1
|
Blair J, Rathee G, Puertas-Segura A, Pérez LM, Tzanov T. Advanced water treatment with antimicrobial silver-lignin nanoparticles sonochemically-grafted on cork granulates in activated carbon packed-bed columns. ENVIRONMENTAL RESEARCH 2025; 279:121783. [PMID: 40340009 DOI: 10.1016/j.envres.2025.121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/27/2025] [Accepted: 05/04/2025] [Indexed: 05/10/2025]
Abstract
Cork biomass (C) was grafted with antimicrobial silver phenolated-lignin nanoparticles (AgPLN) using a fast and simple sono-enzymatical process. The AgPLN-functionalised cork (C-AgPLN) exhibited potent antibacterial and antibiofilm properties against the common waterborne pathogens, Escherichia coli and Staphylococcus aureus. Its effects on bacterial cells included alterations in cell morphology and structure, as revealed by electron microscopy (SEM and TEM) and fluorescence microscopy (LIVE/DEAD staining). These effects also included increased oxidative stress (80 % and 31 % in E. coli and S. aureus, respectively), >99 % reduction in viability, a 60 % reduction in E. coli biofilm, and a 44 % reduction in S. aureus biofilm, as quantified by spectroscopic methods (ROS measurement, XTT metabolic activity test, and crystal violet staining). C-AgPLN also demonstrates anti-quorum sensing properties against both Gram-negative and Gram-positive bacteria, crucial for disrupting bacterial communication, thereby preventing biofilm formation. Further, C-AgPLN was combined with activated carbon (AC) at different proportions (1 %, 2 %, and 4 % w/w) in lab-scale packed-bed columns for the disinfection of water contaminated with E. coli or S. aureus. Columns containing 4 % w/w C-AgPLN demonstrated 100 % disinfection efficiency after 1 h of operation in recirculation mode (flow rate = 8.6 mL/min), and were reusable for up to 2 and 4 cycles without losing their disinfection capacity. Noteworthy, silver ion (Ag+) release was not detected in the effluent after 240 h columns operation (ICP-MS detection limit of <0.07 μg/L), confirming the environmental safety on the novel water-disinfection approach. Given that adsorption is a well-established method for advanced wastewater treatment, these results underscore the potential of nano-enabled AC-packed columns for safely and efficiently controlling the spread of water-associated pathogens.
Collapse
Affiliation(s)
- Jeniffer Blair
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Garima Rathee
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Antonio Puertas-Segura
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Leonardo Martín Pérez
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain
| | - Tzanko Tzanov
- Grup de Biotecnologia Molecular i Industrial, Departament d'Enginyeria Química, Universitat Politècnica de Catalunya (UPC-BarcelonaTech), 08222, Terrassa, Spain.
| |
Collapse
|
2
|
Song K, Cui Y, Li SN, Li L, Zhou L, Tian DL, Gu YC, He YW. Hydroxycinnamic Acids Activate RpfB-Dependent Quorum Sensing Signal Turnover in Phytopathogen Xanthomonas campestris. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:3990-4000. [PMID: 39904630 DOI: 10.1021/acs.jafc.4c12351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Phytopathogen Xanthomonas campestris pv campestris (Xcc) uses various mechanisms, including the quorum sensing (QS) system, to regulate infection and colonize cruciferous host plants. Hydroxycinnamic acids (HCAs) are widely distributed in the plant kingdom, but their effect on the diffusible signaling factor family QS signal of Xcc remains unknown. In this study, we report that HCAs activate RpfB-dependent QS signal turnover via the sensor protein HepR, which in turn activates the HepABCD resistance-nodulation-division efflux pump to remove HCAs in Xcc. Exogenous addition of three HCAs induced DSF signal turnover during the late growth phase of Xcc in XYS medium. Furthermore, HCAs-induced DSF turnover was dependent on the DSF-degrading enzyme RpfB and the sensor HepR. Additionally, Xcc pumps HCAs through the HepABCD efflux pump. An electrophoretic mobility shift assay demonstrated that HCAs interfere with the binding of HepR to the Phep promoter. This work provides insight into the molecular interactions between Xcc and cruciferous plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Si-Nan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lian Zhou
- Zhiyuan Innovative Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dong-Lan Tian
- Syngenta Group Co., Ltd., Bochenglu 567, Shanghai 201201, China
| | - Yu-Cheng Gu
- Syngenta, Jealott's Hill International Research Center, Berkshire RE42 6EY, U.K
| | - Ya-Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Joko T, Ava S, Putri INS, Subandiyah S, Rohman MS, Ogawa N. Manuka Honey Inhibits Biofilm Formation and Reduces the Expression of the Associated Genes in Pectobacterium brasiliense. SCIENTIFICA 2024; 2024:8837149. [PMID: 39502934 PMCID: PMC11535176 DOI: 10.1155/2024/8837149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 11/08/2024]
Abstract
Biofilms are major virulence factors formed by pathogenic bacteria to invade their host and maintain their colony. While biofilms usually develop on diverse solid surfaces, floating biofilms, also called pellicles, are formed at the air-liquid interface. To address the problem of biofilm formation by bacterial pathogens, honey has been extensively studied. However, information on the effect of honey on biofilm formation by plant pathogens is scarce. This study aimed to determine the effects of manuka honey on biofilm and pellicle formation by Pectobacterium brasiliense and analyze the expression of genes encoding proteins needed to form biofilm by using semiquantitative PCR and RT-qPCR. Treatment with 5% (w/v) of manuka honey significantly decreased biofilm and pellicle formation by P. brasiliense. RT-qPCR results showed that the expression of bcsA, fis, hrpL, and expI decreased 7.07-fold, 5.71-fold, 13.11-fold, and 6.26-fold, respectively, after exposure to 5% (w/v) manuka honey. Our findings reveal that manuka honey may effectively inhibit biofilm and pellicle formation.
Collapse
Affiliation(s)
- Tri Joko
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Sheila Ava
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Isna Nurifa Sasmita Putri
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Siti Subandiyah
- Department of Plant Protection, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Muhammad Saifur Rohman
- Department of Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Naoto Ogawa
- Department of Applied Life Sciences, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| |
Collapse
|
4
|
Zhang Y, Man J, Wen L, Tan S, Liu S, Li Y, Qi P, Jiang Q, Wei Y. ATP-binding cassette transporter TaABCG2 contributes to Fusarium head blight resistance by mediating salicylic acid transport in wheat. MOLECULAR PLANT PATHOLOGY 2024; 25:e70013. [PMID: 39378008 PMCID: PMC11460253 DOI: 10.1111/mpp.70013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/14/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
ATP-binding cassette (ABC) transporters hydrolyse ATP to transport various substrates. Previous studies have shown that ABC transporters are responsible for transporting plant hormones and heavy metals, thus contributing to plant immunity. Herein, we identified a wheat G-type ABC transporter, TaABCG2-5B, that responds to salicylic acid (SA) treatment and is induced by Fusarium graminearum, the primary pathogen causing Fusarium head blight (FHB). The loss-of-function mutation of TaABCG2-5B (ΔTaabcg2-5B) reduced SA accumulation and increased susceptibility to F. graminearum. Conversely, overexpression of TaABCG2-5B (OE-TaABCG2-5B) exerted the opposite effect. Quantification of intracellular SA in ΔTaabcg2-5B and OE-TaABCG2-5B protoplasts revealed that TaABCG2-5B acts as an importer, facilitating the transport of SA into the cytoplasm. This role was further confirmed by Cd2+ absorption experiments in wheat roots, indicating that TaABCG2-5B also participates in Cd2+ transport. Thus, TaABCG2-5B acts as an importer and is crucial for transporting multiple substrates. Notably, the homologous gene TaABCG2-5A also facilitated Cd2+ uptake in wheat roots but did not significantly influence SA accumulation or FHB resistance. Therefore, TaABCG2 could be a valuable target for enhancing wheat tolerance to Cd2+ and improving FHB resistance.
Collapse
Affiliation(s)
- Ya‐Zhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Jie Man
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Lan Wen
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Si‐Qi Tan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Shun‐Li Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Ying‐Hui Li
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Peng‐Fei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Qian‐Tao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| | - Yu‐Ming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest ChinaSichuan Agricultural UniversityChengduSichuanChina
- Triticeae Research Institute, Sichuan Agricultural UniversityChengduSichuanChina
| |
Collapse
|
5
|
Song K, Li R, Cui Y, Chen B, Zhou L, Han W, Jiang B, He Y. The phytopathogen Xanthomonas campestris senses and effluxes salicylic acid via a sensor HepR and an RND family efflux pump to promote virulence in host plants. MLIFE 2024; 3:430-444. [PMID: 39359673 PMCID: PMC11442134 DOI: 10.1002/mlf2.12140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 10/04/2024]
Abstract
Salicylic acid (SA) plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. Following pathogen recognition, SA biosynthesis dramatically increases at the infection site of the host plant. The manner in which pathogens sense and tolerate the onslaught of SA stress to survive in the plant following infection remains to be understood. The objective of this work was to determine how the model phytopathogen Xanthomonas campestris pv. campestris (Xcc) senses and effluxes SA during infection inside host plants. First, RNA-Seq analysis identified an SA-responsive operon Xcc4167-Xcc4171, encoding a MarR family transcription factor HepR and an RND (resistance-nodulation-cell division) family efflux pump HepABCD in Xcc. Electrophoretic mobility shift assays and DNase I footprint analysis revealed that HepR negatively regulated hepABCD expression by specifically binding to an AT-rich region of the promoter of the hepRABCD operon, Phep. Second, isothermal titration calorimetry and further genetic analysis suggest that HepR is a novel SA sensor. SA binding released HepR from its cognate promoter Phep and then induced the expression of hepABCD. Third, the RND family efflux pump HepABCD was responsible for SA efflux. The hepRABCD cluster was also involved in the regulation of culture pH and quorum sensing signal diffusible signaling factor turnover. Finally, the hepRABCD cluster was transcribed during the XC1 infection of Chinese radish and was required for the full virulence of Xcc in Chinese radish and cabbage. These findings suggest that the ability of Xcc to co-opt the plant defense signal SA to activate the multidrug efflux pump may have evolved to ensure Xcc survival and virulence in susceptible host plants.
