1
|
Sudakov K, Rana A, Faigenboim-Doron A, Gordin A, Carmeli S, Shimshoni JA, Cytryn E, Minz D. Diverse effects of Bacillus sp. NYG5-emitted volatile organic compounds on plant growth, rhizosphere microbiome, and soil chemistry. Microbiol Res 2025; 295:128089. [PMID: 39978144 DOI: 10.1016/j.micres.2025.128089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/30/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
Bacterial strains in the rhizosphere secrete volatile organic compounds (VOCs) that play critical roles in inter- and intra-kingdom signaling, influencing both microbe-microbe and microbe-plant interactions. In this study we evaluated the plant growth-promoting effects of VOCs emitted by Bacillus sp. NYG5 on Arabidopsis thaliana, Nicotiana tabacum, and Cucumis sativus, focusing on VOC-induced alterations in plant metabolic pathways, rhizosphere microbial communities, and soil chemical properties. NYG5 VOCs enhanced plant biomass across all tested species and induced significant shifts in rhizosphere microbial community composition, specifically increasing relative abundance of Gammaproteobacteria and reducing Deltaproteobacteria (Linear discriminant analysis Effect Size, p < 0.05). Soil analysis revealed a considerable reduction in humic substance concentrations following VOCs exposure, as detected by fluorescent spectral analysis. Using SPME-GC-MS, several novel VOCs were identified, some of which directly promoted plant growth. Transcriptomic analysis of N. tabacum exposed to NYG5 VOCs demonstrated activation of pathways related to phenylpropanoid biosynthesis, sugar metabolism, and hormone signal transduction. Within the phenylpropanoid biosynthesis pathway, a significant upregulation (p adj = 1.16e-14) of caffeic acid 3-O-methyltransferase was observed, a key enzyme leading to lignin and suberin monomer biosynthesis. These results highlight the complex mechanisms through which bacterial VOCs influence plant growth, including metabolic modulation, rhizosphere microbiome restructuring, and soil chemical changes. Collectively, this study highlights the pivotal role of bacterial VOCs in shaping plant-microbe-soil interactions.
Collapse
Affiliation(s)
- Kobi Sudakov
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel; Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel
| | - Anuj Rana
- Department of Microbiology, College of Basic Science and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Adi Faigenboim-Doron
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Alexander Gordin
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Shmuel Carmeli
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jakob A Shimshoni
- Department of Food Science, Institute for Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel
| | - Dror Minz
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Beit Dagan, Israel.
| |
Collapse
|
2
|
Luo F, Gwak H, Park AR, Nguyen VT, Kim JC. Biocontrol potential of natamycin-producing Streptomyces lydicus JCK-6019 against soil-borne fungal diseases of cucumber and characterization of its biocontrol mechanism. PEST MANAGEMENT SCIENCE 2025; 81:1971-1987. [PMID: 39655403 DOI: 10.1002/ps.8596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/23/2024] [Accepted: 11/26/2024] [Indexed: 03/15/2025]
Abstract
BACKGROUND Fusarium oxysporum f. sp. cucumerinum and Rhizoctonia solani AG-4 are the two most important fungal pathogens causing soil-borne fungal diseases of cucumber; they are difficult to control and cause serious economic losses. Given the detrimental effects of the indiscriminate use of chemical fungicides, biocontrol emerges as an efficient and ecofriendly alternative for managing soil-borne fungal diseases. RESULTS Streptomyces lydicus JCK-6019 (hereafter, JCK-6019) was isolated from rhizosphere soil. Its fermentation filtrate and volatile organic compounds exhibited broad-spectrum antifungal activity against various phytopathogenic fungi and oomycetes. JCK-6019 produced natamycin as an agar-diffusible antifungal metabolite. It also produced indole-3-acetic acid and various hydrolytic enzymes. In vivo experiments revealed that a ten-fold-diluted optimized JCK-6019 fermentation broth exhibited 100% control efficiency against cucumber damping-off disease and 62.5% control efficiency against cucumber Fusarium wilt disease. Pretreatment of cucumber seedlings with 1000-fold-diluted optimized JCK-6019 fermentation broth resulted in 68.18% and 23.91% disease control values against cucumber damping-off and Fusarium wilt disease, respectively. Moreover, peroxidase activity in cucumbers after 1 day of treatment was 1.5-fold higher than that in the control. Similarly, polyphenol oxidase activity in cucumbers after 3 days of treatment was 2.34-fold higher than that in the control, indicating that JCK-6019 can induce plant resistance. CONCLUSION The natamycin-producing strain JCK-6019 could effectively suppress the development of cucumber Fusarium wilt and damping-off disease by inducing plant resistance and producing antifungal metabolites, including natamycin and volatile organic compounds. Thus, JCK-6019 possesses high potential for application in the development of biocontrol agents against soil-borne fungal diseases of cucumber. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Feng Luo
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Hanna Gwak
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ae Ran Park
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| | - Van Thi Nguyen
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| |
Collapse
|
3
|
Chu L, Lao G, Fang Y, Gao X, Liu W, Xie Q, Miao W, Jin P. Effect of mutation of secG gene in drug resistance and physiological and biochemical activities of Xanthomonas oryzae pv. oryzae. PEST MANAGEMENT SCIENCE 2025; 81:1771-1784. [PMID: 39614623 DOI: 10.1002/ps.8578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Bacterial leaf blight caused by the bacterium Xanthomonas oryzae pv. oryzae has a substantial effect on the yield of rice crops. The secretory (Sec) pathway, essential for efflux transport in bacteria, remains insufficiently studied in X. oryzae pv. oryzae, especially regarding its roles in drug resistance and physiology. RESULTS This study involved transcriptome analysis on two X. oryzae pv. oryzae strains: a secG deletion strain (∆secG) and its complemented strain (C: ∆secG). In comparison to the parental strain PXO99A, ∆secG exhibited slower growth, with reductions in swimming (20.67%) and swarming (12.59%), while maintaining 76.7% of its biofilm formation capacity and 63.6% of exopolysaccharide production. The minimum inhibitory concentration (MIC50) values for an n-butanol extract of Bacillus velezensis HN-2 (HN-2E) and bacitracin against ∆secG were 0.426 μg/mL (5.3% lower than that of PXO99A) and 10.905 μg/mL, respectively. Notably, ∆secG exhibited increased susceptibility to hydrogen peroxide (H2O2), being inhibited at 0.25 mm compared to 0.3 mm for PXO99A and C: ∆secG. In the presence of 0.2 mM H2O2, the susceptibility of ∆secG to HN-2E increased by 31.22% (MIC50 = 0.159 μg/mL), while PXO99A and C: ∆secG exhibited MIC50 values of 0.280 and 0.291 μg/mL, respectively. CONCLUSION Our findings demonstrate that Bacillus-induced H2O2 production enhances the sensitivity of X. oryzae pv. oryzae to biocontrol agents, providing valuable insights for the prevention of bacterial leaf blight. These results highlight the significance of the Sec pathway in the behavior and resistance of X. oryzae pv. oryzae, as well as potential areas for further research on plant diseases. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linglong Chu
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
- School of Life and Health Sciences, Hainan University, Haikou, China
| | - Guangshu Lao
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Yukai Fang
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Xue Gao
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Wenbo Liu
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Qingbiao Xie
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Weiguo Miao
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| | - Pengfei Jin
- School of Tropical Agriculture and Forestry, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou, China
| |
Collapse
|
4
|
Teja BS, Jamwal G, Gupta V, Verma M, Sharma A, Sharma A, Pandit V. Biological control of bacterial leaf blight (BLB) in rice-A sustainable approach. Heliyon 2025; 11:e41769. [PMID: 39872461 PMCID: PMC11770542 DOI: 10.1016/j.heliyon.2025.e41769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
Bacterial leaf blight (BLB) in rice, caused by the pathogen Xanthomonas oryzae pv. oryzae, is a significant agricultural problem managed through chemical control and cultivating rice varieties with inherent resistance to the bacterial pathogen. Research has highlighted the potential of using antagonistic microbes which can suppress the BLB pathogen through the production of secondary metabolites like siderophores, rhamnolipids, and hydroxy-alkylquinolines offering a sustainable alternative for BLB management. Additionally, the induction of plant immunity and defense-related enzymes in rice further enhances the resistance against the disease. Therefore, implementation of biological controls can complement chemical treatments in contributing towards the sustainability of rice production systems by aiming at host immunity improvement and killing of pathogen. It is crucial to continue exploring and understanding the complex interactions between various beneficial microbes, the rice plants, and the BLB pathogen to optimize and implement effective biocontrol strategies in future.
Collapse
Affiliation(s)
- Bestha Sai Teja
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Gayatri Jamwal
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vishal Gupta
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Mansi Verma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Ayushi Sharma
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Akash Sharma
- Division of Fruit Science, Faculty of Horticulture and Forestry, Sher-e-Kashmir University of Agricultural Sciences & Technology of Jammu, Chatha, 180009, India
| | - Vinod Pandit
- Centre for Agriculture and Bioscience International (CABI), New Delhi, 110012, India
| |
Collapse
|
5
|
Coerini LF, Mulato ATN, Martins-Junior J, Persinoti GF, Velasco de Castro Oliveira J. Inhibition of Xanthomonas growth by bioactive volatiles from Pseudomonas sp. triggers remarkable changes in the phytopathogen transcriptome. Microbiol Res 2025; 290:127971. [PMID: 39571246 DOI: 10.1016/j.micres.2024.127971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 08/05/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024]
Abstract
Volatile organic compounds (VOCs) produced by microorganisms may have a noteworthy role in the control of plant pathogens. Xanthomonas are a well-studied group of phytobacteria that cause diverse diseases in economically important crops worldwide. Key species that infect sugarcane are X. albilineans (Xab) and X. axonopodis pv. vasculorum (Xav). Here, we investigated VOC-producing bacteria with antagonistic effects against Xab and Xav. We demonstrated that VOCs produced by Pseudomonas sp. V5-S-D11 was able to abolish the growth of these pathogens. A set of 32 VOCs was identified in the volatilome of V5-S-D11, with 10 showing a concentration-dependent inhibitory effect on both phytobacteria. Among them, dimethyl disulfide (DMDS), a volatile sulfur compound, has the potential to be biotechnologically explored in agriculture since it can improve plant growth and induce systemic resistance against plant pathogens. Interestingly, transcriptomic analysis of Xab treated with DMDS revealed several up-regulated metabolic pathways such as a two-component system, flagellar assembly, chemotaxis, and a bacterial secretion system. Although the ethanol (ETOH) used as DMDS solvent did not inhibit Xab growth, it triggered a similar up-regulation of some genes, indicating that this phytopathogen can deal with ETOH better than DMDS. Overall, this study explores the wide role of VOCs in the interactions with bacteria. Moreover, our results indicate that VOCs from Pseudomonas sp. may represent a novel biotechnological strategy to counteract diseases caused by Xanthomonas species and can be further exploited for sustainable approaches in agriculture.
Collapse
Affiliation(s)
- Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| | - Aline Tieppo Nogueira Mulato
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| | - Joaquim Martins-Junior
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil.
| | - Gabriela Felix Persinoti
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil.
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil; Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas 13083-970, Brazil.
| |
Collapse
|
6
|
Zhang J, Jia F, Song K, Wang F, Li J, Huang L, Qu T. Enterobacter ludwigii b3 in the rhizosphere of wild rice assists cultivated rice in mitigating drought stress by direct and indirect methods. Biochem Biophys Res Commun 2024; 735:150489. [PMID: 39096883 DOI: 10.1016/j.bbrc.2024.150489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/25/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Drought is the primary factor limiting rice production in ecosystems. Wild rice rhizosphere bacteria possess the potential to assist in the stress resistance of cultivated rice. This study examines the impact of wild rice rhizosphere bacteria on cultivated rice under drought conditions. From the rhizosphere soil of wild rice, 20 potential drought-resistant strains were isolated. Subsequent to the screening, the most effective strain b3, was identified as Enterobacter ludwigii. Pot experiments were conducted on the cultivated Changbai 9 rice. It was found that inoculation with the E. ludwigii b3 strain improved the drought resistance of the rice, promotion of rice growth (shoot height increased by 13.47 %), increased chlorophyll content (chlorophyll a, chlorophyll b and carotenoid increased by 168.74 %, 130.68 % and 87.89 %), improved antioxidant system (content of glutathione was increased by 60.35 %), and accumulation of osmotic regulation substances (soluble sugar and soluble protein increased by 70.36 % and 142.03 %). Furthermore, E. ludwigii b3 had a transformative effect on the rhizosphere bacterial community of cultivated rice, increasing its abundance and diversity while simultaneously recruiting beneficial rhizosphere bacteria, resulting in a more complex community. Additionally, E. ludwigii b3 acted directly and indirectly on cultivated rice through its metabolites (organic acids, amino acids, flavonoids and other substances), which helped alleviate drought stress. In conclusion, the E. ludwigii b3 shows promise as a drought-resistant strain and has the potential to improve the growth and productivity of cultivated rice in arid agricultural ecosystems. This study represents the first investigation of E. ludwigii in the rhizosphere of wild rice under drought conditions on cultivated rice.
