1
|
Chen C, Jiang D, Li X, Ji X, Yang R, Chen Y, Chen Y, Zuo S, Chen X. Glycoside Hydrolase Family 16 Enzyme RsEG146 From Rhizoctonia solani AG1 IA Induces Cell Death and Triggers Defence Response in Nicotiana tabacum. MOLECULAR PLANT PATHOLOGY 2025; 26:e70075. [PMID: 40091519 PMCID: PMC11911542 DOI: 10.1111/mpp.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025]
Abstract
Rhizoctonia solani AG1 IA is a harmful necrotrophic fungus responsible for various crop diseases, including maize and rice sheath blight, which can lead to significant production losses. However, the pathogenic mechanisms and the roles of effectors in this pathogen remain poorly understood. In this study, we identified a glycoside hydrolase 16 family gene, RsEG146, from R. solani that was upregulated during its infection of Zea mays leaves. When transiently expressed through agroinfiltration, RsEG146 induced cell death in the leaves of tobacco (Nicotiana tabacum 'Samsun'). The predicted signal peptide of RsEG146 was essential for its cell death-inducing activity, while the conserved enzymic active site was not required. The chitin-binding domain was critical for the cell death-inducing activity of RsEG146, with Gly47 identified as the key residue. Substitution of Gly47 with aspartate, glutamate, or proline significantly impaired the cell death-inducing activity of RsEG146. Additionally, transient and heterogeneous expression of RsEG146 enhanced the pathogenicity of Botrytis cinerea on tobacco, and silencing this gene through spray-induced gene silencing (SIGS) reduced the severity of the disease in maize, indicating that RsEG146 functions as an effector. Furthermore, RsEG146 triggered a plant immune response in tobacco. This study demonstrates that RsEG146 is a potential effector and plays a crucial role in the interactions between R. solani AG1 IA and its host.
Collapse
Affiliation(s)
- Chen Chen
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| | - Dongyang Jiang
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xi Li
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Xue Ji
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Rui Yang
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Yuwen Chen
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Ying Chen
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
| | - Shimin Zuo
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of Agriculture, Yangzhou UniversityYangzhouJiangsuChina
| | - Xijun Chen
- College of Plant ProtectionYangzhou UniversityYangzhouJiangsuChina
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
2
|
Hao X, Zhang Y, Zhang H, Yang G, Liu Z, Lv H, Zhou X. Genome-Wide Identification, Expression and Interaction Analysis of GLN Gene Family in Soybean. Curr Issues Mol Biol 2024; 46:14154-14167. [PMID: 39727975 DOI: 10.3390/cimb46120847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
As a globally significant economic crop, the seed size of soybean (Glycine max [L.] Merr.) is jointly regulated by internal genetic factors and external environmental signals. This study discovered that the GLN family proteins in soybean are similar to the KIX-PPD-MYC transcriptional repressor complex in Arabidopsis, potentially influencing seed size by regulating the expression of the downstream gene GIF1. Additionally, β-1,3-glucanase (βGlu) plays a crucial role in antifungal activity, cell composition, flower development, pollen development, abiotic resistance, seed germination, and maturation in soybean. Through a detailed analysis of the structure, chromosomal localization, phylogenetic relationships, and expression situations in different tissues at different stages of the soybean GLN gene family members, this research certifies a theoretical foundation for subsequent research on the biological functions of GLN genes in soybean. This research incorporated a comprehensive genomic identification and expression analysis of the GLN gene family in soybean. The results indicate that the 109 soybean GLN genes are unevenly distributed across soybean chromosomes and exhibit diverse expression patterns in different tissues, suggesting they may have distinct functions in soybean morphogenesis. GO enrichment analysis shows that the GLN gene family may participate in a variety of biological activities, cellular components, and molecular biological processes, particularly in catalytic activity, cellular components, and metabolic processes. These findings provide important information for comprehending the role of the GLN gene family in soybean and offer potential targets for molecular breeding of soybean.
