of inducing disease on bean. Both the transparent and mucoid variants were less fit when grown in vitro, whereas, in planta, both of the variants and wild-types attained similar population densities. Given the importance of the methyl-directed mismatch repair system (MMR) in the occurrence of mutable and hypermutable cells in human bacterial pathogens, we investigated whether mutations in mut genes were associated with mutator transparent cells in P. viridiflava. Our results showed no mutations in MMR genes in any of the P. viridiflava cells tested. Here, we report that a high mutation rate and antibiotic resistance are inversely correlated with pathogenicity in P. viridiflava, but are not associated with mutations in MMR. In addition, P. viridiflava variants differ from variants produced by other phytopathogenic bacteria in the absence of reversion to the wild-type phenotype.
Collapse
Affiliation(s)
- Claudia Bartoli
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Jay Ram Lamichhane
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Odile Berge
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| | - Leonardo Varvaro
- Department of Science and Technology for Agriculture, Forestry, Nature and Energy (DAFNE), Tuscia University, 01100, Viterbo, Italy
| | - Cindy E Morris
- INRA, UR0407 Pathologie Végétale, F-84143, Montfavet cedex, France
| |
Collapse
|
42
|
Martínez-García PM, Rodríguez-Palenzuela P, Arrebola E, Carrión VJ, Gutiérrez-Barranquero JA, Pérez-García A, Ramos C, Cazorla FM, de Vicente A. Bioinformatics Analysis of the Complete Genome Sequence of the Mango Tree Pathogen Pseudomonas syringae pv. syringae UMAF0158 Reveals Traits Relevant to Virulence and Epiphytic Lifestyle. PLoS One 2015; 10:e0136101. [PMID: 26313942 PMCID: PMC4551802 DOI: 10.1371/journal.pone.0136101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023] Open
Abstract
The genome sequence of more than 100 Pseudomonas syringae strains has been sequenced to date; however only few of them have been fully assembled, including P. syringae pv. syringae B728a. Different strains of pv. syringae cause different diseases and have different host specificities; so, UMAF0158 is a P. syringae pv. syringae strain related to B728a but instead of being a bean pathogen it causes apical necrosis of mango trees, and the two strains belong to different phylotypes of pv.syringae and clades of P. syringae. In this study we report the complete sequence and annotation of P. syringae pv. syringae UMAF0158 chromosome and plasmid pPSS158. A comparative analysis with the available sequenced genomes of other 25 P. syringae strains, both closed (the reference genomes DC3000, 1448A and B728a) and draft genomes was performed. The 5.8 Mb UMAF0158 chromosome has 59.3% GC content and comprises 5017 predicted protein-coding genes. Bioinformatics analysis revealed the presence of genes potentially implicated in the virulence and epiphytic fitness of this strain. We identified several genetic features, which are absent in B728a, that may explain the ability of UMAF0158 to colonize and infect mango trees: the mangotoxin biosynthetic operon mbo, a gene cluster for cellulose production, two different type III and two type VI secretion systems, and a particular T3SS effector repertoire. A mutant strain defective in the rhizobial-like T3SS Rhc showed no differences compared to wild-type during its interaction with host and non-host plants and worms. Here we report the first complete sequence of the chromosome of a pv. syringae strain pathogenic to a woody plant host. Our data also shed light on the genetic factors that possibly determine the pathogenic and epiphytic lifestyle of UMAF0158. This work provides the basis for further analysis on specific mechanisms that enable this strain to infect woody plants and for the functional analysis of host specificity in the P. syringae complex.
Collapse
Affiliation(s)
- Pedro Manuel Martínez-García
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Málaga, Spain
| | - Pablo Rodríguez-Palenzuela
- Centro de Biotecnología y Genómica de Plantas UPM-INIA, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid. Pozuelo de Alarcón, Madrid, Spain
| | - Eva Arrebola
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Estación Experimental La Mayora, Algarrobo-Costa, Málaga, Spain
| | - Víctor J. Carrión
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - José Antonio Gutiérrez-Barranquero
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Alejandro Pérez-García
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Cayo Ramos
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Área de Genética, Facultad de Ciencias, Málaga, Spain
| | - Francisco M. Cazorla
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
| | - Antonio de Vicente
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga, Consejo Superior de Investigaciones Científicas, Departamento de Microbiología, Facultad de Ciencias, Málaga, Spain
- * E-mail:
| |
Collapse
|
43
|
Lamichhane JR, Venturi V. Synergisms between microbial pathogens in plant disease complexes: a growing trend. FRONTIERS IN PLANT SCIENCE 2015; 6:385. [PMID: 26074945 PMCID: PMC4445244 DOI: 10.3389/fpls.2015.00385] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen-pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management.