Collapse
Affiliation(s)
- Jianfeng Zhang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fang Jia
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Keji Song
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Fudong Wang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Junchen Li
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Leye Huang
- College of Life Science, Key Laboratory of Straw Comprehensive Utlisation and Black Soil Conservation, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tongbao Qu
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
7
|
Zhang Y, Zhu Z, Qin T, Li X, Yu R, Tang Z, Zhang C, Yan Y, Yin K, Xu Z, Chen G, Zou L, Xiao Y. Whole Genome Sequencing and Comparative Genomic Analysis of Pseudomonas aeruginosa SF416, a Potential Broad-Spectrum Biocontrol Agent Against Xanthomonas oryzae pv. oryzae. Microorganisms 2024; 12:2263. [PMID: 39597652 PMCID: PMC11596105 DOI: 10.3390/microorganisms12112263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/29/2024] Open
Abstract
Rice is one of the most important staple crops worldwide. However, the bacterial blight of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) poses a major threat to the production of rice. In this study, we isolated and identified the strain Pseudomonas aeruginosa SF416, which exhibited significant antagonistic activity against Xoo, from a soil sample collected in a winter wheat field in Shannanzhalang County, Tibet, China. The bacterial solution (BS) and cell-free supernatant (CFS) of SF416 had significant prevention effects for the bacterial blight of rice, with an efficacy of 45.1% and 34.18%, respectively, while they exhibited a slightly lower therapeutic efficiency of 31.64% and 25.09%. The genomic analysis showed that P. aeruginosa SF416 contains genes involved in cell motility, colonization, cold and hot shock proteins, antibiotic resistance, and plant growth promotion. SF416 also harbors two sets of phenazine-1-carboxylic acid (PCA) synthesis gene clusters, phz1 (phzA1-G1) and phz2 (phzA2-G2), and other phenozine product-synthesis--related genes phzS, phzM, and phzH, as well as genes in the SF416 genome that share high similarity with the ones in the genomes of P. aeruginosa M18, suggesting that the two sets of PCA synthesis gene clusters are responsible for the antagonistic effect of SF416 against Xoo. A comparative antiSMASH analysis revealed that P. aeruginosa SF416 contains 17 gene clusters related to secondary metabolite synthesis, 7 of which, encoding for pyochelin, azetidomonamide A/B, L-2-amino-4-methoxy-trans-3-butenoic acid, hydrogen cyanide, pyocyanine, pseudopaline, and bicyclomycin, are conserved in strains of P. aeruginosa. Moreover, SF416 can produce protease and siderophores and display a broad-spectrum antagonistic activity against various major plant pathogenic bacteria and fungi. The results suggest that P. aeruginosa SF416 could be a potential candidate agent for the bacterial blight of rice.
Collapse
Affiliation(s)
- Yikun Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Zhongfeng Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Tian Qin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Xiaojuan Li
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - RuoChen Yu
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zifan Tang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Chenjiayi Zhang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Yichao Yan
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Ke Yin
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
| | - Zhengyin Xu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gongyou Chen
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lifang Zou
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.Z.); (Z.Z.); (T.Q.); (Z.T.); (C.Z.); (Y.Y.); (K.Y.); (Z.X.); (G.C.)
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youlun Xiao
- Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
8
|
Yeo YJ, Park AR, Vuong BS, Kim JC. Biocontrol of Fusarium head blight in rice using Bacillus velezensis JCK-7158. Front Microbiol 2024; 15:1358689. [PMID: 38915299 PMCID: PMC11194345 DOI: 10.3389/fmicb.2024.1358689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Fusarium head blight (FHB) is a destructive disease caused by several species of Fusarium, such as Fusarium graminearum and F. asiaticum. FHB affects cereal crops, including wheat, barley, and rice, worldwide. Fusarium-infected kernels not only cause reduced yields but also cause quality loss by producing mycotoxins, such as trichothecenes and zearalenone, which are toxic to animals and humans. For decades, chemical fungicides have been used to control FHB because of their convenience and high control efficacy. However, the prolonged use of chemical fungicides has caused adverse effects, including the emergence of drug resistance to pathogens and environmental pollution. Biological control is considered one of the most promising alternatives to chemicals and can be used for integrated management of FHB due to the rare possibility of environment pollution and reduced health risks. In this study, Bacillus velezensis JCK-7158 isolated from rice was selected as an ecofriendly alternative to chemical fungicides for the management of FHB. JCK-7158 produced the extracellular enzymes protease, chitinase, gelatinase, and cellulase; the plant growth hormone indole-3-acetic acid; and the 2,3-butanediol precursor acetoin. Moreover, JCK-7158 exhibited broad antagonistic activity against various phytopathogenic fungi and produced iturin A, surfactin, and volatile substances as active antifungal compounds. It also enhanced the expression of PR1, a known induced resistance marker gene, in transgenic Arabidopsis plants expressing β-glucuronidase (GUS) fused with the PR1 promoter. Under greenhouse conditions, treatments with the culture broth and suspension concentrate formulation of JCK-7158 at a 1,000-fold dilution inhibited the development of FHB by 50 and 66%, respectively. In a field experiment, treatment with the suspension concentrate formulation of JCK-7158 at a 1,000-fold dilution effectively controlled the development of FHB with a control value of 55% and reduced the production of the mycotoxin nivalenol by 40%. Interestingly, treatment with JCK-7158 enhanced the expression of plant defense-related genes in salicylic acid, jasmonic acid, ethylene, and reactive oxygen species (ROS) signaling pathways before and after FHB pathogen inoculation. Taken together, our findings support that JCK-7158 has the potential to serve as a new biocontrol agent for the management of FHB.
Collapse
Affiliation(s)
- Yu Jeong Yeo
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| | - Bien Sy Vuong
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Morandini L, Caulier S, Bragard C, Mahillon J. Bacillus cereus sensu lato antimicrobial arsenal: An overview. Microbiol Res 2024; 283:127697. [PMID: 38522411 DOI: 10.1016/j.micres.2024.127697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/25/2024] [Accepted: 03/16/2024] [Indexed: 03/26/2024]
Abstract
The Bacillus cereus group contains genetically closed bacteria displaying a variety of phenotypic features and lifestyles. The group is mainly known through the properties of three major species: the entomopathogen Bacillus thuringiensis, the animal and human pathogen Bacillus anthracis and the foodborne opportunistic strains of B. cereus sensu stricto. Yet, the actual diversity of the group is far broader and includes multiple lifestyles. Another less-appreciated aspect of B. cereus members lies within their antimicrobial potential which deserves consideration in the context of growing emergence of resistance to antibiotics and pesticides, and makes it crucial to find new sources of antimicrobial molecules. This review presents the state of knowledge on the known antimicrobial compounds of the B. cereus group members, which are grouped according to their chemical features and biosynthetic pathways. The objective is to provide a comprehensive review of the antimicrobial range exhibited by this group of bacteria, underscoring the interest in its potent biocontrol arsenal and encouraging further research in this regard.
Collapse
Affiliation(s)
| | - Simon Caulier
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | - Claude Bragard
- Laboratory of Plant Health, Earth and Life Institute, UCLouvain, Louvain-la-Neuve B-1348, Belgium
| | | |
Collapse
|
10
|
Wang Z, Xu L, Lu X, Wang R, Han J, Yan A. The endophytic microbiome response patterns of Juglans regia to two pathogenic fungi. Front Microbiol 2024; 15:1378273. [PMID: 38666257 PMCID: PMC11043491 DOI: 10.3389/fmicb.2024.1378273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The endophytic microbial community reassembles to participate in plant immune balance when the host plants are stressed by pathogens. However, it remains unclear whether this assembly is pathogen-specific and how regulatory pathways are coordinated in multi-pathogens. In order to investigate the effects of infection with Colletotrichum gloeosporioides (Cg treatment) and Fusarium proliferatum (Fp treatment) on walnut leaf endophytic microbiome in their assembly, co-occurrence pattern, and on comprehensive chemical function of the internal environment of leaf, an interaction system of the walnut-pathogenic fungi was constructed using seed embryo tissue culture technology. The study showed differences in the assembly of endophytic microbial communities in walnut trees across three groups (control group, Ck; Cg; Fp) after Cg and Fp treatments. Despite changes in relative abundances, the dominant communities in phyla and genera remained comparable during the infection of the two pathogens. Endophyte fungi were more sensitive to the pathogen challenge than endophyte bacteria. Both promoted the enrichment of beneficial bacteria such as Bacillus and Pseudomonas, changed the modularity of the community, and reduced the stability and complexity of the endophyte community. Pathogenic fungi infection mainly affects the metabolism of porphyrin and chlorophyll, purine metabolism, phenylpropane metabolism, and amino acid metabolism. However, there was no significant difference in the secondary metabolites for the different susceptible plants. By screening endogenous antagonistic bacteria, we further verified that Pseudomonas psychrotolerans and Bacillus subtilis had inhibitory effects on the two pathogenic fungi and participated in the interaction between the leaves and pathogenic fungi. The antibacterial substances may be 1-methylnaphthalene, 1,3-butadiene, 2,3-butanediol, and toluene aldehyde.
Collapse
Affiliation(s)
- Ziye Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Chinese Academy of Forestry, Ecology and Nature Conservation Institute, Beijing, China
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Lu Xu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Province Key Laboratory of Forest Trees Germplasm Resources and Forest Protection, Baoding, Hebei, China
| | - Xiaoyue Lu
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Province Key Laboratory of Forest Trees Germplasm Resources and Forest Protection, Baoding, Hebei, China
| | - Ruidong Wang
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Province Key Laboratory of Forest Trees Germplasm Resources and Forest Protection, Baoding, Hebei, China
| | - Jie Han
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Province Key Laboratory of Forest Trees Germplasm Resources and Forest Protection, Baoding, Hebei, China
| | - Aihua Yan
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
- Hebei Urban Forest Health Technology Innovation Center, Baoding, Hebei, China
| |
Collapse
|
11
|
Rana A, Sudakov K, Carmeli S, Miyara SB, Bucki P, Minz D. Volatile organic compounds of the soil bacterium Bacillus halotolerans suppress pathogens and elicit defense-responsive genes in plants. Microbiol Res 2024; 281:127611. [PMID: 38228018 DOI: 10.1016/j.micres.2024.127611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/07/2024] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
Volatile organic compounds (VOCs) produced by bacteria play an important, yet relatively unexplored role in interactions between plants and phytopathogens. In this study, the soil bacterium Bacillus halotolerans NYG5 was identified as a potent biocontrol agent against several phytopathogenic fungi (Macrophomina phaseolina, Rhizoctonia solani, Pythium aphanidermatum, and Sclerotinia sclerotiorum) through the production of VOCs. NYG5-emitted VOCs also inhibited the growth of bacterial pathogens (Agrobacterium tumefaciens, Xanthomonas campestris, Clavibacter michiganensis, and Pseudomonas syringae). When cultured in various growth media, NYG5 produced a variety of VOCs. Five distinct VOCs (2-methylbutanoic acid, 5-methyl-2-hexanone, 2,3-hexanedione, 2-ethyl-1-hexanol, and 6-methyl-2-heptanone) were identified using headspace GC-MS. 2,3-Hexanedione exhibited potent lethal effects on the tested phytopathogens and nematicidal activity against Meloidogyne javanica at a concentration of 50 ppm. In addition, 0.05 ppm 2,3-hexanedione stimulated the expression of pathogenesis-related genes 1 and 2 in Arabidopsis thaliana. Interestingly, 2,3-hexanedione is used as a food additive at higher concentrations than those tested in this study. Hence, 2,3-hexanedione is a promising biologically active compound that might serve as a sustainable alternative to common chemical pesticides and an elicitor of plant defense.