Collapse
Affiliation(s)
- Kai Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Ruifang Li
- Guangxi Key Laboratory of Biology for Crop Diseases and Insect Pests, Plant Protection Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ying Cui
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Bo Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| | - Lian Zhou
- Zhiyuan Innovative Research CenterShanghai Jiao Tong UniversityShanghaiChina
| | - Wenying Han
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningChina
| | - Ya‐Wen He
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
6
|
Rocha TM, Marcelino PRF, Antunes FAF, Sánchez-Muñoz S, Dos Santos JC, da Silva SS. Biocompatibility of Brazilian native yeast-derived sophorolipids and Trichoderma harzianum as plant-growth promoting bioformulations. Microbiol Res 2024; 283:127689. [PMID: 38493529 DOI: 10.1016/j.micres.2024.127689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
The replacement of agrochemicals by biomolecules is imperative to mitigate soil contamination and inactivation of its core microbiota. Within this context, this study aimed at the interaction between a biological control agent such as Trichoderma harzianum CCT 2160 (BF-Th) and the biosurfactants (BSs) derived from the native Brazilian yeast Starmerella bombicola UFMG-CM-Y6419. Thereafter, their potential in germination of Oryza sativa L. seeds was tested. Both bioproducts were produced on site and characterized according to their chemical composition by HPLC-MS and GC-MS for BSs and SDS-PAGE gel for BF-Th. The BSs were confirmed to be sophorolipids (SLs) which is a well-studied compound with antimicrobial activity. The biocompatibility was examined by cultivating the fungus with SLs supplementation ranging from 0.1 to 2 g/L in solid and submerged fermentation. In solid state fermentation the supplementation of SLs enhanced spore production, conferring the synergy of both bioproducts. For the germination assays, bioformulations composed of SLs, BF-Th and combined (SLT) were applied in the germination of O. sativa L seeds achieving an improvement of up to 30% in morphological aspects such as root and shoot size as well as the presence of lateral roots. It was hypothesized that SLs were able to regulate phytohormones expression such as auxins and gibberellins during early stage of growth, pointing to their novel plant-growth stimulating properties. Thus, this study has pointed to the potential of hybrid bioformulations composed of biosurfactants and active endophytic fungal spores in order to augment the plant fitness and possibly the control of diseases.
Collapse
Affiliation(s)
- Thiago Moura Rocha
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil.
| | - Paulo Ricardo Franco Marcelino
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Felipe Antonio Fernandes Antunes
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Salvador Sánchez-Muñoz
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Júlio César Dos Santos
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Department of Industrial Biotechnology, Laboratory of bioprocesses and Sustainable Bioproducts (Lbios), University of São Paulo - Engineering School of Lorena, Lorena, SP, Brazil
| |
Collapse
|
7
|
Zhan X, Wang R, Zhang M, Li Y, Sun T, Chen J, Li J, Liu T. Trichoderma-derived emodin competes with ExpR and ExpI of Pectobacterium carotovorum subsp. carotovorum to biocontrol bacterial soft rot. PEST MANAGEMENT SCIENCE 2024; 80:1039-1052. [PMID: 37831609 DOI: 10.1002/ps.7835] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Quorum sensing inhibitors (QSIs) are an emerging control tool that inhibits the quorum sensing (QS) system of pathogenic bacteria. We aimed to screen for potential QSIs in the metabolites of Trichoderma and to explore their inhibitory mechanisms. RESULTS We screened a strain of Trichoderma asperellum LN004, which demonstrated the ability to inhibit the color development of Chromobacterium subtsugae CV026, primarily attributed to the presence of emodin as its key QSI component. The quantitative polymerase chain reaction with reverse transcription results showed that after emodin treatment of Pectobacterium carotovorum subsp. carotovorum (Pcc), plant cell wall degrading enzyme-related synthetic genes were significantly downregulated, and the exogenous enzyme synthesis gene negative regulator (rsmA) was upregulated 3.5-fold. Docking simulations indicated that emodin could be a potential ligand for ExpI and ExpR proteins because it exhibited stronger competition than the natural ligands in Pcc. In addition, western blotting showed that emodin attenuated the degradation of n-acylhomoserine lactone on the ExpR protein and protected it. Different concentrations of emodin reduced the activity of pectinase, cellulase, and protease in Pcc by 20.81%-72.21%, 8.38%-52.73%, and 3.57%-47.50%. Lesion size in Chinese cabbages, carrots and cherry tomatoes following Pcc infestation was reduced by 10.02%-68.57%, 40.17%-88.56% and 11.36%-86.17%. CONCLUSION Emodin from T. asperellum LN004 as a QSI can compete to bind both ExpI and ExpR proteins, interfering with the QS of Pcc and reducing the production of virulence factors. The first molecular mechanism reveals the ability of emodin as a QSI to competitively inhibit two QS proteins simultaneously. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin Zhan
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Rui Wang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Manman Zhang
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Yuejiao Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
| | - Tao Sun
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| | - Jie Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jishun Li
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Tong Liu
- Sanya Nanfan Research Institute of Hainan University, Sanya, PR China
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests (College of Plant Protection, Hainan University), Ministry of Education, Haikou, PR China
- Engineering Center of Agricultural Microbial Preparation Research and Development of Hainan, Hainan University, Haikou, PR China
| |
Collapse
|
8
|
Lu L, Wang J, Wang C, Zhu J, Wang H, Liao L, Zhao Y, Wang X, Yang C, He Z, Li M. Plant-derived virulence arresting drugs as novel antimicrobial agents: Discovery, perspective, and challenges in clinical use. Phytother Res 2024; 38:727-754. [PMID: 38014754 DOI: 10.1002/ptr.8072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 11/05/2023] [Indexed: 11/29/2023]
Abstract
Antimicrobial resistance (AMR) emerges as a severe crisis to public health and requires global action. The occurrence of bacterial pathogens with multi-drug resistance appeals to exploring alternative therapeutic strategies. Antivirulence treatment has been a positive substitute in seeking to circumvent AMR, which aims to target virulence factors directly to combat bacterial infections. Accumulated evidence suggests that plant-derived natural products, which have been utilized to treat infectious diseases for centuries, can be abundant sources for screening potential virulence-arresting drugs (VADs) to develop advanced therapeutics for infectious diseases. This review sums up some virulence factors and their actions in various species of bacteria, as well as recent advances pertaining to plant-derived natural products as VAD candidates. Furthermore, we also discuss natural VAD-related clinical trials and patents, the perspective of VAD-based advanced therapeutics for infectious diseases and critical challenges hampering clinical use of VADs, and genomics-guided identification for VAD therapeutic. These newly discovered natural VADs will be encouraging and optimistic candidates that may sustainably combat AMR.
Collapse
Affiliation(s)
- Lan Lu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Jingya Wang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Chongrui Wang
- Faculty of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Jie Zhu
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Hongping Wang
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, Sichuan, P.R. China
| | - Li Liao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Yuting Zhao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Xiaobo Wang
- Department of Hepatobiliary Surgery, Langzhong People's Hospital, Langzhong, Sichuan, P.R. China
| | - Chen Yang
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Zhengyou He
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, P.R. China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Cell Therapy & Cell Drugs of Luzhou Key Laboratory, Luzhou, Sichuan, China
| |
Collapse
|
9
|
Tendiuk N, Diakonova A, Petrova O, Mukhametzyanov T, Makshakova O, Gorshkov V. Svx Peptidases of Phytopathogenic Pectolytic Bacteria: Structural, Catalytic and Phytoimmune Properties. Int J Mol Sci 2024; 25:756. [PMID: 38255830 PMCID: PMC10815107 DOI: 10.3390/ijms25020756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/31/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Svx proteins are virulence factors secreted by phytopathogenic bacteria of the Pectobacterium genus into the host plant cell wall. Svx-encoding genes are present in almost all species of the soft rot Pectobacteriaceae (Pectobacterium and Dickeya genera). The Svx of P. atrosepticum (Pba) has been shown to be a gluzincin metallopeptidase that presumably targets plant extensins, proteins that contribute to plant cell wall rigidity and participate in cell signaling. However, the particular "output" of the Pba Svx action in terms of plant-pathogen interactions and plant immune responses remained unknown. The Svx proteins are largely unexplored in Dickeya species, even though some of them have genes encoding two Svx homologs. Therefore, our study aims to compare the structural and catalytic properties of the Svx proteins of Pba and D. solani (Dso) and to test the phytoimmune properties of these proteins. Two assayed Dso Svx proteins, similar to Pba Svx, were gluzincin metallopeptidases with conservative tertiary structures. The two domains of the Svx proteins form electronegative clefts where the active centers of the peptidase domains are located. All three assayed Svx proteins possessed phytoimmunosuppressory properties and induced ethylene-mediated plant susceptible responses that play a decisive role in Pba-caused disease.
Collapse
Affiliation(s)
- Natalia Tendiuk
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (N.T.); (A.D.); (O.P.); (O.M.)
| | - Anastasiya Diakonova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (N.T.); (A.D.); (O.P.); (O.M.)
| | - Olga Petrova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (N.T.); (A.D.); (O.P.); (O.M.)
| | - Timur Mukhametzyanov
- Department of Physical Chemistry, Kazan Federal University, 420008 Kazan, Russia;
| | - Olga Makshakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (N.T.); (A.D.); (O.P.); (O.M.)
| | - Vladimir Gorshkov
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 420111 Kazan, Russia; (N.T.); (A.D.); (O.P.); (O.M.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia
| |
Collapse
|
10
|
Zhang H, Zhang Z, Li J, Qin G. New Strategies for Biocontrol of Bacterial Toxins and Virulence: Focusing on Quorum-Sensing Interference and Biofilm Inhibition. Toxins (Basel) 2023; 15:570. [PMID: 37755996 PMCID: PMC10536320 DOI: 10.3390/toxins15090570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
The overuse of antibiotics and the emergence of multiple-antibiotic-resistant pathogens are becoming a serious threat to health security and the economy. Reducing antimicrobial resistance requires replacing antibiotic consumption with more biocontrol strategies to improve the immunity of animals and humans. Probiotics and medicinal plants have been used as alternative treatments or preventative therapies for a variety of diseases caused by bacterial infections. Therefore, we reviewed some of the anti-virulence and bacterial toxin-inhibiting strategies that are currently being developed; this review covers strategies focused on quenching pathogen quorum sensing (QS) systems, the disruption of biofilm formation and bacterial toxin neutralization. It highlights the probable mechanism of action for probiotics and medicinal plants. Although further research is needed before a definitive statement can be made on the efficacy of any of these interventions, the current literature offers new hope and a new tool in the arsenal in the fight against bacterial virulence factors and bacterial toxins.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Ion Beam Bio-Engineering, College of Physics, Zhengzhou University, Zhengzhou 450000, China;
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Zhen Zhang
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Jing Li
- School of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Guangyong Qin
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450000, China;
| |
Collapse
|
11
|
Fekete FJ, Marotta NJ, Liu X, Weinert EE. An O 2-sensing diguanylate cyclase broadly affects the aerobic transcriptome in the phytopathogen Pectobacterium carotovorum. Front Microbiol 2023; 14:1134742. [PMID: 37485529 PMCID: PMC10360401 DOI: 10.3389/fmicb.2023.1134742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Pectobacterium carotovorum is an important plant pathogen responsible for the destruction of crops through bacterial soft rot, which is modulated by oxygen (O2) concentration. A soluble globin coupled sensor protein, Pcc DgcO (also referred to as PccGCS) is one way through which P. carotovorum senses oxygen. DgcO contains a diguanylate cyclase output domain producing c-di-GMP. Synthesis of the bacterial second messenger c-di-GMP is increased upon oxygen binding to the sensory globin domain. This work seeks to understand regulation of function by DgcO at the transcript level. RNA sequencing and differential expression analysis revealed that the deletion of DgcO only affects transcript levels in cells grown under aerobic conditions. Differential expression analysis showed that DgcO deletion alters transcript levels for metal transporters. These results, followed by inductively coupled plasma-mass spectrometry showing decreased concentrations of six biologically relevant metals upon DgcO deletion, provide evidence that a globin coupled sensor can affect cellular metal content. These findings improve the understanding of the transcript level control of O2-dependent phenotypes in an important phytopathogen and establish a basis for further studies on c-di-GMP-dependent functions in P. carotovorum.