Collapse
Affiliation(s)
- Xin Hao
- College of Food Science and Engineering, Boda College of Jilin Normal University, Siping 136000, China
| | - Yiyan Zhang
- College of International Education and Exchange, Jilin Agricultural University, Changchun 130118, China
| | - Hui Zhang
- College of Food Science and Engineering, Boda College of Jilin Normal University, Siping 136000, China
| | - Gang Yang
- College of Food Science and Engineering, Boda College of Jilin Normal University, Siping 136000, China
| | - Zhou Liu
- College of Food Science and Engineering, Boda College of Jilin Normal University, Siping 136000, China
| | - Huiwei Lv
- College of Food Science and Engineering, Boda College of Jilin Normal University, Siping 136000, China
| | - Xiaomei Zhou
- College of Food Science and Engineering, Boda College of Jilin Normal University, Siping 136000, China
| |
Collapse
|
3
|
Molina A, Sánchez-Vallet A, Jordá L, Carrasco-López C, Rodríguez-Herva JJ, López-Solanilla E. Plant cell walls: source of carbohydrate-based signals in plant-pathogen interactions. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102630. [PMID: 39306957 DOI: 10.1016/j.pbi.2024.102630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 12/06/2024]
Abstract
Plant cell walls are essential elements for disease resistance that pathogens need to overcome to colonise the host. Certain pathogens secrete a large battery of enzymes to hydrolyse plant cell wall polysaccharides, which leads to the release of carbohydrate-based molecules (glycans) that are perceived by plant pattern recognition receptors and activate pattern-triggered immunity and disease resistance. These released glycans are used by colonizing microorganisms as carbon source, chemoattractants to locate entry points at plant surface, and as signals triggering gene expression reprogramming. The release of wall glycans and their perception by plants and microorganisms determines plant-microbial interaction outcome. Here, we summarise and discuss the most recent advances in these less explored aspects of plant-microbe interaction.
Collapse
Affiliation(s)
- Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain.
| | - Andrea Sánchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - Lucía Jordá
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Cristian Carrasco-López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón (Madrid), Spain; Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
4
|
Coles DW, Bithell SL, Jeffries T, Cuddy WS, Plett JM. Functional genomics identifies a small secreted protein that plays a role during the biotrophic to necrotrophic shift in the root rot pathogen Phytophthora medicaginis. FRONTIERS IN PLANT SCIENCE 2024; 15:1439020. [PMID: 39224851 PMCID: PMC11366588 DOI: 10.3389/fpls.2024.1439020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
Introduction Hemibiotrophic Phytophthora are a group of agriculturally and ecologically important pathogenic oomycetes causing severe decline in plant growth and fitness. The lifestyle of these pathogens consists of an initial biotrophic phase followed by a switch to a necrotrophic phase in the latter stages of infection. Between these two phases is the biotrophic to necrotrophic switch (BNS) phase, the timing and controls of which are not well understood particularly in Phytophthora spp. where host resistance has a purely quantitative genetic basis. Methods To investigate this we sequenced and annotated the genome of Phytophthora medicaginis, causal agent of root rot and substantial yield losses to Fabaceae hosts. We analyzed the transcriptome of P. medicaginis across three phases of colonization of a susceptible chickpea host (Cicer arietinum) and performed co-regulatory analysis to identify putative small secreted protein (SSP) effectors that influence timing of the BNS in a quantitative pathosystem. Results The genome of P. medicaginis is ~78 Mb, comparable to P. fragariae and P. rubi which also cause root rot. Despite this, it encodes the second smallest number of RxLR (arginine-any amino acid-leucine-arginine) containing proteins of currently sequenced Phytophthora species. Only quantitative resistance is known in chickpea to P. medicaginis, however, we found that many RxLR, Crinkler (CRN), and Nep1-like protein (NLP) proteins and carbohydrate active enzymes (CAZymes) were regulated during infection. Characterization of one of these, Phytmed_10271, which encodes an RxLR effector demonstrates that it plays a role in the timing of the BNS phase and root cell death. Discussion These findings provide an important framework and resource for understanding the role of pathogenicity factors in purely quantitative Phytophthora pathosystems and their implications to the timing of the BNS phase.