Collapse
Affiliation(s)
- Anuj Rana
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; Department of Microbiology, College of Basic Science and Humanities, Chaudhary Charan Singh Haryana Agricultural University, Hisar, India
| | - Kobi Sudakov
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel; Department of Agroecology and Plant Health, Robert H. Smith Faculty of Agriculture, Food and Environment, the Hebrew University of Jerusalem, Israel
| | - Shmuel Carmeli
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Brown Miyara
- Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Patricia Bucki
- Institute of Plant Protection, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dror Minz
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel.
| |
Collapse
|
12
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
13
|
Ajinde AO, Ogunnusi TA, Akpor OB. Assessment of the Protective Potential of Inoculums and Metabolites of Rhizobacteria on Soybean ( Glycine max) Seedlings against Bacterial and Fungal Pathogens. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2024; 15:193-203. [PMID: 38279733 DOI: 10.2174/012772574x282130231206103404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Plant growth-promoting bacteria (PGPR), while generally considered to aid plant growth with the provision of nutrients, can also be used as biocontrol agents for plant pathogens. AIM The study assessed the protective potential of inoculums and metabolites of plant growthpromoting rhizobacterial strains against bacterial and fungal pathogens on soybean seedlings. MATERIALS AND METHODS Inoculums and metabolites of 15 rhizobacterial strains were used for the study. Five pathogens (Alternaria sp., Aspergillus niger, Corynespora sp., Fusarium oxysporum and Xanthomonas campestris) were employed for the study. Four experimental setups: treated-only seeds, infected-only seeds, infected then inoculum or metabolite treated seeds, and infected then distilled water-treated seeds. RESULTS In the setup infected with Alternaria sp., final germination values of seeds in the presence of the respective inoculums showed no significant variation between the treated only and the infected then treated setup. In the case of seeds infected with Aspergillus niger, higher germination and vigor index values were observed in the treated-only seeds when compared with the infected then-treated seeds. For seeds infected with Corynespora sp., significantly lower germination and vigor index values were observed in the infected then-treated seeds than the treated-only seeds in the presence of the respective inoculums. With regards to setup infected with Fusarium oxysporum, significantly higher final germination and vigor index values were recorded for the treated only seeds when compared with the infected then treated setups. For the Xanthomonas campestris infected seeds, the majority of the infected then metabolite-treated seeds showed significantly lower final germination values when compared with the treated-only seeds. CONCLUSION The study findings were able to establish the efficacy of some bacteria agents against economically important species of plant pathogens.
Collapse
Affiliation(s)
- Ayotunde O Ajinde
- Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Tolulope A Ogunnusi
- Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Oghenerobor B Akpor
- Department of Biological Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
14
|
Ali Q, Khan AR, Tao S, Rajer FU, Ayaz M, Abro MA, Gu Q, Wu H, Kuptsov V, Kolomiets E, Gao X. Broad-spectrum antagonistic potential of Bacillus spp. volatiles against Rhizoctonia solani and Xanthomonas oryzae pv. oryzae. PHYSIOLOGIA PLANTARUM 2023; 175:e14087. [PMID: 38148207 DOI: 10.1111/ppl.14087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/15/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Rhizoctonia solani and Xanthomonas oryzae pv. oryzae (Xoo) are the two major diseases affecting the quality and quantity of rice production. In the current study, volatile organic compounds (VOCs) of Bacillus spp. were used as green biocontrol agents for plant diseases. In in vitro experiments, Bacillus spp. FZB42, NMTD17, and LLTC93-VOCs displayed strong antimicrobial volatile activity with inhibition rates of 76, 66, and 78% for R. solani and 78, 81, and 76% for Xoo, respectively, compared to control. The synthetic VOCs, namely Pentadecane (PDC), Benzaldehyde (BDH), 1,2-Benz isothiazol-3(2H)-one (1,2-BIT), and mixture (MIX) of VOCs showed high volatile activity with inhibition rates of 86, 86, 89, and 92% against R. solani and 81, 81, 82, and 86%, respectively, against Xoo as compared to control. In addition, the scanning and transmission electron microscopes (SEM and TEM) analyses were performed to examine the effect of Bacillus and synthetic VOC treatments on R. solani and Xoo morphology. The analysis revealed the deformed and irregularized morphology of R. solani mycelia and Xoo cells after VOC treatments. The microscopic analysis showed that the rapid inhibition was due to severe oxidative productions inside the R. solani mycelia and Xoo cells. By using molecular docking, it was determined that the synthetic VOCs entered the active binding site of trehalase and NADH dehydrogenase proteins, causing R. solani and Xoo cells to die prematurely and an accumulation of ROS. In the greenhouse experiment, FZB42, NMTD17, and LLTC93-VOCs significantly reduced the lesions of R. solani 8, 7, and 6 cm, and Xoo 7, 6, and 6 cm, respectively, then control. The synthetic VOCs demonstrated that the PDC, BDH, 1,2-BIT, and MIX-VOCs significantly reduced R. solani lesions on leaves 6, 6, 6, and 5 cm and Xoo 6, 5, 5, and 4 cm, respectively, as compared to control. Furthermore, plant defence-related genes and antioxidant enzymes were upregulated in rice plants. These findings provide novel mechanisms by which Bacillus antimicrobial VOCs control plant diseases.
Collapse
Affiliation(s)
- Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Sheng Tao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Pakistan
| | - Muhammad Ayaz
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Manzoor Ali Abro
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Pakistan
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| | - Vladislav Kuptsov
- State Scientific Production Association "Chemical synthesis and biotechnology", Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Emilia Kolomiets
- State Scientific Production Association "Chemical synthesis and biotechnology", Institute of Microbiology, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, PR China
| |
Collapse
|
15
|
Tahir HAS, Ali Q, Rajer FU, Shakeel Q, Gillani W, Binyamin R, Tayyab HMA, Khan AR, Gu Q, Gao X, Wu H. Transcriptomic analysis of Ralstonia solanacearum in response to antibacterial volatiles of Bacillus velezensis FZB42. Arch Microbiol 2023; 205:358. [PMID: 37878074 DOI: 10.1007/s00203-023-03697-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
Volatile organic compounds (VOCs), produced by a variety of microbial species and used as biological agents, have been demonstrated to play a significant role in controlling phytopathogens. In continuation of our previous studies, we aim to elucidate the underlying mechanisms and pathways involved in interactions between pathogens and microbial VOCs. In the current study, we tested how VOCs produced by Bacillus velezensis FZB42 affect the growth of Ralstonia solanacearum TBBS1 in vitro.Query The result showed that the colony growth of R. solanacearum was reduced with an inhibition rate of 0.83 ± 0.043 as compared to the control 1.7 ± 0.076, respectively. The number of viable cells of R. solanacearum was significantly decreased to 7.68 CFU/mL as compared to the control (9.02 CFU/mL). In addition, transcriptomic analysis of R. solanacearum in response to VOCs produced by FZB42 was performed to better understand the effect of VOCs on R. solanacearum. The transcriptional response of R. solanacearum to FZB42-VOCs was determined using an Illumina RNA-seq approach. The results revealed significant changes in the expression of 2094 R. solanacearum genes, including 593 upregulated and 1501 downregulated genes. To validate the RNA-seq results, the expression of 10 genes was quantified using RT-qPCR. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to functionally annotate differentially expressed genes. Significant changes were observed in genes directly or indirectly related to virulence, including those related to bacterial invasion, motility, chemotaxis, and secretion systems. Overall, RNA-seq profiling provides new insights into the possible fundamental molecular mechanisms that are responsible for the reduction in growth and virulence of R. solanacearum upon application of FZB42-VOC.
Collapse
Affiliation(s)
- Hafiz Abdul Samad Tahir
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Pakistan Tobacco Board, Ministry of National Food Security and Research, Peshawar, Pakistan
| | - Qurban Ali
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Faheem Uddin Rajer
- Department of Plant Pathology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Qaisar Shakeel
- Department of Plant Pathology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, Pakistan
| | - Waqqas Gillani
- Pakistan Tobacco Board, Ministry of National Food Security and Research, Peshawar, Pakistan
| | - Rana Binyamin
- Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | | | - Abdur Rashid Khan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qin Gu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xuewen Gao
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Huijun Wu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
16
|
Ferreira MJ, Sierra-Garcia IN, Louvado A, Gomes NCM, Figueiredo S, Patinha C, Pinto DCGA, Cremades J, Silva H, Cunha Â. Domestication shapes the endophytic microbiome and metabolome of Salicornia europaea. J Appl Microbiol 2023; 134:lxad178. [PMID: 37587019 DOI: 10.1093/jambio/lxad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/20/2023] [Accepted: 08/14/2023] [Indexed: 08/18/2023]
Abstract
AIMS We aim at understanding the effect of domestication on the endophytic microbiome and metabolome of Salicornia europaea and collecting evidence on the potential role of microbial populations and metabolites in the adaptation of plants to different ecological contexts (wild vs crops). METHODS AND RESULTS Samples were collected from a natural salt marsh (wild) and an intensive crop field (crop). High-throughput sequencing of the 16S rRNA gene, gas chromatography-mass spectrometry (GC-MS) and ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) were used to analyze the endophytic bacterial communities and the metabolite profiles of S. europaea roots, respectively. The elemental analysis of the plant shoots was performed by Inductively Coupled Plasma-Mass Spectroscopy (ICP-MS).Overall, significant differences were found between the microbiome of wild and cultivated plants. The later showed a higher relative abundance of the genera Erythrobacter, Rhodomicrobium, and Ilumatobacter than wild plants. The microbiome of wild plants was enriched in Marinobacter, Marixanthomonas, and Thalassospira. The metabolite profile of crop plants revealed higher amounts of saturated and non-saturated fatty acids and acylglycerols. In contrast, wild plants contained comparatively more carbohydrates and most macroelements (i.e. Na, K, Mg, and Ca). CONCLUSIONS There is a strong correlation between plant metabolites and the endosphere microbiome of S. europaea. In wild populations, plants were enriched in carbohydrates and the associated bacterial community was enriched in genes related to primary metabolic pathways such as nitrogen metabolism and carbon fixation. The endosphere microbiome of crop plants was predicted to have higher gene counts related to pathogenesis. Crop plants also exhibited higher amounts of azelaic acid, an indicator of exposure to phytopathogens.
Collapse
Affiliation(s)
- Maria J Ferreira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - I Natalia Sierra-Garcia
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - António Louvado
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Newton C M Gomes
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Sandro Figueiredo
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Carla Patinha
- Department of Geosciences & Geobiotec, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Diana C G A Pinto
- LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Javier Cremades
- Centre for Advanced Scientific Research (CICA), University of A Coruña, 15071 A Coruña, Spain
| | - Helena Silva
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ângela Cunha
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Khan AR, Ali Q, Ayaz M, Bilal MS, Sheikh TMM, Gu Q, Wu H, Gao X. Plant-Microbes Interaction: Exploring the Impact of Cold-Tolerant Bacillus Strains RJGP41 and GBAC46 Volatiles on Tomato Growth Promotion through Different Mechanisms. BIOLOGY 2023; 12:940. [PMID: 37508371 PMCID: PMC10376619 DOI: 10.3390/biology12070940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023]
Abstract
The interaction between plant and bacterial VOCs has been extensively studied, but the role of VOCs in growth promotion still needs to be explored. In the current study, we aim to explore the growth promotion mechanisms of cold-tolerant Bacillus strains GBAC46 and RJGP41 and the well-known PGPR strain FZB42 and their VOCs on tomato plants. The result showed that the activity of phytohormone (IAA) production was greatly improved in GBAC46 and RJGP41 as compared to FZB42 strains. The in vitro and in-pot experiment results showed that the Bacillus VOCs improved plant growth traits in terms of physiological parameters as compared to the CK. The VOCs identified through gas chromatography-mass spectrometry (GC-MS) analysis, namely 2 pentanone, 3-ethyl (2P3E) from GBAC46, 1,3-cyclobutanediol,2,2,4,4-tetramethyl (CBDO) from RJGP41, and benzaldehyde (BDH) from FZB42, were used for plant growth promotion. The results of the partition plate (I-plate) and in-pot experiments showed that all the selected VOCs (2P3E, CBDO, and BDH) promoted plant growth parameters as compared to CK. Furthermore, the root morphological factors also revealed that the selected VOCs improved the root physiological traits in tomato plants. The plant defense enzymes (POD, APX, SOD, and CAT) and total protein contents were studied, and the results showed that the antioxidant enzymes and protein contents significantly increased as compared to CK. Similarly, plant growth promotion expression genes (IAA4, ARF10A, GA2OX2, CKX2, and EXP1) were significantly upregulated and the ERF gene was downregulated as compared to CK. The overall findings suggest that both Bacillus isolates and their pure VOCs positively improved plant growth promotion activities by triggering the antioxidant enzyme activity, protein contents, and relative gene expressions in tomato plants.