Collapse
Affiliation(s)
- Florian J. Fekete
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
| | - Nick J. Marotta
- Graduate Program in Molecular, Cellular, and Integrative Biosciences, Penn State University, University Park, PA, United States
| | - Xuanyu Liu
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
| | - Emily E. Weinert
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA, United States
- Department of Chemistry, Penn State University, University Park, PA, United States
| |
Collapse
|
12
|
Pun M, Khazanov N, Galsurker O, Kerem Z, Senderowitz H, Yedidia I. Inhibition of AcrAB-TolC enhances antimicrobial activity of phytochemicals in Pectobacterium brasiliense. FRONTIERS IN PLANT SCIENCE 2023; 14:1161702. [PMID: 37229130 PMCID: PMC10203483 DOI: 10.3389/fpls.2023.1161702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Introduction The eons-long co-evolvement of plants and bacteria led to a plethora of interactions between the two kingdoms, in which bacterial pathogenicity is counteracted by plant-derived antimicrobial defense molecules. In return, efflux pumps (EP) form part of the resistance mechanism employed by bacteria to permit their survival in this hostile chemical environment. In this work we study the effect of combinations of efflux pump inhibitors (EPIs) and plant-derived phytochemicals on bacterial activity using Pectobacteriun brasiliense 1692 (Pb1692) as a model system. Methods We measured the minimal inhibitory concentration (MIC) of two phytochemicals, phloretin (Pht) and naringenin (Nar), and of one common antibiotic ciprofloxacin (Cip), either alone or in combinations with two known inhibitors of the AcrB EP of Escherichia coli, a close homolog of the AcrAB-TolC EP of Pb1692. In addition, we also measured the expression of genes encoding for the EP, under similar conditions. Results Using the FICI equation, we observed synergism between the EPIs and the phytochemicals, but not between the EPIs and the antibiotic, suggesting that EP inhibition potentiated the antimicrobial activity of the plant derived compounds, but not of Cip. Docking simulations were successfully used to rationalize these experimental results. Discussion Our findings suggest that AcrAB-TolC plays an important role in survival and fitness of Pb1692 in the plant environment and that its inhibition is a viable strategy for controlling bacterial pathogenicity.
Collapse
Affiliation(s)
- Manoj Pun
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ortal Galsurker
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Iris Yedidia
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| |
Collapse
|
13
|
Host plant physiological transformation and microbial population heterogeneity as important determinants of the Soft Rot Pectobacteriaceae-plant interactions. Semin Cell Dev Biol 2023; 148-149:33-41. [PMID: 36621443 DOI: 10.1016/j.semcdb.2023.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
Pectobacterium and Dickeya species belonging to the Soft Rot Pectobacteriaceae (SRP) are one of the most devastating phytopathogens. They degrade plant tissues by producing an arsenal of plant cell wall degrading enzymes. However, SRP-plant interactions are not restricted to the production of these "brute force" weapons. Additionally, these bacteria apply stealth behavior related to (1) manipulation of the host plant via induction of susceptible responses and (2) formation of heterogeneous populations with functionally specialized cells. Our review aims to summarize current knowledge on SRP-induced plant susceptible responses and on the heterogeneity of SRP populations. The review shows that SRP are capable of adjusting the host's hormonal balance, inducing host-mediated plant cell wall modification, promoting iron assimilation by the host, stimulating the accumulation of reactive oxygen species and host cell death, and activating the synthesis of secondary metabolites that are ineffective in limiting disease progression. By this means, SRP facilitate host plant susceptibility. During host colonization, SRP populations produce various functionally specialized cells adapted for enhanced virulence, increased resistance, motility, vegetative growth, or colonization of the vascular system. This enables SRP to perform self-contradictory tasks, which benefits a population's overall fitness in various environments, including host plants. Such stealthy tactical actions facilitate plant-SRP interactions and disease progression.
Collapse
|
14
|
Zhang Y, Yu H, Xie Y, Guo Y, Cheng Y, Yao W. Inhibitory effects of hexanal on acylated homoserine lactones (AHLs) production to disrupt biofilm formation and enzymes activity in Erwinia carotovora and Pseudomonas fluorescens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:372-381. [PMID: 36618067 PMCID: PMC9813320 DOI: 10.1007/s13197-022-05624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Erwinia carotovora and Pseudomonas fluorescens were two bacteria commonly caused the spoilage of vegetables through biofilm formation and secretion of extracellular enzymes. In this study, N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-Octanoyl-L-homoserine lactone (C8-HSL) were confirmed as acylated homoserine lactones (AHLs) signal molecule produced by E. carotovora and P. fluorescens, respectively. In addition, quorum sensing inhibitory (QSI) effects of hexanal on AHLs production were evaluated. Hexanal at 1/2 minimum inhibitory concentration (MIC) was achieved 76.27% inhibitory rate of 3-oxo-C6-HSL production in E. carotovora and a inhibitory rate of C8-HSL (60.78%) in P. fluorescens. The amount of biofilm formation and activity of extracellular enzymes treated with 1/2 MIC of hexanal were restored with different concentrations (10 ng/mL, 50 ng/mL, 100 ng/mL) of exogenous AHLs (P < 0.05), which verified QSI effect of hexanal on biofilm and extracellular enzymes were due to its inhibition on AHLs production. Molecular docking analysis showed that hexanal could interact with EcbI and PcoI protein to disrupt AHLs production. Furthermore, results showed that sub-MICs of hexanal could suppress expressions of ecbI and pcoI genes in AHL-mediated QS system of E. carotovora and P. fluorescens. This study provides theoretical support for the application of essential oils as QS inhibitors in the preservation of vegetables. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-022-05624-9.
Collapse
Affiliation(s)
- Ying Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093 China
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Hang Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- Joint International Research Laboratory of Food Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
- National Center for Technology Innovation On Fast Biological Detection of Grain Quality and Safety, Jiangnan University, No.1800 Lihu Avenue, Wuxi, 214122 Jiangsu Province China
| |
Collapse
|
15
|
Disalicylic Acid Provides Effective Control of Pectobacterium brasiliense. Microorganisms 2022; 10:microorganisms10122516. [PMID: 36557768 PMCID: PMC9784377 DOI: 10.3390/microorganisms10122516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Bis(2-carboxyphenyl) succinate (disalicylic acid; DSA) is composed of two salicylic acids connected by a succinyl linker. Here, we propose its use as a new, synthetic plant-protection agent. DSA was shown to control Pectobacterium brasiliense, an emerging soft-rot pathogen of potato and ornamental crops, at minimal inhibitory concentrations (MIC) lower than those of salicylic acid. Our computational-docking analysis predicted that DSA would inhibit the quorum-sensing (QS) synthase of P. brasiliense ExpI more strongly than SA would. In fact, applying DSA to P. brasiliense inhibited its biofilm formation, secretion of plant cell wall-degrading enzymes, motility and production of acyl-homoserine lactones (AHL) and, subsequently, impaired its virulence. DSA also inhibited the production of AHL by a QS-negative Escherichia coli strain (DH5α) that had been transformed with P. brasiliense AHL synthase, as demonstrated by the biosensors Chromobacterium violaceaum CV026 and E. coli pSB401. Inhibition of the QS machinery appears to be one of the mechanisms by which DSA inhibits specific virulence determinants. A new route is proposed for the synthesis of DSA, which holds greater potential for use as an anti-virulence agent than its precursor SA. Based on these findings, DSA is an excellent candidate for repurposing for new applications.
Collapse
|
16
|
Wasendorf C, Schmitz-Esser S, Eischeid CJ, Leyhe MJ, Nelson EN, Rahic-Seggerman FM, Sullivan KE, Peters NT. Genome analysis of Erwinia persicina reveals implications for soft rot pathogenicity in plants. Front Microbiol 2022; 13:1001139. [DOI: 10.3389/fmicb.2022.1001139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Soft rot disease causes devastating losses to crop plants all over the world, with up to 90% loss in tropical climates. To better understand this economically important disease, we isolated four soft rot-causing Erwinia persicina strains from rotted vegetables. Notably, E. persicina has only recently been identified as a soft rot pathogen and a comprehensive genomic analysis and comparison has yet to be conducted. Here, we provide the first genomic analysis of E. persicina, compared to Pectobacterium carotovorum, P. carotovorum, and associated Erwinia plant pathogens. We found that E. persicina shares common genomic features with other Erwinia species and P. carotovorum, while having its own unique characteristics as well. The E. persicina strains examined here lack Type II and Type III secretion systems, commonly used to secrete pectolytic enzymes and evade the host immune response, respectively. E. persicina contains fewer putative pectolytic enzymes than P. carotovorum and lacks the Out cluster of the Type II secretion system while harboring a siderophore that causes a unique pink pigmentation during soft rot infections. Interestingly, a putative phenolic acid decarboxylase is present in the E. persicina strains and some soft rot pathogens, but absent in other Erwinia species, thus potentially providing an important factor for soft rot. All four E. persicina isolates obtained here and many other E. persicina genomes contain plasmids larger than 100 kbp that encode proteins likely important for adaptation to plant hosts. This research provides new insights into the possible mechanisms of soft rot disease by E. persicina and potential targets for diagnostic tools and control measures.
Collapse
|
17
|
Cooper B. The Detriment of Salicylic Acid to the Pseudomonas savastanoi pv. phaseolicola Proteome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:814-824. [PMID: 35612310 DOI: 10.1094/mpmi-05-22-0104-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Salicylic acid (SA), a natural product, is the major hormonal regulator of the plant immune system. SA also has antibacterial activity that is not completely elucidated. To gain a better understanding of this, Pseudomonas savastanoi pv. phaseolicola, a bacterial pathogen of beans, was exposed to sub-inhibitory amounts of SA and was then examined using quantitative mass spectrometry. Among the 2,185 proteins quantified, there were pronounced increases in p-hydroxybenzoic acid efflux pumps and multidrug efflux pumps. By contrast there were significant decreases in porin proteins, high-osmolarity response proteins, and protein components of the type VI secretion system. In addition, there were alterations in enzymes likely affecting the production of alginate, which is needed for infection. Furthermore, there was a decrease in an enzyme needed to detoxify methylglyoxal. Assays confirmed a reduction in alginate production and an increase in cellular methylglyoxal concentrations after SA treatment. Culture assays demonstrated that SA altered bacterial growth curves more so than other hydroxylated benzoic acid isomers. These data reveal that SA is antibiotic and that P. savastanoi pv. phaseolicola significantly alters its proteome in response to SA in vitro. Similar alterations to the bacterial proteome occur in beans during an immune reaction when SA increases at the site of infection. Thus, in beans, SA likely deters bacterial infection by adversely altering the bacterial proteome. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2022.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, 20705, U.S.A
| |
Collapse
|
18
|
Wang W, Lin X, Yang H, Huang X, Pan L, Wu S, Yang C, Zhang L, Li Y. Anti-quorum sensing evaluation of methyleugenol, the principal bioactive component, from the Melaleuca bracteata leaf oil. Front Microbiol 2022; 13:970520. [PMID: 36118239 PMCID: PMC9477228 DOI: 10.3389/fmicb.2022.970520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Quorum sensing (QS) is a cell-to-cell communication in bacteria that couples gene expression through the accumulation of signaling molecules, which finally induce the production of several virulence factors and modulate bacterial behaviors. Plants have evolved an array of quorum sensing inhibitors (QSIs) to inhibit the pathogens, of which aromatic compounds are widely recognized. The essential oil of Melaleuca bracteata was found to exhibit anti-quorum sensing activity, and its principal bioactive component, methyleugenol (ME), had been isolated in our previous study. Here, ME interfered effectively with the QS-regulated processes of toxin secretion in Chomobacterium violaceum ATCC31532, resulting in strong inhibition of QS genes, cviR, cviI, vioA-E, hmsHNR, lasA-B, pilE1-3, and hcnABC, leading to impaired virulence, including violacein production, biofilm biomass, and swarming motility. The accumulation of the signal molecule (N-hexanoyl-DL-homoserine lactone, C6-HSL) in C. violaceum declined upon treatment with ME, suggesting an inhibition effect on the C6-HSL production, and the ME was also capable of degrading the C6-HSL in vitro assay. Molecular docking technique and the consumption change of exogenous C6-HSL in C. violaceum CV026 revealed the anti-QS mechanism of ME consisted of inhibition of C6-HSL production, potentially via interaction with CviR and/or CviI protein. Collectively, the isolated ME, the principal active components of M. bracteata EO, exhibited a wide range of inhibition processes targeting C. violaceum QS system, which supports the potential anti-pathogenic use of M. bracteata EO and ME for treatment of pathogen contamination caused by bacterial pathogens.