Collapse
Affiliation(s)
- Donovin W. Coles
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| | - Sean L. Bithell
- New South Wales Department of Primary Industries, Tamworth, NSW, Australia
| | - Thomas Jeffries
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
| | - William S. Cuddy
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Jonathan M. Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
5
|
García-Gaona M, Romero HM. Infection of Phytophthora palmivora Isolates on Arabidopsis thaliana. J Fungi (Basel) 2024; 10:446. [PMID: 39057331 PMCID: PMC11277810 DOI: 10.3390/jof10070446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Phytophthora palmivora, a hemibiotrophic oomycete, causes diseases in several economically important tropical crops, such as oil palm, which it is responsible for a devastating disease called bud rot (BR). Despite recent progress in understanding host resistance and virulence mechanisms, many aspects remain unknown in P. palmivora isolates from oil palm. Model pathosystems are useful for understanding the molecular interactions between pathogens and hosts. In this study, we utilized detached leaves and whole seedlings of Arabidopsis thaliana Col-0 to describe and evaluate the infection process of three P. palmivora isolates (CPPhZC-05, CPPhZC-04, CPPhZOC-01) that cause BR in oil palm. Two compatible isolates (CPPhZC-05 and CPPhZOC-01) induced aqueous lesions at 72 h post-inoculation (hpi), with microscopic visualization revealing zoospore encysting and appressorium penetration at 3 hpi, followed by sporangia generation at 72 hpi. In contrast, an incompatible isolate (CPPhZC-04) exhibited cysts that could not penetrate tissue, resulting in low leaf colonization. Gene expression of ten P. palmivora infection-related genes was quantified by RT-qPCR, revealing overexpression in compatible isolates, but not in the incompatible isolate. Additionally, key genes associated with salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in Arabidopsis exhibited regulation during interaction with the three isolates. These findings demonstrate that P. palmivora can infect Arabidopsis Col-0, and variability is observed in the interaction between Arabidopsis-Col-0 and P. palmivora isolates. Establishing this pathosystem is expected to enhance our understanding of P. palmivora's pathology and physiology.
Collapse
Affiliation(s)
- Mariandrea García-Gaona
- Biology and Breeding Research Program, Colombian Oil Palm Research Center, Cenipalma, Calle 98 No. 70-91, Piso 14, Bogota 111121, Colombia;
| | - Hernán Mauricio Romero
- Biology and Breeding Research Program, Colombian Oil Palm Research Center, Cenipalma, Calle 98 No. 70-91, Piso 14, Bogota 111121, Colombia;
- Department of Biology, Universidad Nacional de Colombia, Bogota 111321, Colombia
| |
Collapse
|
6
|
Gu X, Cao Z, Li Z, Yu H, Liu W. Plant immunity suppression by an β-1,3-glucanase of the maize anthracnose pathogen Colletotrichum graminicola. BMC PLANT BIOLOGY 2024; 24:339. [PMID: 38671375 PMCID: PMC11046878 DOI: 10.1186/s12870-024-05053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Many phytopathogens secrete a large number of cell wall degrading enzymes (CWDEs) to decompose host cell walls in order to penetrate the host, obtain nutrients and accelerate colonization. There is a wide variety of CWDEs produced by plant pathogens, including glycoside hydrolases (GHs), which determine the virulence, pathogenicity, and host specificity of phytopathogens. The specific molecular mechanisms by which pathogens suppress host immunity remain obscure. RESULT In this study, we found that CgEC124 encodes a glycosyl hydrolase with a signal peptide and a conserved Glyco_hydro_cc domain which belongs to glycoside hydrolase 128 family. The expression of CgEC124 was significantly induced in the early stage of Colletotrichum graminicola infection, especially at 12 hpi. Furthermore, CgEC124 positively regulated the pathogenicity, but it did not impact the vegetative growth of mycelia. Ecotopic transient expression of CgEC124 decreased the disease resistance and callose deposition in maize. Moreover, CgEC124 exhibited the β-1,3-glucanase activity and suppresses glucan-induced ROS burst in maize leaves. CONCLUSIONS Our results indicate that CgEC124 is required for full virulence of C. graminicola but not for vegetative growth. CgEC124 increases maize susceptibility by inhibiting host reactive oxygen species burst as well as callose deposition. Meanwhile, our data suggests that CgEC124 explores its β-1,3-glucanase activity to prevent induction of host defenses.