Collapse
Affiliation(s)
- Abdur Rashid Khan
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Qurban Ali
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Muhammad Ayaz
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Muhammad Saqib Bilal
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Taha Majid Mahmood Sheikh
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Qin Gu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Huijun Wu
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| | - Xuewen Gao
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
18
|
Grahovac J, Pajčin I, Vlajkov V. Bacillus VOCs in the Context of Biological Control. Antibiotics (Basel) 2023; 12:antibiotics12030581. [PMID: 36978448 PMCID: PMC10044676 DOI: 10.3390/antibiotics12030581] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
A contemporary agricultural production system relying on heavy usage of agrochemicals represents a questionable outlook for sustainable food supply in the future. The visible negative environmental impacts and unforeseen consequences to human and animal health have been requiring a shift towards the novel eco-friendly alternatives for chemical pesticides for a while now. Microbial-based biocontrol agents have shown a promising potential for plant disease management. The bacteria of the genus Bacillus have been among the most exploited microbial active components due to several highly efficient mechanisms of action against plant pathogens, as well as a palette of additional plant-beneficial mechanisms, together with their suitable properties for microbial biopesticide formulations. Among other bioactive metabolites, volatile organic compounds (VOCs) have been investigated for their biocontrol applications, exhibiting the main advantage of long-distance effect without the necessity for direct contact with plants or pathogens. The aim of this study is to give an overview of the state-of-the-art in the field of Bacillus-based VOCs, especially in terms of their antibacterial, antifungal, and nematicidal action as the main segments determining their potential for biocontrol applications in sustainable agriculture.
Collapse
|
19
|
Ghasemi S, Harighi B, Ashengroph M. Biosynthesis of silver nanoparticles using Pseudomonas canadensis, and its antivirulence effects against Pseudomonas tolaasii, mushroom brown blotch agent. Sci Rep 2023; 13:3668. [PMID: 36871050 PMCID: PMC9985599 DOI: 10.1038/s41598-023-30863-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
This study reports the biosynthesis of silver nanoparticles (AgNPs) using a Pseudomonas canadensis Ma1 strain isolated from wild-growing mushrooms. Freshly prepared cells of P. canadensis Ma1 incubated at 26-28 °C with a silver nitrate solution changed to a yellowish brown color, indicating the formation of AgNPs, which was confirmed by UV-Vis spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction. SEM analysis showed spherical nanoparticles with a distributed size mainly between 21 and 52 nm, and the XRD pattern revealed the crystalline nature of AgNPs. Also, it provides an evaluation of the antimicrobial activity of the biosynthesized AgNPs against Pseudomonas tolaasii Pt18, the causal agent of mushroom brown blotch disease. AgNPs were found to be bioactive at 7.8 μg/ml showing a minimum inhibitory concentration (MIC) effect against P. tolaasii Pt18 strain. AgNPs at the MIC level significantly reduced virulence traits of P. tolaasii Pt18 such as detoxification of tolaasin, various motility behavior, chemotaxis, and biofilm formation which is important for pathogenicity. Scanning electron microscopy (SEM) revealed that bacterial cells treated with AgNPs showed a significant structural abnormality. Results showed that AgNPs reduced brown blotch symptoms in vivo. This research demonstrates the first helpful use of biosynthesized AgNPs as a bactericidal agent against P. tolaasii.
Collapse
Affiliation(s)
- Samira Ghasemi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Morahem Ashengroph
- Department of Biological Sciences, Faculty of Sciences, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
20
|
Antagonistic Activity of Volatile Organic Compounds Produced by Acid-Tolerant Pseudomonas protegens CLP-6 as Biological Fumigants To Control Tobacco Bacterial Wilt Caused by Ralstonia solanacearum. Appl Environ Microbiol 2023; 89:e0189222. [PMID: 36722969 PMCID: PMC9972909 DOI: 10.1128/aem.01892-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Tobacco bacterial wilt, which is caused by Ralstonia solanacearum, is a devastating soilborne disease of tobacco worldwide and is widespread in the continuously acidic fields of southern China. Here, the fumigation activity under different pH conditions, component identification, and bioactivity of the volatile organic compounds (VOCs) produced by an acid-tolerant strain, Pseudomonas protegens CLP-6, were investigated. There was a wide antimicrobial spectrum of the VOCs against phytopathogens, including four bacteria, eight fungi, and two oomycetes. The antagonistic activity of the VOCs against R. solanacearum was proportionally correlated with the concentration of the inoculum, amount, culture time, and culture pH for CLP-6. The number of gene copies of R. solanacearum was significantly inhibited by VOCs produced at pH 5.5 in vivo. The control effect of VOCs emitted at pH 5.5 was 78.91% for tobacco bacterial wilt, which was >3-fold greater than that at pH 7.0. Finally, the main volatile compounds were identified by solid-phase microextraction (SPME)-gas chromatography-mass spectroscopy (GC-MS) as S-methyl thioacetate, methyl thiocyanate, methyl disulfide, 1-decene, 2-ethylhexanol, 1,4-undecadiene, 1-undecene, 1,3-benzothiazole, and 2,5-dimethylpyrazine, and the inhibition rates of 1,3-benzothiazole, 2-ethylhexanolmethyl thiocyanate, dimethyl disulfide, and S-methyl thioacetate were 100%, 100%, 88.91%, 67.64%, and 53.29%, respectively. S-Methyl thioacetate was detected only at pH 5.5. In summary, VOCs produced by P. protegens CLP-6 had strong antagonistic activities against phytopathogens, especially R. solanacearum, under acidic conditions and could be used to develop a safe and additive fumigant against R. solanacearum on tobacco and even other Solanaceae crop bacterial wilt diseases in acidic fields. IMPORTANCE VOCs produced by beneficial bacteria penetrate the rhizosphere to inhibit the growth of plant-pathogenic microorganisms; thus, they have the potential to be used as biological agents in controlling plant diseases. Tobacco bacterial wilt, which is caused by the acidophilic pathogen R. solanacearum, is a major bacterial disease in southern China and is prevalent in acidic soil. In this study, we discovered that the VOCs produced by P. protegens CLP-6 had excellent inhibitory effects on important plant pathogens. Moreover, two of the VOCs, namely, 1,3-benzothiazole and 2-ethylhexanol, had excellent inhibitory effect on R. solanacearum, and another VOC substance, methyl thiocyanate, was produced only at pH 5.5. The VOCs produced by the acid-tolerant strain P. protegens CLP-6 may have potential as environment-friendly microbial fumigant agents for bacterial wilt of tobacco or even other Solanaceae crops in acidic soils in China.
Collapse
|
21
|
Zeng D, Liu SS, Shao WB, Zhang TH, Qi PY, Liu HW, Zhou X, Liu LW, Zhang H, Yang S. New Inspiration of 1,3,4-Oxadiazole Agrochemical Candidates: Manipulation of a Type III Secretion System-Induced Bacterial Starvation Mechanism to Prevent Plant Bacterial Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2804-2816. [PMID: 36744848 DOI: 10.1021/acs.jafc.2c07486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Discovering new anti-virulent agents to control plant bacterial diseases by preventing bacterial pathogenesis/pathogenicity rather than affecting bacterial growth is a sensible strategy. However, the effects of compound-manipulated bacterial virulence factors on host response are still not clear. In this work, 35 new 1,3,4-oxadiazole derivatives were synthesized and systematically evaluated for their anti-phytopathogenic activities. Bioassay results revealed that compound C7 possessed outstanding antibacterial activity in vitro (half-maximal effective concentration: 0.80 μg/mL) against Xanthomonas oryzae pv. oryzae (Xoo) and acceptable bioactivity in vivo toward rice bacterial leaf blight. Furthermore, virulence factor-related biochemical assays showed that C7 was a promising anti-virulent agent. Interestingly, C7 could indirectly reduce the inducible expression of host SWEET genes and thereby alleviate nutrient supply in the infection process of phytopathogenic bacteria. Our results highlight the potential of 1,3,4-oxadiazole-based agrochemicals for manipulating type III secretion system-induced phytopathogenic bacteria starvation mechanisms to prevent plant bacterial diseases.
Collapse
Affiliation(s)
- Dan Zeng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Shuai-Shuai Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wu-Bin Shao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong-Wu Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
22
|
Banihashemian SN, Jamali S, Golmohammadi M, Noorizadeh S, Atighi MR. Reaction of Commercial Cultivars of Kiwifruit to Infection by Root-knot Nematode and Its Biocontrol Using Endophytic Bacteria. J Nematol 2023; 55:20230020. [PMID: 37284000 PMCID: PMC10241307 DOI: 10.2478/jofnem-2023-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Indexed: 06/08/2023] Open
Abstract
Root-knot nematodes (RKN) cause considerable economic losses to kiwifruit production annually. Screening of resistant cultivars has been one of the long-standing methods to manage root-knot nematodes. Here, the reaction of the four most common commercial cultivars of kiwifruit, namely, Actinidia chinensis var. deliciosa cv. Hayward, A. chinensis var. deliciosa cv. Abbott, A. chinensis var. deliciosa cv. Bruno, and A. chinensis var. chinensis cv. Haegeum (commonly known as 'Golden' kiwifruit) to infection by the RKN, Meloidogyne incognita, was evaluated. Among examined cultivars 'Golden' was the most susceptible, having on average 52.8 galls, 56.1 egg masses per gram of root, and 642 J2 population per 200 gram of soil. 'Bruno' showed the highest resistance, with 3.3 galls, 4.1 egg masses per gram of root, and 79 J2 in 200 g of soil. Then, two potential biological control agents, namely Priestia megaterium 31.en and Agrobacterium tumefaciens 19.en were used on 'Hayward' seedlings against M. incognita and showed a significant reduction in the number of galls and egg masses on roots, juvenile population in the soil, and increased the growth parameters of the plants compared to non-treated seedlings. We demonstrated that integrated management using resistant cultivars and biological control can provide a safe and economic method to control RKN, and these resistant cultivars can be used in breeding programs.
Collapse
Affiliation(s)
| | - Salar Jamali
- Plant Protection Department, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Morteza Golmohammadi
- Horticultural Science Research Institute, Citrus and Subtropical Fruits Research Center, Agricultural Research Education and Extension Organization (AREEO), Ramsar, Iran
| | - Sina Noorizadeh
- Plant Protection Department, Agriculture Faculty, Tabriz University, Tabriz, Iran
| | - Mohammad Reza Atighi
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
24
|
Almeida OAC, de Araujo NO, Dias BHS, de Sant’Anna Freitas C, Coerini LF, Ryu CM, de Castro Oliveira JV. The power of the smallest: The inhibitory activity of microbial volatile organic compounds against phytopathogens. Front Microbiol 2023; 13:951130. [PMID: 36687575 PMCID: PMC9845590 DOI: 10.3389/fmicb.2022.951130] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/06/2023] Open
Abstract
Plant diseases caused by phytopathogens result in huge economic losses in agriculture. In addition, the use of chemical products to control such diseases causes many problems to the environment and to human health. However, some bacteria and fungi have a mutualistic relationship with plants in nature, mainly exchanging nutrients and protection. Thus, exploring those beneficial microorganisms has been an interesting and promising alternative for mitigating the use of agrochemicals and, consequently, achieving a more sustainable agriculture. Microorganisms are able to produce and excrete several metabolites, but volatile organic compounds (VOCs) have huge biotechnology potential. Microbial VOCs are small molecules from different chemical classes, such as alkenes, alcohols, ketones, organic acids, terpenes, benzenoids and pyrazines. Interestingly, volatilomes are species-specific and also change according to microbial growth conditions. The interaction of VOCs with other organisms, such as plants, insects, and other bacteria and fungi, can cause a wide range of effects. In this review, we show that a large variety of plant pathogens are inhibited by microbial VOCs with a focus on the in vitro and in vivo inhibition of phytopathogens of greater scientific and economic importance in agriculture, such as Ralstonia solanacearum, Botrytis cinerea, Xanthomonas and Fusarium species. In this scenario, some genera of VOC-producing microorganisms stand out as antagonists, including Bacillus, Pseudomonas, Serratia and Streptomyces. We also highlight the known molecular and physiological mechanisms by which VOCs inhibit the growth of phytopathogens. Microbial VOCs can provoke many changes in these microorganisms, such as vacuolization, fungal hyphal rupture, loss of intracellular components, regulation of metabolism and pathogenicity genes, plus the expression of proteins important in the host response. Furthermore, we demonstrate that there are aspects to investigate by discussing questions that are still not very clear in this research area, especially those that are essential for the future use of such beneficial microorganisms as biocontrol products in field crops. Therefore, we bring to light the great biotechnological potential of VOCs to help make agriculture more sustainable.