Collapse
Affiliation(s)
- Wenting Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaojie Lin
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huixiang Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoqin Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Pan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaohua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Yang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liaoyuan Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- *Correspondence: Liaoyuan Zhang,
| | - Yongyu Li
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Natural Products of Horticultural Plants, Fujian Agriculture and Forestry University, Fuzhou, China
- Yongyu Li,
| |
Collapse
|
19
|
Karthikeyan A, Akilan M, Samyuktha SM, Ariharasutharsan G, Shobhana VG, Veni K, Tamilzharasi M, Keerthivarman K, Sudha M, Pandiyan M, Senthil N. Untangling the Physio-Chemical and Transcriptional Changes of Black Gram Cultivars After Infection With Urdbean Leaf Crinkle Virus. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.916795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Black gram (Vigna mungo) is an important pulse crop of India. The leaf crinkle disease caused by the urdbean leaf crinkle virus (ULCV) is a severe threat to black gram production. Black gram plants infected by ULCV show a considerable decline in plant growth and yield. However, detailed information about the interactions between the host, black gram, and ULCV is unclear. This study investigated the responses of two cultivars VBN (Bg) 6 and CO 5 to ULCV infection by physiological, biochemical, and transcriptional analyses. Virus symptoms were mild in VBN (Bg) 6 but were serious in CO 5. Upon the viral infection, VBN (Bg) 6 exhibited a low reduction in chlorophyll content than CO 5. The levels of sugar, protein, phenol, hydrogen peroxide (H2O2), and malondialdehyde (MDA) contents were altered by a viral infection in both cultivars. Although, the activities of antioxidant enzymes [Ascorbate peroxidase (APX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)] were increased by ULCV infection. Following the viral infection, the expression level of the salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) defense pathway-related genes was recorded higher in the VBN (Bg) 6 than that recorded in CO 5, indicating a positive correlation between resistance and these indicative indices. This dynamic physio-biochemical and transcriptional profiles of two black gram cultivars on ULCV infection augment our understanding of the complex interaction response between this crop and its pathogen. Additionally, it offers an inventory of potential indicators for future black gram screening and breeding to enhance resistance.
Collapse
|
20
|
Kang JE, Yoo N, Jeon BJ, Kim BS, Chung EH. Resveratrol Oligomers, Plant-Produced Natural Products With Anti-virulence and Plant Immune-Priming Roles. FRONTIERS IN PLANT SCIENCE 2022; 13:885625. [PMID: 35712595 PMCID: PMC9197177 DOI: 10.3389/fpls.2022.885625] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic resistance has become increasingly prevalent in the environment. Many alternative strategies have been proposed for the treatment and prevention of diverse diseases in agriculture. Among them, the modulation of bacterial virulence to bypass antibiotic resistance or boost plant innate immunity can be considered a promising drug target. Plant-produced natural products offer a broad spectrum of stereochemistry and a wide range of pharmacophores, providing a great diversity of biological activities. Here, we present a perspective on the putative role of plant-produced resveratrol oligomers as anti-virulence and plant-immune priming agents for efficient disease management. Resveratrol oligomers can decrease (1) bacterial motility directly and (2) indirectly by attenuating the bacterial type III secretion system (TT3S). They induce enhanced local immune responses mediated by two-layered plant innate immunity, demonstrating (3) a putative plant immune priming role.
Collapse
Affiliation(s)
- Ji Eun Kang
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
| | - Nayeon Yoo
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
| | - Byeong Jun Jeon
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung Institute, Gangneung, South Korea
| | - Beom Seok Kim
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| | - Eui-Hwan Chung
- Institute of Life Science and Natural Resources, Korea University, Seoul, South Korea
- Department of Plant Biotechnology, Graduate School, Korea University, Seoul, South Korea
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, South Korea
| |
Collapse
|
21
|
Veltman B, Harpaz D, Melamed S, Tietel Z, Tsror L, Eltzov E. Whole-cell bacterial biosensor for volatile detection from Pectobacterium-infected potatoes enables early identification of potato tuber soft rot disease. Talanta 2022; 247:123545. [PMID: 35597022 DOI: 10.1016/j.talanta.2022.123545] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/26/2022]
Abstract
Half of the harvested food is lost due to rots caused by microorganisms. Plants emit various volatile organic compounds (VOCs) into their surrounding environment, and the VOC profiles of healthy crops are altered upon infection. In this study, a whole-cell bacterial biosensor was used for the early identification of potato tuber soft rot disease caused by the pectinolytic bacteria Pectobacterium in potato tubers. The detection is based on monitoring the luminescent responses of the bacteria panel to changes in the VOC profile following inoculation. First, gas chromatography-mass spectrometry (GC-MS) was used to specify the differences between the VOC patterns of the inoculated and non-inoculated potato tubers during early infection. Five VOCs were identified, 1-octanol, phenylethyl alcohol, 2-ethyl hexanol, nonanal, and 1-octen-3-ol. Then, the infection was detected by the bioreporter bacterial panel, firstly measured in a 96-well plate in solution, and then also tested in potato plugs and validated in whole tubers. Examination of the bacterial panel responses showed an extensive cytotoxic effect over the testing period, as seen by the elevated induction factor (IF) values in the bacterial strain TV1061 after exposure to both potato plugs and whole tubers. Moreover, quorum sensing influences were also observed by the elevated IF values in the bacterial strain K802NR. The developed whole-cell biosensor system based on bacterial detection will allow more efficient crop management during postharvest, storage, and transport of crops, to reduce food losses.
Collapse
Affiliation(s)
- Boris Veltman
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Dorin Harpaz
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel; Institute of Biochemistry, Food Science and Nutrition, Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel.
| | - Sarit Melamed
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Leah Tsror
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Gilat Research Center, Agricultural Research Organization, M.P, Negev, 8531100, Israel.
| | - Evgeni Eltzov
- Institute of Postharvest and Food Science, Department of Postharvest Science, Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel.
| |
Collapse
|
22
|
The Plant Defense Signal Salicylic Acid Activates the RpfB-Dependent Quorum Sensing Signal Turnover via Altering the Culture and Cytoplasmic pH in the Phytopathogen Xanthomonas campestris. mBio 2022; 13:e0364421. [PMID: 35254135 PMCID: PMC9040794 DOI: 10.1128/mbio.03644-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Plant colonization by phytopathogens is a very complex process in which numerous factors are involved. Upon infection by phytopathogens, plants produce salicylic acid (SA) that triggers gene expression within the plant to counter the invading pathogens. The present study demonstrated that SA signal also directly acts on the quorum-sensing (QS) system of the invading pathogen Xanthomonas campestris pv. campestris to affect its virulence by inducing turnover of the diffusible signaling factor (DSF) family QS signal. First, Xanthomonas campestris pv. campestris infection induces SA biosynthesis in the cabbage host plant. SA cannot be degraded by Xanthomonas campestris pv. campestris during culturing. Exogenous addition of SA or endogenous production of SA induces DSF signal turnover during late growth phase of Xanthomonas campestris pv. campestris in XYS medium that mimics plant vascular environments. Further, the DSF turnover gene rpfB is required for SA induction of DSF turnover. However, SA does not affect the expression of rpfB and DSF biosynthesis gene rpfF at the transcriptional level. SA induction of DSF turnover only occurs under acidic conditions in XYS medium. Furthermore, addition of SA to XYS medium significantly increased both culture and cytoplasmic pH. Increased cytoplasmic pH induced DSF turnover in a rpfB-dependent manner. In vitro RpfB-dependent DSF turnover activity increased when pH increased from 6 to 8. SA exposure did not affect the RpfB-dependent DSF turnover in vitro. Finally, SA-treated Xanthomonas campestris pv. campestris strain exhibited enhanced virulence when inoculated on cabbage. These results provide new insight into the roles of SA in host plants and the molecular interactions between Xanthomonas campestris pv. campestris and cruciferous plants.