Collapse
Affiliation(s)
- Xiaoyu Gu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhiyan Cao
- College of Plant Protection, Hebei Agricultural University, Baoding, 071001, China
| | - Zhiqiang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haiyue Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
7
|
Basak P, Gurjar MS, Kumar TPJ, Kashyap N, Singh D, Jha SK, Saharan MS. Transcriptome analysis of Bipolaris sorokiniana - Hordeum vulgare provides insights into mechanisms of host-pathogen interaction. Front Microbiol 2024; 15:1360571. [PMID: 38577688 PMCID: PMC10993733 DOI: 10.3389/fmicb.2024.1360571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024] Open
Abstract
Spot blotch disease incited by Bipolaris sorokiniana severely affects the cultivation of barley. The resistance to B. sorokiniana is quantitative in nature and its interaction with the host is highly complex which necessitates in-depth molecular analysis. Thus, the study aimed to conduct the transcriptome analysis to decipher the mechanisms and pathways involved in interactions between barley and B. sorokiniana in both the resistant (EC0328964) and susceptible (EC0578292) genotypes using the RNA Seq approach. In the resistant genotype, 6,283 genes of Hordeum vulgare were differentially expressed out of which 5,567 genes were upregulated and 716 genes were downregulated. 1,158 genes of Hordeum vulgare were differentially expressed in the susceptible genotype, out of which 654 genes were upregulated and 504 genes were downregulated. Several defense-related genes like resistant gene analogs (RGAs), disease resistance protein RPM1, pathogenesis-related protein PRB1-2-like, pathogenesis-related protein 1, thaumatin-like protein PWIR2 and defensin Tm-AMP-D1.2 were highly expressed exclusively in resistant genotype only. The pathways involved in the metabolism and biosynthesis of secondary metabolites were the most prominently represented pathways in both the resistant and susceptible genotypes. However, pathways involved in MAPK signaling, plant-pathogen interaction, and plant hormone signal transduction were highly enriched in resistant genotype. Further, a higher number of pathogenicity genes of B. sorokiniana was found in response to the susceptible genotype. The pathways encoding for metabolism, biosynthesis of secondary metabolites, ABC transporters, and ubiquitin-mediated proteolysis were highly expressed in susceptible genotype in response to the pathogen. 14 and 11 genes of B. sorokiniana were identified as candidate effectors from susceptible and resistant host backgrounds, respectively. This investigation will offer valuable insights in unraveling the complex mechanisms involved in barley- B. sorokiniana interaction.
Collapse
Affiliation(s)
- Poulami Basak
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Malkhan Singh Gurjar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Natasha Kashyap
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dinesh Singh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahender Singh Saharan
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Liu X, Zhao H, Xie J, Fu Y, Li B, Yu X, Chen T, Lin Y, Jiang D, Cheng J. A Glycosyl Hydrolase 5 Family Protein Is Essential for Virulence of Necrotrophic Fungi and Can Suppress Plant Immunity. Int J Mol Sci 2024; 25:2693. [PMID: 38473940 DOI: 10.3390/ijms25052693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Phytopathogenic fungi normally secrete large amounts of CWDEs to enhance infection of plants. In this study, we identified and characterized a secreted glycosyl hydrolase 5 family member in Sclerotinia sclerotiorum (SsGH5, Sclerotinia sclerotiorum Glycosyl Hydrolase 5). SsGH5 was significantly upregulated during the early stages of infection. Knocking out SsGH5 did not affect the growth and acid production of S. sclerotiorum but resulted in decreased glucan utilization and significantly reduced virulence. In addition, Arabidopsis thaliana expressing SsGH5 became more susceptible to necrotrophic pathogens and basal immune responses were inhibited in these plants. Remarkably, the lost virulence of the ΔSsGH5 mutants was restored after inoculating onto SsGH5 transgenic Arabidopsis. In summary, these results highlight that S. sclerotiorum suppresses the immune responses of Arabidopsis through secreting SsGH5, and thus exerts full virulence for successful infection.