Collapse
Affiliation(s)
- Octávio Augusto Costa Almeida
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Natália Oliveira de Araujo
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Bruno Henrique Silva Dias
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla de Sant’Anna Freitas
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Luciane Fender Coerini
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, South Korea,Biosystems and Bioengineering Program, University of Science and Technology, Daejeon, South Korea
| | - Juliana Velasco de Castro Oliveira
- Brazilian Biorenewables National Laboratory (LNBR), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil,Graduate Program in Genetics and Molecular Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil,*Correspondence: Juliana Velasco de Castro Oliveira,
| |
Collapse
|
25
|
Chandrasekaran M, Paramasivan M, Sahayarayan JJ. Microbial Volatile Organic Compounds: An Alternative for Chemical Fertilizers in Sustainable Agriculture Development. Microorganisms 2022; 11:microorganisms11010042. [PMID: 36677334 PMCID: PMC9861404 DOI: 10.3390/microorganisms11010042] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Microorganisms are exceptional at producing several volatile substances called microbial volatile organic compounds (mVOCs). The mVOCs allow the microorganism to communicate with other organisms via both inter and intracellular signaling pathways. Recent investigation has revealed that mVOCs are chemically very diverse and play vital roles in plant interactions and microbial communication. The mVOCs can also modify the plant's physiological and hormonal pathways to augment plant growth and production. Moreover, mVOCs have been affirmed for effective alleviation of stresses, and also act as an elicitor of plant immunity. Thus, mVOCs act as an effective alternative to various chemical fertilizers and pesticides. The present review summarizes the recent findings about mVOCs and their roles in inter and intra-kingdoms interactions. Prospects for improving soil fertility, food safety, and security are affirmed for mVOCs application for sustainable agriculture.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Gwangjin-gu, Seoul 05006, Republic of Korea
- Correspondence: ; Tel.: +82-2-3408-4026
| | - Manivannan Paramasivan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | | |
Collapse
|
26
|
Li Q, Hou Z, Zhou D, Jia M, Lu S, Yu J. Antifungal Activity and Possible Mechanism of Bacillus amyloliquefaciens FX2 Against the Postharvest Apple Ring Rot Pathogen. PHYTOPATHOLOGY 2022; 112:2486-2494. [PMID: 35793153 DOI: 10.1094/phyto-02-22-0047-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Botryosphaeria dothidea-induced apple ring rot is one of the most serious postharvest diseases in apple production. In our preliminary work, we isolated a bacterial strain (FX2) from an infested apple orchard. Here, we confirmed the strong antifungal activity of FX2 on B. dothidea. Through phylogenetic analysis and morphological observations, we identified FX2 as a Bacillus amyloliquefaciens strain. We also found that 10% cell-free supernatant (CFS) of FX2 significantly affected mycelial growth and morphology and almost completely inhibited spore germination and germ tube elongation in B. dothidea. Furthermore, 10% CFS damaged the cell ultrastructure, resulting in a remarkable increase in cellular leakage in B. dothidea mycelia. Thus, CFS has the potential to effectively reduce in vivo B. dothidea infection, reduced lesion diameters to 64.7% compared with the control group, and reduced disease incidence by 15%. Finally, ultrafiltration, desalting chromatography, and anion exchange chromatography showed that the antifungal constituents in CFS are composed mainly of antifungal proteins. We further characterized these potential antifungal proteins via liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Herein, we provide novel insights into the antifungal mechanisms of B. amyloliquefaciens FX2, and we highlight its potential as a novel biocontrol agent for controlling postharvest apple ring rot.
Collapse
Affiliation(s)
- Qi Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Zhaoqi Hou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Dongqin Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Mingyun Jia
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Shipeng Lu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jinping Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| |
Collapse
|
27
|
Li Q, Hou Z, Zhou D, Jia M, Lu S, Yu J. A plant growth-promoting bacteria Priestia megaterium JR48 induces plant resistance to the crucifer black rot via a salicylic acid-dependent signaling pathway. FRONTIERS IN PLANT SCIENCE 2022; 13:1046181. [PMID: 36438094 PMCID: PMC9684715 DOI: 10.3389/fpls.2022.1046181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/08/2023]
Abstract
Xanthomonas campestris pv. campestris (Xcc)-induced black rot is one of the most serious diseases in cruciferous plants. Using beneficial microbes to control this disease is promising. In our preliminary work, we isolated a bacterial strain (JR48) from a vegetable field. Here, we confirmed the plant-growth-promoting (PGP) effects of JR48 in planta, and identified JR48 as a Priestia megaterium strain. We found that JR48 was able to induce plant resistance to Xcc and prime plant defense responses including hydrogen peroxide (H2O2) accumulation and callose deposition with elevated expression of defense-related genes. Further, JR48 promoted lignin biosynthesis and raised accumulation of frees salicylic acid (SA) as well as expression of pathogenesis-related (PR) genes. Finally, we confirmed that JR48-induced plant resistance and defense responses requires SA signaling pathway. Together, our results revealed that JR48 promotes plant growth and induces plant resistance to the crucifer black rot probably through reinforcing SA accumulation and response, highlighting its potential as a novel biocontrol agent in the future.
Collapse
|
28
|
Chávez-Moctezuma MP, Martínez-Cámara R, Hernández-Salmerón J, Moreno-Hagelsieb G, Santoyo G, Valencia-Cantero E. Comparative genomic and functional analysis of Arthrobacter sp. UMCV2 reveals the presence of luxR-related genes inducible by the biocompound N, N-dimethylhexadecilamine. Front Microbiol 2022; 13:1040932. [PMID: 36386619 PMCID: PMC9659744 DOI: 10.3389/fmicb.2022.1040932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 09/29/2023] Open
Abstract
Quorum sensing (QS) is a bacterial cell-cell communication system with genetically regulated mechanisms dependent on cell density. Canonical QS systems in gram-negative bacteria possess an autoinducer synthase (LuxI family) and a transcriptional regulator (LuxR family) that respond to an autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional regulators "solo" (not associated with a LuxI homolog) may play key roles in intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium that promotes plant growth by emitting the volatile organic compound N, N-dimethylhexadecylamine (DMHDA). This compound induces iron deficiency, defense responses in plants, and swarming motility in Arthrobacter sp. UMCV2. In this study, the draft genome of this bacterium was assembled and compared with the genomes of type strains of the Arthrobacter genus, finding that it does not belong to any previously described species. Genome explorations also revealed the presence of 16 luxR-related genes, but no luxI homologs were discovered. Eleven of these sequences possess the LuxR characteristic DNA-binding domain with a helix-turn-helix motif and were designated as auto-inducer-related regulators (AirR). Four sequences possessed LuxR analogous domains and were designated as auto-inducer analogous regulators (AiaR). When swarming motility was induced with DMHDA, eight airR genes and two aiaR genes were upregulated. These results indicate that the expression of multiple luxR-related genes is induced in actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial biocompound DMHDA when QS behavior is produced.
Collapse
Affiliation(s)
| | - Ramiro Martínez-Cámara
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
- Tecnológico Nacional de México, Morelia, Michoacán, Mexico
| | | | | | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, Mexico
| |
Collapse
|
29
|
Zhang YQ, Zhang S, Sun ML, Su HN, Li HY, Kun-Liu, Zhang YZ, Chen XL, Cao HY, Song XY. Antibacterial activity of peptaibols from Trichoderma longibrachiatum SMF2 against gram-negative Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight on rice. Front Microbiol 2022; 13:1034779. [PMID: 36304956 PMCID: PMC9595671 DOI: 10.3389/fmicb.2022.1034779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/23/2022] [Indexed: 11/19/2022] Open
Abstract
Bacterial leaf blight caused by Gram-negative pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive bacterial diseases on rice. Due to the resistance, toxicity and environmental issues of chemical bactericides, new biological strategies are still in need. Although peptaibols produced by Trichoderma spp. can inhibit the growth of several Gram-positive bacteria and plant fungal pathogens, it still remains unclear whether peptaibols have anti-Xoo activity to control bacterial leaf blight on rice. In this study, we evaluated the antibacterial effects of Trichokonins A (TKA), peptaibols produced by Trichoderma longibrachiatum SMF2, against Xoo. The in vitro antibacterial activity analysis showed that the growth of Xoo was significantly inhibited by TKA, with a minimum inhibitory concentration of 54 μg/mL and that the three TKs in TKA all had remarkable anti-Xoo activity. Further inhibitory mechanism analyses revealed that TKA treatments resulted in the damage of Xoo cell morphology and the release of intracellular substances, such as proteins and nucleic acids, from Xoo cells, suggesting the damage of the permeability of Xoo cell membrane by TKA. Pathogenicity analyses showed that the lesion length on rice leaf was significantly reduced by 82.2% when treated with 27 μg/mL TKA. This study represents the first report of the antibacterial activity of peptaibols against a Gram-negative bacterium. Thus, TKA can be of a promising agent in controlling bacterial leaf blight on rice.
Collapse
|
30
|
Etminani F, Harighi B, Mozafari AA. Effect of volatile compounds produced by endophytic bacteria on virulence traits of grapevine crown gall pathogen, Agrobacterium tumefaciens. Sci Rep 2022; 12:10510. [PMID: 35732688 PMCID: PMC9217936 DOI: 10.1038/s41598-022-14864-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 06/14/2022] [Indexed: 12/04/2022] Open
Abstract
The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by endophytic bacteria including Serratia sp. Ba10, Pantoea sp. Sa14, Enterobacter sp. Ou80, Pseudomonas sp. Ou22, Pseudomonas sp. Sn48 and Pseudomonas sp. Ba35, which were previously isolated from healthy domesticated and wild-growing grapevine were evaluated in terms of their effects on the virulence traits of Agrobacterium tumefaciens Gh1, the causal agent of crown gall disease. Based on the gas chromatography-mass spectrometry analysis, 16, 15, 14, 7, 16, and 15 VOCs have been identified with high quality in strains of Ba10, Sa14, Ou80, Ou22, Sn48, and Ba35, respectively. All endophytic bacteria produced VOCs that significantly reduced crown gall symptoms and inhibited the populations of A. tumefaciens Gh1 at different levels. Moreover, scanning electron microscopy analysis revealed various morphological abnormalities in the A. tumefaciens cells exposed to the VOCs produced by Ba35, Ou80, and Sn48 strains. The VOCs significantly reduced swarming-, swimming-, twitching motility and biofilm formation by A. tumefaciens Gh1. Our results revealed that VOCs could reduce the attachment of A. tumefaciens Gh1 cells to root tissues of grapevine cultivars Rashe and Bidane sefid, as well as chemotaxis motility towards root extract of both cultivars. Based on our results, it was shown that the antibacterial VOCs produced by endophytic bacteria investigated in the current study can manage crown gall disease and increase our knowledge on the role of VOCs in microbial interactions.