Collapse
|
23
|
Bouyahya A, Chamkhi I, Balahbib A, Rebezov M, Shariati MA, Wilairatana P, Mubarak MS, Benali T, El Omari N. Mechanisms, Anti-Quorum-Sensing Actions, and Clinical Trials of Medicinal Plant Bioactive Compounds against Bacteria: A Comprehensive Review. Molecules 2022; 27:1484. [PMID: 35268585 PMCID: PMC8911727 DOI: 10.3390/molecules27051484] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Bacterial strains have developed an ability to resist antibiotics via numerous mechanisms. Recently, researchers conducted several studies to identify natural bioactive compounds, particularly secondary metabolites of medicinal plants, such as terpenoids, flavonoids, and phenolic acids, as antibacterial agents. These molecules exert several mechanisms of action at different structural, cellular, and molecular levels, which could make them candidates or lead compounds for developing natural antibiotics. Research findings revealed that these bioactive compounds can inhibit the synthesis of DNA and proteins, block oxidative respiration, increase membrane permeability, and decrease membrane integrity. Furthermore, recent investigations showed that some bacterial strains resist these different mechanisms of antibacterial agents. Researchers demonstrated that this resistance to antibiotics is linked to a microbial cell-to-cell communication system called quorum sensing (QS). Consequently, inhibition of QS or quorum quenching is a promising strategy to not only overcome the resistance problems but also to treat infections. In this respect, various bioactive molecules, including terpenoids, flavonoids, and phenolic acids, exhibit numerous anti-QS mechanisms via the inhibition of auto-inducer releases, sequestration of QS-mediated molecules, and deregulation of QS gene expression. However, clinical applications of these molecules have not been fully covered, which limits their use against infectious diseases. Accordingly, the aim of the present work was to discuss the role of the QS system in bacteria and its involvement in virulence and resistance to antibiotics. In addition, the present review summarizes the most recent and relevant literature pertaining to the anti-quorum sensing of secondary metabolites and its relationship to antibacterial activity.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Genomic Center of Human Pathologies, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Imane Chamkhi
- Centre GEOPAC, Laboratoire de Geobiodiversite et Patrimoine Naturel, Université Mohammed V de Rabat, Institut Scientifique de Rabat, Rabat 10106, Morocco;
- Agrobiosciences Program, University Mohammed VI Polytechnic, Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco
| | - Abdelaali Balahbib
- Laboratory of Biodiversity, Ecology and Genome, Faculty of Sciences, Mohammed V University, Rabat 10106, Morocco;
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 26 Talalikhina St., 109316 Moscow, Russia;
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of Technologies and Management (The First Cossack University), 109004 Moscow, Russia;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Safi 46030, Morocco;
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V. University in Rabat, B.P. 6203, Rabat 10000, Morocco;
| |
Collapse
|
24
|
Hu A, Hu M, Chen S, Xue Y, Tan X, Zhou J. Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Front Microbiol 2022; 13:839025. [PMID: 35273588 PMCID: PMC8901885 DOI: 10.3389/fmicb.2022.839025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
25
|
Yuan L, Zhao Y, Xie H, Shi Y, Xie X, Chai A, Li L, Li B. Selection and evaluation of suitable reference genes for quantitative gene expression analysis during infection of Cucumis sativus with Pectobacterium brasiliense. J Appl Microbiol 2022; 132:3717-3734. [PMID: 35138009 DOI: 10.1111/jam.15481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/17/2022] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Abstract
AIMS Bacterial soft rot caused by Pectobacterium brasiliense (Pbr) has resulted in severe economic losses of cucumber production in northern China. Quantitative reverse transcription PCR (RT-qPCR) is widely used to determine the fold change in the expression of genes of interest, and an appropriate reference gene played a critical role in the evaluation of genes expression. However, the suitable reference genes for transcript normalization during the interaction between cucumber and Pbr have not yet been systematically validated. In this study, we aimed to identify the suitable reference genes for accurate and reliable normalization of cucumber and Pbr RT-qPCR data. METHODS AND RESULTS We selected fourteen candidate reference genes for cucumber and ten candidate reference genes for Pbr were analyzed by using four algorithms (the deltaCt method, BestKeeper, NormFinder and geNorm). Furthermore, five genes in cucumber involved in plant resistance and five genes in Pbr related to the virulence were selected to confirm the reliability of the reference genes by RT-qPCR. CsARF (ADP-ribosylation factor 1) and pgi (glucose-6-phosphate isomerase) were suggested as the most suitable reference genes for cucumber and Pbr, respectively. CONCLUSION Our results suggested that CsARF (ADP-ribosylation factor 1) and pgi (glucose-6-phosphate isomerase) could be as the reference genes to normalize expression data for cucumber and Pbr during the process of pathogen-host interaction, respectively. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first systematic study of the optimal reference genes specific to cucumber and Pbr, which could help advance the molecular interactions research in Cucurbitaceae vegetables and Pectobacterium species pathosystems.
Collapse
Affiliation(s)
- Lifang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China.,Shandong Academy of Grapes, Shandong Academy of Agricultural Sciences, Shandong, China
| | - Yurong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hua Xie
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, Beijing, China
| | - Yanxia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuewen Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ali Chai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Baoju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
26
|
Liu F, Hu M, Zhang Z, Xue Y, Chen S, Hu A, Zhang LH, Zhou J. Dickeya Manipulates Multiple Quorum Sensing Systems to Control Virulence and Collective Behaviors. FRONTIERS IN PLANT SCIENCE 2022; 13:838125. [PMID: 35211146 PMCID: PMC8860905 DOI: 10.3389/fpls.2022.838125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 06/12/2023]
Abstract
Soft rot Pectobacteriaceae (SRP), typical of Pectobacterium and Dickeya, are a class of Gram-negative bacterial pathogens that cause devastating diseases on a wide range of crops and ornamental plants worldwide. Quorum sensing (QS) is a cell-cell communication mechanism regulating the expression of specific genes by releasing QS signal molecules associated with cell density, in most cases, involving in the vital process of virulence and infection. In recent years, several types of QS systems have been uncovered in Dickeya pathogens to control diverse biological behaviors, especially bacterial pathogenicity and transkingdom interactions. This review depicts an integral QS regulation network of Dickeya, elaborates in detail the regulation of specific QS system on different biological functions of the pathogens and hosts, aiming at providing a systematic overview of Dickeya pathogenicity and interactions with hosts, and, finally, expects the future prospective of effectively controlling the bacterial soft rot disease caused by Dickeya by quenching the key QS signal.
Collapse
|
27
|
Joshi JR, Khazanov N, Charkowski A, Faigenboim A, Senderowitz H, Yedidia I. Interkingdom Signaling Interference: The Effect of Plant-Derived Small Molecules on Quorum Sensing in Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:153-190. [PMID: 33951403 DOI: 10.1146/annurev-phyto-020620-095740] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In the battle between bacteria and plants, bacteria often use a population density-dependent regulatory system known as quorum sensing (QS) to coordinate virulence gene expression. In response, plants use innate and induced defense mechanisms that include low-molecular-weight compounds, some of which serve as antivirulence agents by interfering with the QS machinery. The best-characterized QS system is driven by the autoinducer N-acyl-homoserine lactone (AHL), which is produced by AHL synthases (LuxI homologs) and perceived by response regulators (LuxR homologs). Several plant compounds have been shown to directly inhibit LuxI or LuxR. Gaining atomic-level insight into their mode of action and how they interfere with QS enzymes supports the identification and design of novel QS inhibitors.Such information can be gained by combining experimental work with molecular modeling and docking simulations. The summary of these findings shows that plant-derived compounds act as interkingdom cues and that these allomones specifically target bacterial communication systems.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Amy Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Adi Faigenboim
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| | - Hanoch Senderowitz
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel 5290002;
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion, Israel 7528809;
| |
Collapse
|
28
|
Pun M, Khazanov N, Galsurker O, Weitman M, Kerem Z, Senderowitz H, Yedidia I. Phloretin, an Apple Phytoalexin, Affects the Virulence and Fitness of Pectobacterium brasiliense by Interfering With Quorum-Sensing. FRONTIERS IN PLANT SCIENCE 2021; 12:671807. [PMID: 34249044 PMCID: PMC8270676 DOI: 10.3389/fpls.2021.671807] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/31/2021] [Indexed: 05/31/2023]
Abstract
The effects of phloretin a phytoalexin from apple, was tested on Pectobacterium brasiliense (Pb1692), an emerging soft-rot pathogen of potato. Exposure of Pb1692 to 0.2 mM phloretin a concentration that does not affect growth, or to 0.4 mM a 50% growth inhibiting concentration (50% MIC), reduced motility, biofilm formation, secretion of plant cell wall-degrading enzymes, production of acyl-homoserine lactone (AHL) signaling molecules and infection, phenotypes that are associated with bacterial population density-dependent system known as quorum sensing (QS). To analyze the effect of growth inhibition on QS, the activity of ciprofloxacin, an antibiotic that impairs cell division, was compared to that of phloretin at 50% MIC. Unlike phloretin, the antibiotic hardly affected the tested phenotypes. The use of DH5α, a QS-negative Escherichia coli strain, transformed with an AHL synthase (ExpI) from Pb1692, allowed to validate direct inhibition of AHL production by phloretin, as demonstrated by two biosensor strains, Chromobacterium violaceaum (CV026) and E. coli (pSB401). Expression analysis of virulence-related genes revealed downregulation of QS-regulated genes (expI, expR, luxS, rsmB), plant cell wall degrading enzymes genes (pel, peh and prt) and motility genes (motA, fim, fliA, flhC and flhD) following exposure to both phloretin concentrations. The results support the inhibition of ExpI activity by phloretin. Docking simulations were used to predict the molecular associations between phloretin and the active site of ExpI, to suggest a likely mode of action for the compound's inhibition of virulence.
Collapse
Affiliation(s)
- Manoj Pun
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Ortal Galsurker
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| | - Michal Weitman
- Department of Chemistry, Bar-Ilan University, Ramat Gan, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Iris Yedidia
- The Institute of Plant Sciences, Volcani Center, Agricultural Research Organization (ARO), Rishon Lezion, Israel
| |
Collapse
|
29
|
Cooper B, Beard HS, Yang R, Garrett WM, Campbell KB. Bacterial Immobilization and Toxicity Induced by a Bean Plant Immune System. J Proteome Res 2021; 20:3664-3677. [PMID: 34097416 DOI: 10.1021/acs.jproteome.1c00232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pseudomonas savastanoi pv. phaseolicola causes halo blight disease in the common bean Phaseolus vulgaris. The bacterium invades the leaf apoplast and uses a type III secretion system to inject effector proteins into a bean cell to interfere with the bean immune system. Beans counter with resistance proteins that can detect effectors and coordinate effector-triggered immunity responses transduced by salicylic acid, the primary defense hormone. Effector-triggered immunity halts bacterial spread, but its direct effect on the bacterium is not known. In this study, mass spectrometry of bacterial infections from immune and susceptible beans revealed that immune beans inhibited the accumulation of bacterial proteins required for virulence, secretion, motility, chemotaxis, quorum sensing, and alginate production. Sets of genes encoding these proteins appeared to function in operons, which implies that immunity altered the coregulated genes in the bacterium. Immunity also reduced amounts of bacterial methylglyoxal detoxification enzymes and their transcripts. Treatment of bacteria with salicylic acid, the plant hormone produced during immunity, reduced bacterial growth, decreased gene expression for methylglyoxal detoxification enzymes, and increased bacterial methylglyoxal concentrations in vitro. Increased methylglyoxal concentrations reduced bacterial reproduction. These findings support the hypothesis that plant immunity involves the chemical induction of adverse changes to the bacterial proteome to reduce pathogenicity and to cause bacterial self-toxicity.
Collapse
Affiliation(s)
- Bret Cooper
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Hunter S Beard
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Ronghui Yang
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Wesley M Garrett
- Animal Biosciences and Biotechnology Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| | - Kimberly B Campbell
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville 20705, Maryland, United States
| |
Collapse
|
30
|
|
31
|
Oulghazi S, Sarfraz S, Zaczek-Moczydłowska MA, Khayi S, Ed-Dra A, Lekbach Y, Campbell K, Novungayo Moleleki L, O’Hanlon R, Faure D. Pectobacterium brasiliense: Genomics, Host Range and Disease Management. Microorganisms 2021; 9:E106. [PMID: 33466309 PMCID: PMC7824751 DOI: 10.3390/microorganisms9010106] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Pectobacterium brasiliense (Pbr) is considered as one of the most virulent species among the Pectobacteriaceae. This species has a broad host range within horticulture crops and is well distributed elsewhere. It has been found to be pathogenic not only in the field causing blackleg and soft rot of potato, but it is also transmitted via storage causing soft rot of other vegetables. Genomic analysis and other cost-effective molecular detection methods such as a quantitative polymerase chain reaction (qPCR) are essential to investigate the ecology and pathogenesis of the Pbr. The lack of fast, field deployable point-of-care testing (POCT) methods, specific control strategies and current limited genomic knowledge make management of this species difficult. Thus far, no comprehensive review exists about Pbr, however there is an intense need to research the biology, detection, pathogenicity and management of Pbr, not only because of its fast distribution across Europe and other countries but also due to its increased survival to various climatic conditions. This review outlines the information available in peer-reviewed literature regarding host range, detection methods, genomics, geographical distribution, nomenclature and taxonomical evolution along with some of the possible management and control strategies. In summary, the conclusions and a further directions highlight the management of this species.