Collapse
Affiliation(s)
- Xiaofan Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiatao Xie
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanping Fu
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao Yu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Lin
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Daohong Jiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiasen Cheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
9
|
Wei S, Yong B, Jiang H, An Z, Wang Y, Li B, Yang C, Zhu W, Chen Q, He C. A loss-of-function mutant allele of a glycosyl hydrolase gene has been co-opted for seed weight control during soybean domestication. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2469-2489. [PMID: 37635359 DOI: 10.1111/jipb.13559] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 08/29/2023]
Abstract
The resultant DNA from loss-of-function mutation can be recruited in biological evolution and development. Here, we present such a rare and potential case of "to gain by loss" as a neomorphic mutation during soybean domestication for increasing seed weight. Using a population derived from a chromosome segment substitution line of Glycine max (SN14) and Glycine soja (ZYD06), a quantitative trait locus (QTL) of 100-seed weight (qHSW) was mapped on chromosome 11, corresponding to a truncated β-1, 3-glucosidase (βGlu) gene. The novel gene hsw results from a 14-bp deletion, causing a frameshift mutation and a premature stop codon in the βGlu. In contrast to HSW, the hsw completely lost βGlu activity and function but acquired a novel function to promote cell expansion, thus increasing seed weight. Overexpressing hsw instead of HSW produced large soybean seeds, and surprisingly, truncating hsw via gene editing further increased the seed size. We further found that the core 21-aa peptide of hsw and its variants acted as a promoter of seed size. Transcriptomic variation in these transgenic soybean lines substantiated the integration hsw into cell and seed size control. Moreover, the hsw allele underwent selection and expansion during soybean domestication and improvement. Our work cloned a likely domesticated QTL controlling soybean seed weight, revealed a novel genetic variation and mechanism in soybean domestication, and provided new insight into crop domestication and breeding, and plant evolution.
Collapse
Affiliation(s)
- Siming Wei
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Yong
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongwei Jiang
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
- Jilin Academy of Agricultural Sciences, Changchun, 130022, China
| | - Zhenghong An
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Wang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Bingbing Li
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ce Yang
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiwei Zhu
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Chaoying He
- State Key Laboratory of Plant Diversity and Specialty Crops/State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- The Innovative Academy of Seed Design, the Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
10
|
Zou J, Jiang C, Qiu S, Duan G, Wang G, Li D, Yu S, Zhao D, Sun W. An Ustilaginoidea virens glycoside hydrolase 42 protein is an essential virulence factor and elicits plant immunity as a PAMP. MOLECULAR PLANT PATHOLOGY 2023; 24:1414-1429. [PMID: 37452482 PMCID: PMC10576179 DOI: 10.1111/mpp.13377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 06/03/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Abstract
Rice false smut, caused by the ascomycete fungus Ustilaginoidea virens, which infects rice florets before heading, severely threatens rice grain yield and quality worldwide. The U. virens genome encodes a number of glycoside hydrolase (GH) proteins. So far, the functions of these GHs in U. virens are largely unknown. In this study, we identified a GH42 protein secreted by U. virens, named UvGHF1, that exhibits β-galactosidase activity. UvGHF1 not only functions as an essential virulence factor during U. virens infection, but also serves as a pathogen-associated molecular pattern (PAMP) in Nicotiana benthamiana and rice. The PAMP activity of UvGHF1 is independent of its β-galactosidase activity. Moreover, UvGHF1 triggers cell death in N. benthamiana in a BAK1-dependent manner. Ectopic expression of UvGHF1 in rice induces pattern-triggered immunity and enhances rice resistance to fungal and bacterial diseases. RNA-seq analysis revealed that UvGHF1 expression in rice not only activates expression of many defence-related genes encoding leucine-rich repeat receptor-like kinases and WRKY and ERF transcription factors, but also induces diterpenoid biosynthesis and phenylpropanoid biosynthesis pathways. Therefore, UvGHF1 contributes to U. virens virulence, but is also recognized by the rice surveillance system to trigger plant immunity.