Collapse
Affiliation(s)
- Faegheh Etminani
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran.
| | - Ali Akbar Mozafari
- Department of Horticultural Science, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
31
|
Safara S, Harighi B, Bahramnejad B, Ahmadi S. Antibacterial Activity of Endophytic Bacteria Against Sugar Beet Root Rot Agent by Volatile Organic Compound Production and Induction of Systemic Resistance. Front Microbiol 2022; 13:921762. [PMID: 35722285 PMCID: PMC9201493 DOI: 10.3389/fmicb.2022.921762] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
The volatile organic compounds (VOCs) produced by endophytic bacteria have a significant role in the control of phytopathogens. In this research, the VOCs produced by the endophytic bacteria Streptomyces sp. B86, Pantoea sp. Dez632, Pseudomonas sp. Bt851, and Stenotrophomonas sp. Sh622 isolated from healthy sugar beet (Beta vulgaris) and sea beet (Beta maritima) were evaluated for their effects on the virulence traits of Bacillus pumilus Isf19, the causal agent of harvested sugar beet root rot disease. The gas chromatographymass spectrometry (GC-MS) analysis revealed that B86, Dez632, Bt851, and Sh622 produced 15, 28, 30, and 20 VOCs, respectively, with high quality. All antagonistic endophytic bacteria produced VOCs that significantly reduced soft root symptoms and inhibited the growth of B. pumilus Isf19 at different levels. The VOCs produced by endophytic bacteria significantly reduced swarming, swimming, and twitching motility by B. pumilus Isf19, which are important to pathogenicity. Our results revealed that VOCs produced by Sh622 and Bt851 significantly reduced attachment of B. pumilus Isf19 cells to sugar beetroots, and also all endophytic bacteria tested significantly reduced chemotaxis motility of the pathogen toward root extract. The VOCs produced by Dez632 and Bt851 significantly upregulated the expression levels of defense genes related to soft rot resistance. Induction of PR1 and NBS-LRR2 genes in sugar beetroot slices suggests the involvement of SA and JA pathways, respectively, in the induction of resistance against pathogen attack. Based on our results, the antibacterial VOCs produced by endophytic bacteria investigated in this study can reduce soft rot incidence.
Collapse
Affiliation(s)
- Somayeh Safara
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Behrouz Harighi
- Department of Plant Protection, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Bahman Bahramnejad
- Department of Plant Production and Genetics, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Slahadin Ahmadi
- Department of Medical Physiology and Pharmacology, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
32
|
Le KD, Yu NH, Park AR, Park DJ, Kim CJ, Kim JC. Streptomyces sp. AN090126 as a Biocontrol Agent against Bacterial and Fungal Plant Diseases. Microorganisms 2022; 10:microorganisms10040791. [PMID: 35456841 PMCID: PMC9025191 DOI: 10.3390/microorganisms10040791] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 02/01/2023] Open
Abstract
Bacteria and fungi are major phytopathogens which substantially affect global agricultural productivity. In the present study, Streptomyces sp. AN090126, isolated from agricultural suppressive soil in Korea, showed broad-spectrum antagonistic activity against various phytopathogenic bacteria and fungi. In the 96-well plate assay, the fermentation filtrate of Streptomyces sp. AN090126 exhibited antimicrobial activity, with a minimum inhibitory concentration (MIC) of 0.63–10% for bacteria and 0.63–3.3% for fungi. The MIC of the partially purified fraction was 20.82–250 µg/mL for bacteria and 15.6–83.33 µg/mL for fungi. Gas chromatography–mass spectrometry (GC-MS) analysis revealed that AN090126 produced various volatile organic compounds (VOCs), including dimethyl sulfide and trimethyl sulfide, which inhibited the growth of pathogenic bacteria and fungi in in vitro VOC assays. In pot experiments, the fermentation broth of Streptomyces sp. AN090126 reduced tomato bacterial wilt caused by Ralstonia solanacearum, red pepper leaf spot caused by Xanthomonas euvesicatoria, and creeping bentgrass dollar spot caused by Sclerotinia homoeocarpa in a dose-dependent manner. Moreover, the secondary metabolites derived from this strain showed a synergistic effect with streptomycin sulfate against streptomycin-resistant Pectobacterium carotovorum subsp. carotovorum, the causative agent of Kimchi cabbage soft rot, in both in vitro and in vivo experiments. Therefore, Streptomyces sp. AN090126 is a potential biocontrol agent in controlling plant diseases caused by pathogenic bacteria and fungi, specifically by the streptomycin-resistant strains.
Collapse
Affiliation(s)
- Khanh Duy Le
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
- Institute of New Technology, Academy of Military Science and Technology, 17 Hoangsam, Caugiay, Hanoi 100000, Vietnam
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
| | - Dong-Jin Park
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (D.-J.P.); (C.-J.K.)
| | - Chang-Jin Kim
- Industrial Bio-Materials Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Korea; (D.-J.P.); (C.-J.K.)
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonam National University, Gwangju 61186, Korea; (K.D.L.); (N.H.Y.); (A.R.P.)
- Correspondence:
| |
Collapse
|
33
|
Lammers A, Lalk M, Garbeva P. Air Ambulance: Antimicrobial Power of Bacterial Volatiles. Antibiotics (Basel) 2022; 11:antibiotics11010109. [PMID: 35052986 PMCID: PMC8772769 DOI: 10.3390/antibiotics11010109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 12/19/2022] Open
Abstract
We are currently facing an antimicrobial resistance crisis, which means that a lot of bacterial pathogens have developed resistance to common antibiotics. Hence, novel and innovative solutions are urgently needed to combat resistant human pathogens. A new source of antimicrobial compounds could be bacterial volatiles. Volatiles are ubiquitous produced, chemically divers and playing essential roles in intra- and interspecies interactions like communication and antimicrobial defense. In the last years, an increasing number of studies showed bioactivities of bacterial volatiles, including antibacterial, antifungal and anti-oomycete activities, indicating bacterial volatiles as an exciting source for novel antimicrobial compounds. In this review we introduce the chemical diversity of bacterial volatiles, their antimicrobial activities and methods for testing this activity. Concluding, we discuss the possibility of using antimicrobial volatiles to antagonize the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Alexander Lammers
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487 Greifswald, Germany;
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
- Correspondence: or (A.L.); (P.G.)
| |
Collapse
|
34
|
Zhang D, Qiang R, Zhao J, Zhang J, Cheng J, Zhao D, Fan Y, Yang Z, Zhu J. Mechanism of a Volatile Organic Compound (6-Methyl-2-Heptanone) Emitted From Bacillus subtilis ZD01 Against Alternaria solani in Potato. Front Microbiol 2022; 12:808337. [PMID: 35095815 PMCID: PMC8793485 DOI: 10.3389/fmicb.2021.808337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/08/2021] [Indexed: 11/26/2022] Open
Abstract
The antagonistic mechanisms of soluble non-volatile bioactive compounds, such as proteins and lipopeptides emitted from Bacillus have been widely studied. However, there are limited studies on the antifungal mechanisms of volatile organic compounds (VOCs) produced by Bacillus against plant fungal diseases. In this study, the antagonistic mechanisms of one specific VOC, 6-methyl-2-heptanone, against Alternaria solani were investigated. To optimize the extraction conditions of headspace solid-phase microextraction, a 50/30-μm divinylbenzene/carboxen/polydimethylsiloxane fiber at 50°C for 40 min was used. For gas chromatography-mass spectrometry using a free fatty acid phase capillary column, 6-methyl-2-heptanone accounted for the highest content, at 22.27%, of the total VOCs from Bacillus subtilis ZD01, which inhibited A. solani mycelial growth strongly in vitro. Therefore, 6-methyl-2-heptanone was selected as the main active chemical to elucidate the action mechanisms against A. solani. Scanning and transmission electron microscopy analyses revealed that after exposure to an EC50 dose of 6-methyl-2-heptanone, A. solani hyphal cells had a wide range of abnormalities. 6-Methyl-2-heptanone also caused the capture of cellular fluorescent green label and the release of adenosine triphosphate (ATP) from outer membranes A. solani cells, which may enhance 6-methyl-2-heptanone ability to reach the cytoplasmic membrane. In addition, 6-methyl-2-heptanone showed strong inhibitory effect on A. solani conidial germination. It also damaged conidial internal structures, with the treated group having collapsed shrunken small vesicles as observed by transmission electron microscopy. Because 6-methyl-2-heptanone showed strong effects on mycelial integrity and conidial structure, the expression levels of related pathogenic genes in A. solani treated with 6-methyl-2-heptanone were investigated. The qRT-PCR results showed that transcriptional expression levels of slt2 and wetA genes were strongly down-regulated after exposure to 6-methyl-2-heptanone. Finally, because identifying the functions of pathogenic genes will be important for the biological control of A. solani, the wetA gene was identified as a conidia-associated gene that plays roles in regulating sporulation yield and conidial maturation. These findings provide further insights into the mechanisms of VOCs secreted by Bacillus against A. solani.
Collapse
Affiliation(s)
- Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ran Qiang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jing Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinglin Zhang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Jianing Cheng
- Agricultural Business Training and Entrepreneurship Center, Hebei Agricultural University, Baoding, China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yaning Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhihui Yang,
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
- Jiehua Zhu,
| |
Collapse
|
35
|
Ni Y, Hou Y, Kang J, Zhou M. ATP-Dependent Protease ClpP and Its Subunits ClpA, ClpB, and ClpX Involved in the Field Bismerthiazol Resistance in Xanthomonas oryzae pv. oryzae. PHYTOPATHOLOGY 2021; 111:2030-2040. [PMID: 33973800 DOI: 10.1094/phyto-01-21-0011-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Resistance of Xanthomonas oryzae pv. oryzae, which causes rice bacterial leaf blight, to bismerthiazol has been detected in China since the 1990s. The strains resistant to bismerthiazol on rice plants were more sensitive to bismerthiazol than wild-type (WT) strains in vitro. Here, quantitative PCR was applied to detect the fold expression of adenosine triphosphate-dependent proteases, ClpP and its subunits, which withstand stresses including bactericides in bismerthiazol-resistant strains and their parental susceptible WT strain (ZJ173). Results showed that the expression of ClpP and its subunits was higher in bismerthiazol-resistant strains than in ZJ173. They were upregulated during the early growth phase and downregulated during the middle growth phase in ZJ173 treated with bismerthiazol but did not change in the resistant strains. ClpP and its subunits were overexpressed in X. oryzae pv. oryzae in this study; the higher expression of these genes increased sensitivity in vitro and increased resistance in vivo to bismerthiazol. Bismerthiazol inhibition of exopolysaccharide (EPS) production, biofilm production, and motility was also lower in ClpP and its subunits' overexpression mutants of X. oryzae pv. oryzae. The deletion mutants of ClpP and its subunits in ZJ173 decreased pathogenicity, biofilm production, swimming ability, EPS production, and growth in low-nutrient environments. Moreover, ClpP and its subunits may act downstream of the histidine utilization pathway, which could be inhibited by bismerthiazol in X. oryzae pv. oryzae. Taken together, our results indicated that ClpP and its subunits of X. oryzae pv. oryzae influenced resistance to bismerthiazol.
Collapse
Affiliation(s)
- Yuan Ni
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yiping Hou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Jinbo Kang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingguo Zhou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
36
|
Zhou L, Song C, Muñoz CY, Kuipers OP. Bacillus cabrialesii BH5 Protects Tomato Plants Against Botrytis cinerea by Production of Specific Antifungal Compounds. Front Microbiol 2021; 12:707609. [PMID: 34539606 PMCID: PMC8441496 DOI: 10.3389/fmicb.2021.707609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/15/2021] [Indexed: 11/22/2022] Open
Abstract
The gray mold caused by the phytopathogen Botrytis cinerea presents a threat to global food security. For the biological regulation of several plant diseases, Bacillus species have been extensively studied. In this work, we explore the ability of a bacterial strain, Bacillus cabrialesii BH5, that was isolated from tomato rhizosphere soil, to control the fungal pathogen B. cinerea. Strain B. cabrialesii BH5 showed a strong antifungal activity against B. cinerea. A compound was isolated and identified as a cyclic lipopeptide of the fengycin family by high-performance liquid chromatography and tandem mass spectrometry (ESI-MS/MS) that we named fengycin H. The fengycin H-treated hyphae of B. cinerea displayed stronger red fluorescence than the control, which is clearly indicating that fengycin H triggered the hyphal cell membrane defects. Moreover, root inoculation of tomato seedlings with BH5 effectively promoted the growth of tomato plants. Transcription analysis revealed that both BH5 and fengycin H stimulate induced systemic resistance of tomato plants via the jasmonic acid signaling pathway and provide a strong biocontrol effect in vivo. Therefore, the strain BH5 and fengycin H are very promising candidates for biological control of B. cinerea and the associated gray mold.