Collapse
Affiliation(s)
- Said Oulghazi
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Sohaib Sarfraz
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Maja A. Zaczek-Moczydłowska
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Slimane Khayi
- Biotechnology Research Unit, CRRA-Rabat, National Institute for Agricultural Research (INRA), Rabat 10101, Morocco;
| | - Abdelaziz Ed-Dra
- Department of Biology, Faculty of Sciences, Moulay Ismaïl University, BP.11201, Zitoune Meknes 50000, Morocco; (S.O.); (A.E.-D.)
| | - Yassir Lekbach
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang 110819, China;
| | - Katrina Campbell
- Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast BT9 5DL, UK; (M.A.Z.-M.); (K.C.)
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa;
| | - Richard O’Hanlon
- Agri-Food and Biosciences Institute, 18a Newforge Lane, Belfast BT9 5PX, UK;
- Department of Agriculture, Food and the Marine, D02 WK12 Dublin 2, Ireland
| | - Denis Faure
- Institute for Integrative Biology of the Cell (I2BC), CEA CNRS University Paris-Saclay, 91190 Gif-sur-Yvette, France
| |
Collapse
|
32
|
Joshi JR, Yao L, Charkowski AO, Heuberger AL. Metabolites from Wild Potato Inhibit Virulence Factors of the Soft Rot and Blackleg Pathogen Pectobacterium brasiliense. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:100-109. [PMID: 32960719 DOI: 10.1094/mpmi-08-20-0224-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Potato (Solanum tuberosum L.) is the primary vegetable crop consumed worldwide and is largely affected by bacterial pathogens that can cause soft rot and blackleg disease. Recently, resistance to these diseases has been identified in the wild potato S. chacoense, and the mechanism of resistance is unknown. Here, it was hypothesized that S. chacoense stems or tubers have unique chemistry that confers resistance to the pathogen Pectobacterium brasiliense through bactericidal, bacteriostatic, or antivirulence activity. Stem and tuber metabolite extracts were collected from S. chacoense and tested for effects on Pectobacterium bacterial multiplication rates, and activity and expression of known exoenzymes and virulence genes using S. tuberosum extracts as a comparative control. Comparatively, the S. chacoense extracts did not affect bacterial multiplication rate; however, they did reduce pectinase, cellulase, and protease activities. The chemical extracts were profiled using a bioassay-guided fractionation, and a nontargeted metabolomics comparison of S. chacoense and S. tuberosum stems and tubers was performed. The data showed that selected alkaloids, phenolic amines, phenols, amines, and peptides are integrative chemical sources of resistance against the bacteria.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janak R Joshi
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Linxing Yao
- Analytical Resources Core-Bioanalysis and Omics Center, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, U.S.A
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523, U.S.A
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, U.S.A
| |
Collapse
|
33
|
Guttman Y, Joshi JR, Chriker N, Khadka N, Kleiman M, Reznik N, Wei Z, Kerem Z, Yedidia I. Ecological adaptations influence the susceptibility of plants in the genus Zantedeschia to soft rot Pectobacterium spp. HORTICULTURE RESEARCH 2021; 8:13. [PMID: 33384417 PMCID: PMC7775464 DOI: 10.1038/s41438-020-00446-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 06/12/2023]
Abstract
Soft rot disease caused by Pectobacterium spp. is responsible for severe agricultural losses in potato, vegetables, and ornamentals. The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease. Previous studies revealed that Z. aethiopica, a member of the section Zantedeschia, is significantly more resistant to Pectobacterium spp. than members of the same genus that belong to the section Aestivae. During early infection, we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections. Similar patterns of bacterial colonization were observed on polydimethylsiloxane (PDMS) artificial inert replicas of leaf surfaces. The replicas confirmed the physical effect of leaf texture, in addition to a biochemical plant-bacterium interaction. The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments, as compared to Zantedeschia group species that have adapted to warm, marshy environments. Transverse leaf sections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members. Finally, an analysis of defense marker genes revealed differential expression patterns in response to infection, with significantly higher levels of lipoxygenase 2 (lox2) and phenylalanine ammonia lyase (pal) observed in the more resistant Z. aethiopica, suggesting greater activation of induced systemic resistance (ISR) mechanisms in this group. The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.
Collapse
Affiliation(s)
- Yelena Guttman
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Janak Raj Joshi
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
| | - Nofar Chriker
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Nirmal Khadka
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Maya Kleiman
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Noam Reznik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Zunzheng Wei
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel
| | - Zohar Kerem
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Iris Yedidia
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon Lezion, Israel.
| |
Collapse
|
34
|
Host Specificity and Differential Pathogenicity of Pectobacterium Strains from Dicot and Monocot Hosts. Microorganisms 2020; 8:microorganisms8101479. [PMID: 32993160 PMCID: PMC7599833 DOI: 10.3390/microorganisms8101479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 01/28/2023] Open
Abstract
Recent phylogenetic studies have transferred certain isolates from monocot plants previously included in the heterogeneous group of Pectobacteriumcarotovorum (Pc) to a species level termed Pectobacterium aroidearum. The specificity of Pectobacterium associated infections had received less attention, and may be of high scientific and economic importance. Here, we have characterized differential responses of Pectobacterium isolates from potato (WPP14) and calla lily (PC16) on two typical hosts: Brassica oleracea var. capitata (cabbage) a dicot host; and Zantedeschia aethiopica (calla lily) a monocot host. The results revealed clear host specific responses following infection with the two bacterial strains. This was demonstrated by differential production of volatile organic compounds (VOCs) and the expression of plant defense-related genes (pal, PR-1, lox2, ast). A related pattern was observed in bacterial responses to each of the host’s extract, with differential expression of virulence-related determinants and genes associated with quorum-sensing and plant cell wall-degrading enzymes. The differences were associated with each strain’s competence on its respective host.
Collapse
|
35
|
Zhang W, Luo Q, Zhang Y, Fan X, Ye T, Mishra S, Bhatt P, Zhang L, Chen S. Quorum Quenching in a Novel Acinetobacter sp. XN-10 Bacterial Strain against Pectobacterium carotovorum subsp. carotovorum. Microorganisms 2020; 8:microorganisms8081100. [PMID: 32717872 PMCID: PMC7466008 DOI: 10.3390/microorganisms8081100] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a cell density-dependent mechanism that regulates the expression of specific genes in microbial cells. Quorum quenching (QQ) is a promising strategy for attenuating pathogenicity by interfering with the QS system of pathogens. N-Acyl-homoserine lactones (AHLs) act as signaling molecules in many Gram-negative bacterial pathogens and have received wide attention. In this study, a novel, efficient AHL-degrading bacterium, Acinetobacter sp. strain XN-10, was isolated from agricultural contaminated soil and evaluated for its degradation efficiency and potential use against QS-mediated pathogens. Strain XN-10 could effectively degrade N-(3-oxohexanoyl)-L-homoserine lactone (OHHL), N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL), and N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), which all belong to the AHL family. Analysis of AHL metabolic products by gas chromatography-mass spectrometry (GC-MS) led to the identification of N-cyclohexyl-propanamide, and pentanoic acid, 4-methyl, methyl ester as the main intermediate metabolites, revealing that AHL could be degraded by hydrolysis and dehydroxylation. All intermediates were transitory and faded away without any non-cleavable metabolites at the end of the experiment. Furthermore, strain XN-10 significantly attenuated the pathogenicity of Pectobacterium carotovorum subsp. carotovorum (Pcc) to suppress tissue maceration in carrots, potatoes, and Chinese cabbage. Taken together, our results shed light on the QQ mechanism of a novel AHL-degrading bacterial isolate, and they provide useful information which show potential for biocontrol of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qingqing Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yiyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (W.Z.); (Q.L.); (Y.Z.); (X.F.); (T.Y.); (S.M.); (P.B.); (L.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence:
| |
Collapse
|
36
|
Joshi JR, Khazanov N, Khadka N, Charkowski AO, Burdman S, Carmi N, Yedidia I, Senderowitz H. Direct Binding of Salicylic Acid to Pectobacterium N-Acyl-Homoserine Lactone Synthase. ACS Chem Biol 2020; 15:1883-1891. [PMID: 32392032 DOI: 10.1021/acschembio.0c00185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants. We demonstrated that SA can interfere with group behavior and virulence of the soft-rot plant pathogen Pectobacterium spp. through quorum sensing (QS) inhibition. QS is a population density-dependent communication system that relies on the signal molecule acyl-homoserine lactone (AHL) to synchronize infection. P. parmentieri mutants, lacking the QS AHL synthase (expI-) or the response regulator (expR-), were used to determine how SA inhibits QS. ExpI was expressed in DH5α, the QS negative strain of Escherichia coli, revealing direct interference of SA with AHL synthesis. Docking simulations showed SA is a potential ExpI ligand. This hypothesis was further confirmed by direct binding of SA to purified ExpI, shown by isothermal titration calorimetry and microscale thermophoresis. Computational alanine scanning was employed to design a mutant ExpI with predicted weaker binding affinity to SA. The mutant was constructed and displayed lower affinity to the ligand in the binding assay, and its physiological inhibition by SA was reduced. Taken together, these data support a likely mode of action and a role for SA as potent inhibitor of AHL synthase and QS.
Collapse
Affiliation(s)
- Janak Raj Joshi
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion 7528809, Israel
| | - Netaly Khazanov
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Nirmal Khadka
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion 7528809, Israel
| | - Amy O. Charkowski
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Nir Carmi
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion 7528809, Israel
| | - Iris Yedidia
- Department of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon Lezion 7528809, Israel
| | | |
Collapse
|
37
|
Fan J, Ma L, Zhao C, Yan J, Che S, Zhou Z, Wang H, Yang L, Hu B. Transcriptome of Pectobacterium carotovorum subsp. carotovorum PccS1 infected in calla plants in vivo highlights a spatiotemporal expression pattern of genes related to virulence, adaptation, and host response. MOLECULAR PLANT PATHOLOGY 2020; 21:871-891. [PMID: 32267092 PMCID: PMC7214478 DOI: 10.1111/mpp.12936] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 02/14/2020] [Accepted: 02/29/2020] [Indexed: 06/11/2023]
Abstract
Bacterial pathogens from the genus Pectobacterium cause soft rot in various plants, and result in important economic losses worldwide. We understand much about how these pathogens digest their hosts and protect themselves against plant defences, as well as some regulatory networks in these processes. However, the spatiotemporal expression of genome-wide infection of Pectobacterium remains unclear, although researchers analysed this in some phytopathogens. In the present work, comparing the transcriptome profiles from cellular infection with growth in minimal and rich media, RNA-Seq analyses revealed that the differentially expressed genes (log2 -fold ratio ≥ 1.0) in the cells of Pectobacterium carotovorum subsp. carotovorum PccS1 recovered at a series of time points after inoculation in the host in vivo covered approximately 50% of genes in the genome. Based on the dynamic expression changes in infection, the significantly differentially expressed genes (log2 -fold ratio ≥ 2.0) were classified into five types, and the main expression pattern of the genes for carbohydrate metabolism underlying the processes of infection was identified. The results are helpful to our understanding of the inducement of host plant and environmental adaption of Pectobacterium. In addition, our results demonstrate that maceration caused by PccS1 is due to the depression of callose deposition in the plant for resistance by the pathogenesis-related genes and the superlytic ability of pectinolytic enzymes produced in PccS1, rather than the promotion of plant cell death elicited by the T3SS of bacteria as described in previous work.