Collapse
Affiliation(s)
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTrieste, Italy
| |
Collapse
|
44
|
Whole-Genome Sequencing of 10 Pseudomonas syringae Strains Representing Different Host Range Spectra. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00379-15. [PMID: 25931602 PMCID: PMC4417698 DOI: 10.1128/genomea.00379-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas syringae is a ubiquitous bacterium that readily persists in environmental habitats as a saprophyte and also is responsible for numerous diseases of crops. Here, we report the whole-genome sequences of 10 strains isolated from both woody and herbaceous plants that will contribute to the elucidation of the determinants of their host ranges.
Collapse
|
45
|
Lamichhane JR. Xanthomonas arboricola Diseases of Stone Fruit, Almond, and Walnut Trees: Progress Toward Understanding and Management. PLANT DISEASE 2014; 98:1600-1610. [PMID: 30703892 DOI: 10.1094/pdis-08-14-0831-fe] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stone fruit (Prunus spp.: apricot, cherry, peach, nectarine, plum, and sloe), almond (Prunus spp.), and walnut (Juglans spp.) crops are among the most economically important tree crops worldwide and are cultivated to a different extent on all continents. The number of countries growing these crops has increased in the last decade with a subsequent increase in acreage globally. Throughout the range of cultivation, Prunus spp. and Juglans spp. are often subjected to pathogen attack. Among them, Xanthomonas arboricola has become markedly important over the last decade. The putative pathovars of X. arboricola, pv. pruni and pv. juglandis, cause bacterial canker and spot and bacterial blight on stone fruits and almond, and on walnut, respectively. In recent years, disease outbreaks caused by X. arboricola on Prunus and on Juglans have increased, as has international concern. The rate at which these outbreaks are occurring suggests the possibility of future epidemics. To address the consequences of such disease emergences, it is important to understand the epidemiology of these diseases, about which little is known to date. The objectives of this review are to provide an overview of X. arboricola diseases of stone fruit, almond, and walnut trees, and to discuss current and future management strategies.
Collapse
Affiliation(s)
- Jay Ram Lamichhane
- French National Institute for Agricultural Research (INRA), UAR 1240 Eco-Innov Research Unit, 78850 Thiverval-Grignon, France
| |
Collapse
|
46
|
A user's guide to a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this phylogenetic complex. PLoS One 2014; 9:e105547. [PMID: 25184292 PMCID: PMC4153583 DOI: 10.1371/journal.pone.0105547] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/22/2014] [Indexed: 11/19/2022] Open
Abstract
The Pseudomonas syringae complex is composed of numerous genetic lineages of strains from both agricultural and environmental habitats including habitats closely linked to the water cycle. The new insights from the discovery of this bacterial species in habitats outside of agricultural contexts per se have led to the revelation of a wide diversity of strains in this complex beyond what was known from agricultural contexts. Here, through Multi Locus Sequence Typing (MLST) of 216 strains, we identified 23 clades within 13 phylogroups among which the seven previously described P. syringae phylogroups were included. The phylogeny of the core genome of 29 strains representing nine phylogroups was similar to the phylogeny obtained with MLST thereby confirming the robustness of MLST-phylogroups. We show that phenotypic traits rarely provide a satisfactory means for classification of strains even if some combinations are highly probable in some phylogroups. We demonstrate that the citrate synthase (cts) housekeeping gene can accurately predict the phylogenetic affiliation for more than 97% of strains tested. We propose a list of cts sequences to be used as a simple tool for quickly and precisely classifying new strains. Finally, our analysis leads to predictions about the diversity of P. syringae that is yet to be discovered. We present here an expandable framework mainly based on cts genetic analysis into which more diversity can be integrated.
Collapse
|