Collapse
Affiliation(s)
- Lu Zhou
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Chunxu Song
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands.,Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing, China
| | - Claudia Y Muñoz
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Cellini A, Spinelli F, Donati I, Ryu CM, Kloepper JW. Bacterial volatile compound-based tools for crop management and quality. TRENDS IN PLANT SCIENCE 2021; 26:968-983. [PMID: 34147324 DOI: 10.1016/j.tplants.2021.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 05/13/2021] [Accepted: 05/19/2021] [Indexed: 05/20/2023]
Abstract
Bacteria produce a huge diversity of metabolites, many of which mediate ecological relations. Among these, volatile compounds cause broad-range effects at low doses and, therefore, may be exploited for plant defence strategies and agricultural production, but such applications are still in their early development. Here, we review the latest technologies involving the use of bacterial volatile compounds for phytosanitary inspection, biological control, plant growth promotion, and crop quality. We highlight a variety of effects with a potential applicative interest, based on either live biocontrol and/or biostimulant agents, or the isolated metabolites responsible for the interaction with hosts or competitors. Future agricultural technologies may benefit from the development of new analytical tools to understand bacterial interactions with the environment.
Collapse
Affiliation(s)
- Antonio Cellini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Francesco Spinelli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy.
| | - Irene Donati
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Choong-Min Ryu
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Joseph W Kloepper
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
38
|
Bacterial Long-Range Warfare: Aerial Killing of Legionella pneumophila by Pseudomonas fluorescens. Microbiol Spectr 2021; 9:e0040421. [PMID: 34378969 PMCID: PMC8552673 DOI: 10.1128/spectrum.00404-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is mostly found in man-made water systems and is one of the most closely monitored waterborne pathogens. With the aim of finding natural ways to control waterborne pathogens and thus further reduce the impact of disinfection by-products on human health, some studies have demonstrated the ability of bacteria to kill Legionella through the production of secondary metabolites or antimicrobial compounds. Here, we describe an unexpected growth inhibition of L. pneumophila when exposed to a physically separated strain of Pseudomonas fluorescens, designated as MFE01. Most of the members of the Legionellaceae family are sensitive to the volatile substances emitted by MFE01, unlike other bacteria tested. Using headspace solid-phase microextraction GC-MS strategy, a volatilome comparison revealed that emission of 1-undecene, 2-undecanone, and 2-tridecanone were mainly reduced in a Tn5-transposon mutant unable to inhibit at distance the growth of L. pneumophila strain Lens. We showed that 1-undecene was mainly responsible for the inhibition at distance in vitro, and led to cell lysis in small amounts, as determined by gas chromatography-mass spectrometry (GC-MS). Collectively, our results provide new insights into the mode of action of bacterial volatiles and highlight them as potent anti-Legionella agents to focus research on novel strategies to fight legionellosis. IMPORTANCE Microbial volatile compounds are molecules whose activities are increasingly attracting the attention of researchers. Indeed, they can act as key compounds in long-distance intrakingdom and interkingdom communication, but also as antimicrobials in competition and predation. In fact, most studies to date have focused on their antifungal activities and only a few have reported on their antibacterial properties. Here, we describe that 1-undecene, naturally produced by P. fluorescens, is a volatile with potent activity against bacteria of the genus Legionella. In small amounts, it is capable of inducing cell lysis even when the producing strain is physically separated from the target. This is the first time that such activity is described. This molecule could therefore constitute an efficient compound to counter bacterial pathogens whose treatment may fail, particularly in pulmonary diseases. Indeed, inhalation of these volatiles should be considered as a possible route of therapy in addition to antibiotic treatment.
Collapse
|
39
|
Promnuan Y, Promsai S, Meelai S. Antimicrobial activity of Streptomyces spp. isolated from Apis dorsata combs against some phytopathogenic bacteria. PeerJ 2021; 8:e10512. [PMID: 33384897 PMCID: PMC7751431 DOI: 10.7717/peerj.10512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/16/2020] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to investigate the antimicrobial potential of actinomycetes isolated from combs of the giant honey bee, Apis dorsata. In total, 25 isolates were obtained from three different media and were screened for antimicrobial activity against four plant pathogenic bacteria (Ralstonia solanacearum, Xanthomonas campestris pv. campestris, Xanthomonas oryzae pv. oryzae and Pectobacterium carotovorum). Following screening using a cross-streaking method, three isolates showed the potential to inhibit the growth of plant pathogenic bacteria. Based on a 96-well microtiter assay, the crude extract of DSC3-6 had minimum inhibitory concentration (MIC) values against X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum of 16, 32, 32 and 64 mg L-1, respectively. The crude extract of DGA3-20 had MIC values against X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum of 32, 32, 32 and 64 mg L-1, respectively. The crude extract of DGA8-3 at 32 mgL-1 inhibited the growth of X. oryzae pv. oryzae, X. campestris pv. campestris, R. solanacearum and P. carotovorum. Based on their 16S rRNA gene sequences, all isolates were identified as members of the genus Streptomyces. The analysis of 16S rRNA gene sequence similarity and of the phylogenetic tree based on the maximum likelihood algorithm showed that isolates DSC3-6, DGA3-20 and DGA8-3 were closely related to Streptomyces ramulosus (99.42%), Streptomyces axinellae (99.70%) and Streptomyces drozdowiczii (99.71%), respectively. This was the first report on antibacterial activity against phytopathogenic bacteria from actinomycetes isolated from the giant honey bee.
Collapse
Affiliation(s)
- Yaowanoot Promnuan
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University-Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Saran Promsai
- Department of Microbiology, Faculty of Liberal Arts and Science, Kasetsart University-Kamphaeng Saen campus, Kamphaeng Saen, Nakhon Pathom, Thailand
| | - Sujinan Meelai
- Department of Microbiology, Faculty of Science, Silpakorn University-Sanam Chandra Palace campus, Nakhon Pathom, Nakhon Pathom, Thailand
| |
Collapse
|
40
|
Qiao K, Liu Q, Xia Y, Zhang S. Evaluation of a Small-Molecule Compound, N-Acetylcysteine, for the Management of Bacterial Spot of Tomato Caused by Copper-Resistant Xanthomonas perforans. PLANT DISEASE 2021; 105:108-113. [PMID: 33175655 DOI: 10.1094/pdis-05-20-0928-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial spot caused by Xanthomonas spp. is one of the major diseases in tomato. Xanthomonas perforans is the main pathogen of bacterial spot on tomato in Florida. Currently, application of copper fungicides is the primary measure used to manage this disease. However, the development of copper resistance in X. perforans and accumulation of copper in the environment are major concerns for excessive use of copper-based products in agriculture. Due to its antibacterial properties and low environmental impact, N-acetylcysteine (NAC), a small molecule commonly used in medicine for human bacterial diseases, has been studied in agriculture for the control of plant bacterial pathogens, including X. citri and Xylella fastidiosa. This study evaluated the effect of NAC alone and in combination with copper on a copper-resistant X. perforans strain in vitro and its ability to control bacterial spot of tomato under greenhouse and field conditions. In vitro, the minimum inhibitory concentration of NAC against the X. perforans strain was 2,048 mg liter-1. NAC increased sensitivity of the copper-resistant X. perforans to copper in vitro when application of NAC was followed by copper application after 6 h. In greenhouse assays, NAC applied alone or in combination with copper significantly (P < 0.05) reduced the disease severity of bacterial spot on tomato compared with the untreated control. NAC at 100 mg liter-1 + copper at 300 mg liter-1 consistently exhibited synergistic effects against bacterial spot. In the field trials, NAC at 1,000 mg liter-1 + copper at 150 mg liter-1 significantly reduced disease severity compared with the untreated control. Results from this study demonstrated that NAC significantly reduced the disease severity of bacterial spot of tomato and enhanced the efficacy of copper against copper-resistant X. perforans, indicating that NAC could be applied for the effective management of bacterial spot of tomato.
Collapse
Affiliation(s)
- Kang Qiao
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL 33031, U.S.A
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P.R. China
| | - Qingchun Liu
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL 33031, U.S.A
| | - Ye Xia
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, U.S.A
| | - Shouan Zhang
- Tropical Research and Education Center, Department of Plant Pathology, University of Florida, IFAS, Homestead, FL 33031, U.S.A
| |
Collapse
|
41
|
Sharma A, Tomberlin JK, Delclos P, Bala M. Volatile compounds reveal age: a study of volatile organic compounds released by Chrysomya rufifacies immatures. Int J Legal Med 2020; 135:967-977. [PMID: 33230566 DOI: 10.1007/s00414-020-02471-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 11/18/2020] [Indexed: 10/22/2022]
Abstract
Age determination of insects collected from vertebrate remains is an essential step in estimating time since colonization as related to the post-mortem interval. Long-established methods for making such estimates rely on determining age related to stage of development at the time of collection in relation to conditions experienced. However, such estimates are based on the completion of a stage of development. Methods allowing for more precise estimates of age (i.e., within a stage of development) are sorely needed. This study examined the potential of volatile organic compounds emitted by blow fly, Ch. rufifacies (Macquart), immatures to determine stage of development, which could potentially be used to estimate the age. Volatile organic compounds (VOCs) from the larval and pupal stages of Ch. rufifacies were collected by headspace solid-phase micro-extraction followed by gas chromatography-mass spectrometry (GC-MS). Analyses indicated 37 compounds shift quantitatively, as well as qualitatively, as the larvae and pupae age. Furthermore, compounds, such as 2-ethyl-1-hexanol, phenol, butanoic acid, hexadecanoic acid, octadecanoic acid, 2-methyl propanamide, and 2-methyl butanoic acid, serve as indicator compounds of specific stages within Ch. rufifacies development. This information could be important to determine if these compounds can be used in the field to predict the presence of certain developmental stages, in order to determine the potential of using volatile markers to estimate time of colonization.
Collapse
Affiliation(s)
- Anika Sharma
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, 147002, India.
| | | | - Pablo Delclos
- Department of Biology & Biochemistry, University of Houston, Houston, TX, USA
| | - Madhu Bala
- Department of Zoology and Environmental Sciences, Punjabi University, Patiala, 147002, India
| |
Collapse
|
42
|
Thomas G, Withall D, Birkett M. Harnessing microbial volatiles to replace pesticides and fertilizers. Microb Biotechnol 2020; 13:1366-1376. [PMID: 32767638 PMCID: PMC7415372 DOI: 10.1111/1751-7915.13645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022] Open
Abstract
Global agricultural systems are under increasing pressure to deliver sufficient, healthy food for a growing population. Seasonal inputs, including synthetic pesticides and fertilizers, are applied to crops to reduce losses by pathogens, and enhance crop biomass, although their production and application can also incur several economic and environmental penalties. New solutions are therefore urgently required to enhance crop yield whilst reducing dependence on these seasonal inputs. Volatile Organic Compounds (VOCs) produced by soil microorganisms may provide alternative, sustainable solutions, due to their ability to inhibit plant pathogens, induce plant resistance against pathogens and enhance plant growth promotion. This review will highlight recent advances in our understanding of the biological activities of microbial VOCs (mVOCs), providing perspectives on research required to develop them into viable alternatives to current unsustainable seasonal inputs. This can identify potential new avenues for mVOC research and stimulate discussion across the academic community and agri-business sector.
Collapse
Affiliation(s)
- Gareth Thomas
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
- School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - David Withall
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Michael Birkett
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| |
Collapse
|
43
|
Mülner P, Schwarz E, Dietel K, Junge H, Herfort S, Weydmann M, Lasch P, Cernava T, Berg G, Vater J. Profiling for Bioactive Peptides and Volatiles of Plant Growth Promoting Strains of the Bacillus subtilis Complex of Industrial Relevance. Front Microbiol 2020; 11:1432. [PMID: 32695084 PMCID: PMC7338577 DOI: 10.3389/fmicb.2020.01432] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 06/02/2020] [Indexed: 12/14/2022] Open
Abstract
Plant growth promoting rhizobacteria attain increasing importance in agriculture as biofertilizers and biocontrol agents. These properties significantly depend on the formation of bioactive compounds produced by such organisms. In our work we investigated the biosynthetic potential of 13 industrially important strains of the Bacillus subtilis complex by mass spectrometric methodology. Typing of these organisms was performed with MALDI-TOF mass spectrometry followed by comprehensive profiling of their bioactive peptide products. Volatiles were determined by gas chromatography-mass spectrometry. Representative products of the members of the B. subtilis complex investigated in detail were: the surfactin familiy (surfactins, lichenysins, pumilacidins); the iturin family (iturins, mycosubtilins and bacillomycins); plantazolicin and the dual lantibiotics lichenicidins, as well as a wide spectrum of volatiles, such as hydrocarbons (alkanes/alkenes), alcohols, ketones, sulfur-containing compounds and pyrazines. The subcomplexes of the B. subtilis organizational unit; (a) B. subtilis/Bacillus atrophaeus; (b) B. amyloliquefaciens/B. velezensis; (c) B. licheniformis, and (d) B. pumilus are equipped with specific sets of these compounds which are the basis for the evaluation of their biotechnological and agricultural usage. The 13 test strains were evaluated in field trials for growth promotion of potato and maize plants. All of the implemented strains showed efficient growth stimulation of these plants. The highest effects were obtained with B. velezensis, B. subtilis, and B. atrophaeus strains.