Collapse
Affiliation(s)
- Jiaqin Fan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Lin Ma
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Chendi Zhao
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Jingyuan Yan
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Shu Che
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Zhaowei Zhou
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Huan Wang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Liuke Yang
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Baishi Hu
- Laboratory of BacteriologyDepartment of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
38
|
Fan X, Ye T, Li Q, Bhatt P, Zhang L, Chen S. Potential of a Quorum Quenching Bacteria Isolate Ochrobactrum intermedium D-2 Against Soft Rot Pathogen Pectobacterium carotovorum subsp. carotovorum. Front Microbiol 2020; 11:898. [PMID: 32457732 PMCID: PMC7227377 DOI: 10.3389/fmicb.2020.00898] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/16/2020] [Indexed: 02/05/2023] Open
Abstract
Quorum quenching (QQ) is a promising strategy for preventing and controlling quorum sensing (QS)-mediated bacterial infections. It interferes with QS by the inhibition of signal synthesis, the detection of enzyme-catalyzed degradation, and the modification of signals. N-Acyl homoserine lactones (AHLs) represent a family of widely conserved QS signals involved in the regulation of virulence factor production in many Gram-negative bacterial pathogens. In this study, AHL-degrading bacterial strains were isolated, and the most efficient one was evaluated for its potential against QS-mediated pathogens. Results showed that an AHL-degrading bacteria Ochrobactrum intermedium D-2 effectively attenuated maceration produced by the pathogen Pectobacterium carotovorum subsp. carotovorum (Pcc) on radish and potato slices. Strain D-2 exhibited a superior AHL degradation activity and efficiently degraded various AHLs, including N-hexanoyl-L-homoserine lactone (C6HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3OC6HSL), N-(3-oxooctanoyl)-L-homoserine lactone (3OC8HSL), and N-(3-oxododecanoyl)-L-homoserine lactone (3OC12HSL). Analysis of the degradation products of AHL by gas chromatography-mass spectrometry led to the identification of N-cyclohexyl-propanamide and propanamide as the main intermediate products, suggesting that AHL was degraded by hydrolysis. Annotation and analysis of the whole genome sequence of strain D-2 revealed the presence of an AHL-lactonase, termed AidF. Moreover, the application of strain D-2 was able to substantially reduce the disease severity caused by Pcc on host plants. These results reveal the biochemical basis of a highly efficient AHL-degrading bacterial isolate and present the potential to attenuate Pcc virulence through QQ.
Collapse
Affiliation(s)
- Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
39
|
Aybeke M. Aspergillus alliaceus infection fatally shifts Orobanche hormones and phenolic metabolism. Braz J Microbiol 2020; 51:883-892. [PMID: 32363566 DOI: 10.1007/s42770-020-00283-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/17/2020] [Indexed: 10/24/2022] Open
Abstract
In this study, the physio pathological effects of Aspergillus alliaceus (Aa, fungi, biocontrol agent) on Orobanche (parasitic plant) were investigated by hormone and phenolic substance tests. In experimental group, Orobanches were treated with the fungi, considering control group was fungus-free. Based on the hormonal tests, in the experimental group, salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA) and gibberellic acid (GA) levels significantly decreased, and only indole acetic acid (IAA) hormone levels were fairly higher than the control group. According to phenolic substance tests, it was found that only gallic acid, syringic acid and caffeic acid values significantly increased compared with control, and catechin and p-coumaric acid values were significantly lower. Consequently, it was determined that Aa pathogenesis (1) considerably reduces the effects of all defence hormones (JA, ABA, SA), (2) operates an inadequate defence based solely on the IAA hormone and several phenolic substances (gallic acid, syringic acid and caffeic acid), (3) and inevitably the fungi lead the Orobanche to a slow and continuous death. The results were evaluated in detail in the light of similar recent article and current literature in terms of biocontrol and pathology.
Collapse
Affiliation(s)
- Mehmet Aybeke
- Faculty of Science, Department of Biology, Balkan Campus, Trakya University, 22030, Edirne, Turkey.
| |
Collapse
|
40
|
Bioactivity of Selected Phenolic Acids and Hexane Extracts from Bougainvilla spectabilis and Citharexylum spinosum on the Growth of Pectobacterium carotovorum and Dickeya solani Bacteria: An Opportunity to Save the Environment. Processes (Basel) 2020. [DOI: 10.3390/pr8040482] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phenolic acids and natural extracts, as ecofriendly environmental agents, can be used as bio bactericides against the growth of plant pathogenic bacteria. In this study, isolation trails from infected potato tubers and stems that showed soft rot symptoms in fields revealed two soft rot bacterial isolates and were initially identified through morphological, physiological, and pathogenicity tests. The molecular characterization of these isolates via PCR, based on the 16S rRNA region, was carried out by an analysis of the DNA sequence via BLAST and Genbank, and showed that the soft rot bacterial isolates belong to Pectobacterium carotovorum subsp. carotovorum (PCC1) and Dickeya solani (Ds1). The in vitro results of the tested phenolic acids against the cultured bacterial isolates proved that concentrations of 800, 1600, and 3200 μg/mL were the most effective. Ferulic acid was the potent suppressive phenolic acid tested against the Ds1 isolate, with an inhibition zone ranging from 6.00 to 25.75 mm at different concentrations (25–3200 μg/mL), but had no effect until reaching a concentration of 100 μg/mL in the PCC1 isolate, followed by tannic acid, which ranged from 7.00 to 25.50 mm. On the other hand, tannic acid resulted in a significant decrease in the growth rate of the PCC1 isolate with a mean of 9.11 mm. Chlorogenic acid was not as effective as the rest of the phenolic acids compared with the control. The n-hexane oily extract (HeOE) from Bougainvillea spectabilis bark showed the highest activity against PCC1 and Ds1, with inhibition zone values of 12 and 12.33 mm, respectively, at a concentration of 4000 μg/mL; while the HeOE from Citharexylum spinosum wood showed less activity. In the GC/MS analysis, nonanal, an oily liquid compound, was found ata percentage of 38.28%, followed by cis-2-nonenal (9.75%), which are the main compounds in B. spectabilis bark HeOE, and 2-undecenal (22.39%), trans-2-decenal (18.74%), and oleic acid (10.85%) were found, which are the main compounds in C. spinosum wood HeOE. In conclusion, the phenolic acids and plant HeOEs seem to raise the resistance of potato plants, improving their defense mechanisms against soft rot bacterial pathogens.
Collapse
|
41
|
Liu F, Zhao Q, Jia Z, Song C, Huang Y, Ma H, Song S. N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:38. [PMID: 31992205 PMCID: PMC6986161 DOI: 10.1186/s12870-019-2228-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUD Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. RESULTS In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. CONCLUSIONS Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.
Collapse
Affiliation(s)
- Fang Liu
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China.
| | - Cong Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Yali Huang
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Hong Ma
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China.
| |
Collapse
|
42
|
Karnjana K, Nobsathian S, Soowannayan C, Zhao W, Tang YJ, Wongprasert K. Purification and Evaluation of N-benzyl Cinnamamide from Red Seaweed Gracilaria fisheri as an Inhibitor of Vibrio harveyi AI-2 Quorum Sensing. Mar Drugs 2020; 18:E80. [PMID: 32012662 PMCID: PMC7073586 DOI: 10.3390/md18020080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/22/2020] [Accepted: 01/23/2020] [Indexed: 02/03/2023] Open
Abstract
Previously, we reported that the ethanol extract from red seaweed Gracilaria fisheri effectively decreased biofilm formation of Vibrio harveyi. In this study, the anti-biofilm active compounds in the ethanol extract were isolated and their structures identified. The anti-biofilm fractionation assay for minimum inhibitory concentration (MIC) produced two fractions which possessed maximal inhibitory activities toward the biofilm formation of V. harveyi strains 1114 and BAA 1116. Following chromatographic separation of the bioactive fractions, two pure compounds were isolated, and their structures were elucidated using FTIR, NMR, and HR-TOF-MS. The compounds were N-benzyl cinnamamide and α-resorcylic acid. The in vitro activity assay demonstrated that both compounds inhibited the biofilm formation of V. harveyi and possessed the anti-quorum sensing activity by interfering with the bioluminescence of the bacteria. However, the N-benzyl cinnamamide was more potent than α-resorcylic acid with a 10-fold lesser MIC. The present study reveals the beneficial property of the N-benzyl cinnamamide from the ethanol extract as a lead anti-microbial drug against V. harveyi.
Collapse
Affiliation(s)
- Kulwadee Karnjana
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | | | - Chumporn Soowannayan
- National Center for Genetic Engineering and Biotechnology, and Centex Shrimp Chalermprakiat Building, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| | - Wei Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Ya-Jie Tang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Kanokpan Wongprasert
- Department of Anatomy, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400, Thailand
| |
Collapse
|
43
|
Quorum Sensing Inhibitors from Marine Microorganisms and Their Synthetic Derivatives. Mar Drugs 2019; 17:md17020080. [PMID: 30696031 PMCID: PMC6409935 DOI: 10.3390/md17020080] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 12/13/2022] Open
Abstract
Quorum sensing inhibitors (QSIs) present a promising alternative or potent adjuvants of conventional antibiotics for the treatment of antibiotic-resistant bacterial strains, since they could disrupt bacterial pathogenicity without imposing selective pressure involved in antibacterial treatments. This review covers a series of molecules showing quorum sensing (QS) inhibitory activity that are isolated from marine microorganisms, including bacteria, actinomycetes and fungi, and chemically synthesized based on QSIs derived from marine microorganisms. This is the first comprehensive overview of QSIs derived from marine microorganisms and their synthetic analogues with QS inhibitory activity.
Collapse
|
44
|
Qi G, Chen J, Chang M, Chen H, Hall K, Korin J, Liu F, Wang D, Fu ZQ. Pandemonium Breaks Out: Disruption of Salicylic Acid-Mediated Defense by Plant Pathogens. MOLECULAR PLANT 2018; 11:1427-1439. [PMID: 30336330 DOI: 10.1016/j.molp.2018.10.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/30/2018] [Accepted: 10/09/2018] [Indexed: 05/26/2023]
Abstract
Salicylic acid (SA) or 2-hydroxybenoic acid is a phenolic plant hormone that plays an essential role in plant defense against biotrophic and semi-biotrophic pathogens. In Arabidopsis, SA is synthesized from chorismate in the chloroplast through the ICS1 (isochorismate synthase I) pathway during pathogen infection. The transcription co-activator NPR1 (Non-Expresser of Pathogenesis-Related Gene 1), as the master regulator of SA signaling, interacts with transcription factors to induce the expression of anti-microbial PR (Pathogenesis-Related) genes. To establish successful infections, plant bacterial, oomycete, fungal, and viral pathogens have evolved at least three major strategies to disrupt SA-mediated defense. The first strategy is to reduce SA accumulation directly by converting SA into its inactive derivatives. The second strategy is to interrupt SA biosynthesis by targeting the ICS1 pathway. In the third major strategy, plant pathogens deploy different mechanisms to interfere with SA downstream signaling. The wide array of strategies deployed by plant pathogens highlights the crucial role of disruption of SA-mediated plant defense in plant pathogenesis. A deeper understanding of this topic will greatly expand our knowledge of how plant pathogens cause diseases and consequently pave the way for the development of more effective ways to control these diseases.
Collapse
Affiliation(s)
- Guang Qi
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Jian Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ming Chang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Huan Chen
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China; Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Katherine Hall
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - John Korin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing 210014, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science and College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
45
|
Wang C, Pu T, Lou W, Wang Y, Gao Z, Hu B, Fan J. Hfq, a RNA Chaperone, Contributes to Virulence by Regulating Plant Cell Wall-Degrading Enzyme Production, Type VI Secretion System Expression, Bacterial Competition, and Suppressing Host Defense Response in Pectobacterium carotovorum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:1166-1178. [PMID: 30198820 DOI: 10.1094/mpmi-12-17-0303-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Hfq is a RNA chaperone and participates in a wide range of cellular processes and pathways. In this study, mutation of hfq gene from Pectobacterium carotovorum subsp. carotovorum PccS1 led to significantly reduced virulence and plant cell wall-degrading enzyme (PCWDE) activities. In addition, the mutant exhibited decreased biofilm formation and motility and greatly attenuated carbapenem production as well as secretion of hemolysin coregulated protein (Hcp) as compared with wild-type strain PccS1. Moreover, a higher level of callose deposition was induced in Nicotiana benthamiana leaves when infiltrated with the mutant. A total of 26 small (s)RNA deletion mutants were obtained among a predicted 27 sRNAs, and three mutants exhibited reduced virulence in the host plant. These results suggest that hfq plays a key role in Pectobacterium virulence by positively impacting PCWDE production, secretion of the type VI secretion system, bacterial competition, and suppression of host plant responses.
Collapse
Affiliation(s)
- Chunting Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianxin Pu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangying Lou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujie Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zishu Gao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Baishi Hu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqin Fan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
46
|
Božik M, Cejnar P, Šašková M, Nový P, Maršík P, Klouček P. Stress response of Escherichia coli to essential oil components - insights on low-molecular-weight proteins from MALDI-TOF. Sci Rep 2018; 8:13042. [PMID: 30158663 PMCID: PMC6115441 DOI: 10.1038/s41598-018-31255-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/15/2018] [Indexed: 01/21/2023] Open
Abstract
The antibacterial effects of essential oils and their components (EOCs) are usually attributed to effects on membranes and metabolism. Studies of the effects of EOCs on protein expression have primarily analysed proteins larger than 10 kDa using gel electrophoresis. In the present study, we used MALDI-TOF-MS to investigate the effects of EOCs on low-molecular-weight proteins. From 297 m/z features, we identified 94 proteins with important differences in expression among untreated samples, samples treated with EOCs, and samples treated with antibiotics, peroxide, or chlorine. The targets of these treatments obviously differ, even among EOCs. In addition to ribosomal proteins, stress-, membrane- and biofilm-related proteins were affected. These findings may provide a basis for identifying new targets of essential oils and synergies with other antibiotics.
Collapse
Affiliation(s)
- Matěj Božik
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Cejnar
- University of Chemistry and Technology, Department of Computing and Control Engineering, Prague, Czech Republic.,Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Plant Protection, Prague, Czech Republic
| | - Martina Šašková
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Nový
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Petr Maršík
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic
| | - Pavel Klouček
- Czech University of Life Sciences, Faculty of Agrobiology, Food and Natural Resources, Department of Quality of Agricultural Products, Prague, Czech Republic.
| |
Collapse
|
47
|
Abstract
Bacterial soft rot is a disease complex caused by multiple genera of gram-negative and gram-positive bacteria, with Dickeya and Pectobacterium being the most widely studied soft-rot bacterial pathogens. In addition to soft rot, these bacteria also cause blackleg of potato, foot rot of rice, and bleeding canker of pear. Multiple Dickeya and Pectobacterium species cause the same symptoms on potato, complicating epidemiology and disease resistance studies. The primary pathogen species present in potato-growing regions differs over time and space, further complicating disease management. Genomics technologies are providing new management possibilities, including improved detection and biocontrol methods that may finally allow effective disease management. The recent development of inbred diploid potato lines is also having a major impact on studying soft-rot pathogens because it is now possible to study soft-rot disease in model plant species that produce starchy vegetative storage organs. Together, these new discoveries have changed how we face diseases caused by these pathogens.
Collapse
Affiliation(s)
- Amy O Charkowski
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523-1177, USA;
| |
Collapse
|
48
|
Haque S, Ahmad F, Dar SA, Jawed A, Mandal RK, Wahid M, Lohani M, Khan S, Singh V, Akhter N. Developments in strategies for Quorum Sensing virulence factor inhibition to combat bacterial drug resistance. Microb Pathog 2018; 121:293-302. [PMID: 29857121 DOI: 10.1016/j.micpath.2018.05.046] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/27/2018] [Accepted: 05/28/2018] [Indexed: 12/22/2022]
Abstract
Quorum sensing (QS) is a complex bacterial intercellular communication system. It is mediated by molecules called auto-inducers (AIs) and allows coordinated responses to a variety of environmental signals by inducing alterations in gene expression. Communication through QS can tremendously stimulate the pathogenicity and virulence via multiple mechanisms in pathogenic bacteria. The present review explores the major types of multitudinous QS systems known in Gram-positive and Gram-negative bacteria and their roles in bacterial pathogenesis and drug resistance. Because bacterial resistance to antibiotics is increasingly becoming a significant clinical challenge to human health; alternate strategies to combat drug resistance are warranted. Targeting bacterial pathogenicity by interruptions in QS using natural QS inhibitors and synthetic quorum-quenching analogs are being increasingly considered for development of next generation antimicrobials. The review highlights the recent advancements in discovery of promising new QS modulators and their efficiency in controlling infections caused by multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia.
| | - Faraz Ahmad
- Department of Public Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Sajad A Dar
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Arshad Jawed
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Raju K Mandal
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohd Wahid
- Research and Scientific Studies Unit, College of Nursing & Allied Health Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohtashim Lohani
- Department of Emergency Medical Services, College of Applied Medical Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| | - Saif Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Ha'il, 2440, Saudi Arabia
| | - Vineeta Singh
- Department of Biotechnology, Institute of Engineering & Technology, Lucknow, 226021, Uttar Pradesh, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha, 65431, Saudi Arabia
| |
Collapse
|
49
|
Potrykus M, Hugouvieux‐Cotte‐Pattat N, Lojkowska E. Interplay of classic Exp and specific Vfm quorum sensing systems on the phenotypic features of Dickeya solani strains exhibiting different virulence levels. MOLECULAR PLANT PATHOLOGY 2018; 19:1238-1251. [PMID: 28921772 PMCID: PMC6638156 DOI: 10.1111/mpp.12614] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 09/14/2017] [Indexed: 05/31/2023]
Abstract
Bacteria from the genus Dickeya cause severe symptoms on numerous economically important plants. Dickeya solani is the Dickeya species most frequently found on infected potato plants in Europe. D. solani strains from different countries show high genetic homogeneity, but significant differences in their virulence level. Dickeya species possess two quorum sensing (QS) mechanisms: the Exp system based on classic N-acyl-homoserine lactone (AHL) signals and a specific system depending on the production and perception of a molecule of unknown structure, Virulence Factor Modulating (VFM). To study the interplay between these two QS systems, five D. solani strains exhibiting different virulence levels were selected. Mutants were constructed by inactivating genes coding for each QS system. Double mutants were obtained by simultaneous inactivation of genes coding for both QS systems. Most of the D. solani mutants showed an attenuation of chicory maceration and a decreased production of plant cell wall-degrading enzymes (PCWDEs) and motility, but to different degrees depending on the strain. The VFM-QS system seems to regulate virulence in both D. solani and Dickeya dadantii, but the AHL-QS system has greater effects in D. solani than in D. dadantii. The inactivation of both QS systems in D. solani did not reveal any additive effect on the tested features. The inactivation of vfm genes generally has a more dominant effect relative to that of exp genes. Thus, VFM- and AHL-QS systems do not work in synergy to modulate the production of diverse virulence factors and the ability to macerate plant tissue.
Collapse
Affiliation(s)
- Marta Potrykus
- Department of Biotechnology, Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of Gdansk, Abrahama 58, 80–307GdanskPoland
| | - Nicole Hugouvieux‐Cotte‐Pattat
- UMR5240 Microbiologie Adaptation et PathogénieUniversité Lyon, CNRS, INSA Lyon, Université Claude Bernard Lyon 1F–69622 VilleurbanneFrance
| | - Ewa Lojkowska
- Department of Biotechnology, Intercollegiate Faculty of BiotechnologyUniversity of Gdansk and Medical University of Gdansk, Abrahama 58, 80–307GdanskPoland
| |
Collapse
|
50
|
Zhang Y, Kong J, Huang F, Xie Y, Guo Y, Cheng Y, Qian H, Yao W. Hexanal as a QS inhibitor of extracellular enzyme activity of Erwinia carotovora and Pseudomonas fluorescens and its application in vegetables. Food Chem 2018; 255:1-7. [PMID: 29571454 DOI: 10.1016/j.foodchem.2018.02.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/06/2018] [Accepted: 02/08/2018] [Indexed: 01/16/2023]
Abstract
To prevent the postharvest disease of Chinese cabbage and lettuce, hexanal was used as a control measure to inhibit N-acyl homoserine lactone (AHL) production and extracellular enzymes regulated by quorum-sensing (QS) in their main spoilage strains of Erwinia carotovora and Pseudomonas fluorescens. Firstly, the QS inhibition of hexanal was verified by significantly inhibiting violacein production (p < 0.05) in Chromobacterium violaceum CV026 at sub-MICs. β-Galactosidase activities which reflected AHL production, were significantly inhibited by hexanal, its inhibitory effect was concentration-dependent under minimal inhibitory concentration (MIC) (p < 0.05). The detected extracellular enzymes activities decreased with the increase of hexanal concentration (p < 0.05), including cellulase, xylanase, pectate lyase, polygalacturonase, and protease. Chinese cabbage soft rot and lettuce leaf scorch could be significantly inhibited by hexanal (p < 0.05) without any phytotoxicity effect, the 1/2 MIC of hexanal showed the best inhibitory effect. And all the above effects showed a dose-dependent. A novel preservation technique in reducing the loss of vegetables due to spoilage based on the QS inhibitor was developed.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Jie Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Fei Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yunfei Xie
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Weirong Yao
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China; Joint International Research Laboratory of Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China.
| |
Collapse
|