Collapse
Affiliation(s)
- Pascal Mülner
- ABiTEP GmbH, Berlin, Germany
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | | | | | | | - Stefanie Herfort
- ZBS6: Proteomics and Spectroscopy, Robert Koch-Institut, Berlin, Germany
| | - Max Weydmann
- ZBS6: Proteomics and Spectroscopy, Robert Koch-Institut, Berlin, Germany
| | - Peter Lasch
- ZBS6: Proteomics and Spectroscopy, Robert Koch-Institut, Berlin, Germany
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Joachim Vater
- ABiTEP GmbH, Berlin, Germany
- ZBS6: Proteomics and Spectroscopy, Robert Koch-Institut, Berlin, Germany
| |
Collapse
|
44
|
Zhang D, Yu S, Yang Y, Zhang J, Zhao D, Pan Y, Fan S, Yang Z, Zhu J. Antifungal Effects of Volatiles Produced by Bacillus subtilis Against Alternaria solani in Potato. Front Microbiol 2020; 11:1196. [PMID: 32625175 PMCID: PMC7311636 DOI: 10.3389/fmicb.2020.01196] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 11/30/2022] Open
Abstract
Antifungal activities of plant-beneficial Bacillus have been widely studied in recent years. Numerous studies have studied the antifungal mechanisms of soluble non-volatile bioactive compounds such as lipopeptides and proteins produced by Bacillus against soil-borne diseases. However, the antagonistic mechanisms of volatile organic compounds (VOCs) from Bacillus against airborne phytopathogens are still largely unknown, and the function of Alternaria solani pathogenic genes has not been well identified. Here, we first isolated a Bacillus strain with strong antifungal activity and finally identified it as B. subtilis ZD01. Then, the antagonistic mechanisms of VOCs produced by strain ZD01, against A. solani, an airborne fungal pathogen that can cause early blight diseases of potato, were studied. We showed that VOCs produced by strain ZD01 can reduce the colony size and mycelial penetration and can cause serious morphological changes of A. solani. Scanning electron microscope (SEM) observation showed that VOCs released by ZD01 could cause more flaccid and gapped hyphae of A. solani. Also, we found that VOCs produced by ZD01 can inhibit the conidia germination and reduce the lesion areas and number of A. solani in vivo significantly. Meanwhile, based on gas chromatography/mass spectrometry (GC/MS) analysis, 29 volatile compounds produced by strain ZD01 were identified. Out of 29 identified VOCs, 9 VOCs showed complete growth inhibition activities against A. solani. Moreover, we identified two virulence-associated genes (slt2 and sod) in A. solani. slt2 is a key gene that regulates the mycelial growth, penetration, sporulation, and virulence in vivo in A. solani. In addition, sod plays a significant role in the SOD synthetic pathway in A. solani. Results from qRT-PCR showed that the transcriptional expression of these two genes was down-regulated after being treated by VOCs produced by ZD01. These results are useful for a better understanding of the biocontrol mechanism of Bacillus and offer a potential method for potato early blight disease control.
Collapse
Affiliation(s)
- Dai Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuiqing Yu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yiqing Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jinglin Zhang
- Beijing Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing, China
| | - Dongmei Zhao
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Yang Pan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shasha Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Zhihui Yang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jiehua Zhu
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| |
Collapse
|
45
|
Yalage Don SM, Schmidtke LM, Gambetta JM, Steel CC. Aureobasidium pullulans volatilome identified by a novel, quantitative approach employing SPME-GC-MS, suppressed Botrytis cinerea and Alternaria alternata in vitro. Sci Rep 2020; 10:4498. [PMID: 32161291 PMCID: PMC7066187 DOI: 10.1038/s41598-020-61471-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 02/25/2020] [Indexed: 12/19/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by Aureobasidium pullulans were investigated for antagonistic actions against Alternaria alternata and Botrytis cinerea. Conidia germination and colony growth of these two phytopathogens were suppressed by A. pullulans VOCs. A novel experimental setup was devised to directly extract VOCs using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) from antagonist-pathogen culture headspace. The proposed system is a robust method to quantify microbial VOCs using an internal standard. Multivariate curve resolution-alternating least squares deconvolution of SPME-GC-MS spectra identified fourteen A. pullulans VOCs. 3-Methyl-1-hexanol, acetone, 2-heptanone, ethyl butyrate, 3-methylbutyl acetate and 2-methylpropyl acetate were newly identified in A. pullulans headspace. Partial least squares discriminant analysis models with variable importance in projection and selectivity ratio identified four VOCs (ethanol, 2-methyl-1-propanol, 3-methyl-1-butanol and 2-phenylethanol), with high explanatory power for discrimination between A. pullulans and pathogen. The antifungal activity and synergistic interactions of the four VOCs were evaluated using a Box-Behnken design with response surface modelling. Ethanol and 2-phenylethanol are the key inhibitory A. pullulans VOCs against both B. cinerea and A. alternata. Our findings introduce a novel, robust, quantitative approach for microbial VOCs analyses and give insights into the potential use of A. pullulans VOCs to control B. cinerea and A. alternata.
Collapse
Affiliation(s)
- S M Yalage Don
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia.
| | - L M Schmidtke
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia
| | - J M Gambetta
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia
| | - C C Steel
- School of Agricultural and Wine Sciences, National Wine and Grape Industry Centre, Charles Sturt University, Locked Bag 588, Wagga Wagga, New South Wales, 2678, Australia
| |
Collapse
|
46
|
Antifungal activity of volatile compounds produced by endophytic Bacillus subtilis DZSY21 against Curvularia lunata. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01553-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
To screen endophytic Bacillus producing volatile organic compounds (VOCs) with antifungal activity, and to explore their biocontrol properties toward the growth and pathogenicity of Curvularia lunata.
Methods
Two-sealed-base-plate assays were used to estimate the antifungal activities of Bacillus strains against C. lunata. Conjoint analysis of solid-phase microextraction gas chromatography-mass spectrometry and antagonistic experiments were used to identify the VOCs responsible for the antifungal activity. Effects of individual synthetic VOCs were analyzed along with reactive oxygen species (ROS) accumulation in C. lunata conidia. After exposure to individual VOCs, conidia were also sprayed onto maize leaves to evaluate their pathogenicity. Expression levels of virulence-related genes in C. lunata mycelium following exposure to VOCs were analyzed using quantitative real-time PCR.
Results
Among the ten endophytic Bacillus strains and two plant growth-promoting rhizobacterial (PGPR) strains, only B. subtilis strain DZSY21 strongly inhibited the growth of C. lunata by producing VOCs. 2-Methylbutyric acid, 2-heptanone, and isopentyl acetate produced by strain DZSY21 showed inhibitory effects on the mycelia growth and conidial sporulation of C. lunata. 2-Heptanone and isopentyl acetate also repressed the germination of conidia and the expression levels of virulence-related genes in C. lunata mycelium. Moreover, isopentyl acetate strongly enhanced the accumulation of intracellular ROS in conidia. The disease indexes of maize leaves sprayed with VOC-treated C. lunata conidia were reduced from 60.52 to 26.64%.
Conclusion
Endophytic B. subtilis strain DZSY21 displayed the potential to control C. lunata by producing VOCs, especially 2-heptanone and isopentyl acetate.
Collapse
|
47
|
Pedraza-Herrera LA, Lopez- Carrascal CE, Uribe Vélez D. Mecanismos de acción de <i>Bacillus</i> spp. (Bacillaceae) contra microorganismos fitopatógenos durante su interacción con plantas. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.75045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Algunos Bacillus spp. promotores de crecimiento vegetal son microorganismos reconocidos como agentes de control biológico que forman una estructura de resistencia denominada endospora, que les permite sobrevivir en ambientes hostiles y estar en casi todos los agroecosistemas. Estos microorganismos han sido reportados como alternativa al uso de agroquímicos. Sus mecanismos de acción se pueden dividir en: producción de compuestos antimicrobianos, como son péptidos de síntesis no ribosomal (NRPs) y policétidos (PKs); producción de hormonas, capacidad de colonización, formación de biopelículas y competencia por espacio y nutrientes; síntesis de enzimas líticas como quitinasas, glucanasas, protesasas y acil homoserin lactonasas (AHSL); producción de compuestos orgánicos volátiles (VOCs); e inducción de resistencia sistémica (ISR). Estos mecanismos han sido reportados en la literatura en diversos estudios, principalmente llevados a cabo a nivel in vitro. Sin embargo, son pocos los estudios que contemplan la interacción dentro del sistema tritrófico: planta – microorganismos patógenos – Bacillus sp. (agente biocontrolador), a nivel in vivo. Es importante destacar que la actividad biocontroladora de los Bacillus es diferente cuando se estudia bajo condiciones de laboratorio, las cuales están sesgadas para lograr la máxima expresión de los mecanismos de acción. Por otra parte, a nivel in vivo, la interacción con la planta y el patógeno juegan un papel fundamental en la expresión de dichos mecanismos de acción, siendo esta más cercana a la situación real de campo. Esta revisión se centra en los mecanismos de acción de los Bacillus promotores de crecimiento vegetal, expresados bajo la interacción con la planta y el patógeno.
Collapse
|
48
|
The volatile organic compound dimethylhexadecylamine affects bacterial growth and swarming motility of bacteria. Folia Microbiol (Praha) 2019; 65:523-532. [DOI: 10.1007/s12223-019-00756-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/28/2019] [Indexed: 11/26/2022]
|
49
|
Xie S, Yu H, Wang Q, Cheng Y, Ding T. Two rapid and sensitive methods based on TaqMan qPCR and droplet digital PCR assay for quantitative detection of Bacillus subtilis in rhizosphere. J Appl Microbiol 2019; 128:518-527. [PMID: 31602754 DOI: 10.1111/jam.14481] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/22/2019] [Accepted: 10/04/2019] [Indexed: 01/03/2023]
Abstract
AIMS Bacillus subtilis, a typical plant growth-promoting rhizobacteria, can benefit plant through promoting growth and reducing disease. The colonization intensity of B. subtilis in rhizosphere is a key factor for improving their effectiveness of field application. In this study, we developed a rapid and sensitive method for detecting B. subtilis in rhizosphere via TaqMan qPCR and droplet digital PCR (ddPCR) methods. METHODS AND RESULTS The primers/probe set targeting gyrB gene could successfully distinguish B. subtilis from its close-related species. Both the TaqMan qPCR and ddPCR methods exhibited a good linear relationship in the sensitivity assay, suggesting the developed method was specific, effective and reliable. Finally, the two methods were used to detect the colonization dynamic of B. subtilis within Arabidopsis rhizosphere. Both of them showed a consistent trend compared with the traditional cultivation-based and microscopy-based methods. CONCLUSIONS The TaqMan qPCR and droplet digital PCR (ddPCR) methods we developed could be used to rapidly detect B. subtilis in rhizosphere. SIGNIFICANCE AND IMPACT OF THE STUDY The TaqMan qPCR and ddPCR methods developed in this study can be applied to rapid quantitative detection of B. subtilis populations, and will be helpful to evaluate their effectiveness of field application.
Collapse
Affiliation(s)
- Shanshan Xie
- The National Key Engineering Lab of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Hengguo Yu
- The National Key Engineering Lab of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qi Wang
- College of Plant protection, Anhui Agricultural University, Hefei, China
| | - Yifeng Cheng
- The National Key Engineering Lab of Crop Stress Resistance Breeding, College of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Ting Ding
- College of Plant protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
50
|
Veselova MA, Plyuta VA, Khmel IA. Volatile Compounds of Bacterial Origin: Structure, Biosynthesis, and Biological Activity. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719030160] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|