Collapse
Affiliation(s)
- Jiaying Zou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Chunquan Jiang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Shanshan Qiu
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Guanqun Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Siwen Yu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Dan Zhao
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- Department of Plant PathologyChina Agricultural UniversityBeijingChina
| |
Collapse
|
11
|
Liu H, Lu X, Li M, Lun Z, Yan X, Yin C, Yuan G, Wang X, Liu N, Liu D, Wu M, Luo Z, Zhang Y, Bhadauria V, Yang J, Talbot NJ, Peng YL. Plant immunity suppression by an exo-β-1,3-glucanase and an elongation factor 1α of the rice blast fungus. Nat Commun 2023; 14:5491. [PMID: 37679340 PMCID: PMC10484928 DOI: 10.1038/s41467-023-41175-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/23/2023] [Indexed: 09/09/2023] Open
Abstract
Fungal cell walls undergo continual remodeling that generates β-1,3-glucan fragments as products of endo-glycosyl hydrolases (GHs), which can be recognized as pathogen-associated molecular patterns (PAMPs) and trigger plant immune responses. How fungal pathogens suppress those responses is often poorly understood. Here, we study mechanisms underlying the suppression of β-1,3-glucan-triggered plant immunity by the blast fungus Magnaporthe oryzae. We show that an exo-β-1,3-glucanase of the GH17 family, named Ebg1, is important for fungal cell wall integrity and virulence of M. oryzae. Ebg1 can hydrolyze β-1,3-glucan and laminarin into glucose, thus suppressing β-1,3-glucan-triggered plant immunity. However, in addition, Ebg1 seems to act as a PAMP, independent of its hydrolase activity. This Ebg1-induced immunity appears to be dampened by the secretion of an elongation factor 1 alpha protein (EF1α), which interacts and co-localizes with Ebg1 in the apoplast. Future work is needed to understand the mechanisms behind Ebg1-induced immunity and its suppression by EF1α.
Collapse
Affiliation(s)
- Hang Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Xunli Lu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Mengfei Li
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Zhiqin Lun
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Changfa Yin
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Guixin Yuan
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Xingbin Wang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Ning Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Di Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Mian Wu
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Ziluolong Luo
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Yan Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Vijai Bhadauria
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UH, UK
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory for Crop Pest Monitoring and Green Control, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
12
|
Bu Z, Li W, Liu X, Liu Y, Gao Y, Pei G, Zhuo R, Cui K, Qin Z, Zheng H, Wu J, Yang Y, Su P, Cao M, Xiong X, Liu X, Zhu Y. The Rice Endophyte-Derived α-Mannosidase ShAM1 Degrades Host Cell Walls To Activate DAMP-Triggered Immunity against Disease. Microbiol Spectr 2023; 11:e0482422. [PMID: 37154721 PMCID: PMC10269736 DOI: 10.1128/spectrum.04824-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.
Collapse
Affiliation(s)
- Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Wei Li
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xiaoli Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Gang Pei
- Key Laboratory of Modern Research of TCM, Education Department of Hunan Province Hunan, University of Chinese Medicine, Changsha, People’s Republic of China
| | - Rui Zhuo
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Kunpeng Cui
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Ziwei Qin
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Heping Zheng
- Bioinformatics Center, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Jie Wu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yutong Yang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Pin Su
- Hunan Academy of Agricultural Sciences, Hunan Plant Protection Institute, Changsha, People’s Republic of China
| | - Meiting Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xianqiu Xiong
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, People’s Republic of China
| |
Collapse
|
13
|
Chettri D, Verma AK. Biological significance of carbohydrate active enzymes and searching their inhibitors for therapeutic applications. Carbohydr Res 2023; 529:108853. [PMID: 37235954 DOI: 10.1016/j.carres.2023.108853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 05/01/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Glycans are the most abundant and diverse group of biomolecules with a crucial role in all the biological processes. Their structural and functional diversity is not genetically encoded, but depends on Carbohydrate Active Enzymes (CAZymes) which carry out all catalytic activities in terms of synthesis, modification, and degradation. CAZymes comprise large families of enzymes with specific functions and are widely used for various commercial applications ranging from biofuel production to textile and food industries with impact on biorefineries. To understand the structure and functional mechanism of these CAZymes for their modification for industrial use, together with knowledge of therapeutic aspects of their dysfunction associated with various diseases, CAZyme inhibitors can be used as a valuable tool. In search for new inhibitors, the screening of various secondary metabolites using high-throughput techniques and rational design techniques have been explored. The inhibitors can thus help tune CAZymes and are emerging as a potential research interest.
Collapse
Affiliation(s)
- Dixita Chettri
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India
| | - Anil Kumar Verma
- Department of Microbiology, Sikkim University, Gangtok, 737102, Sikkim, India.
| |
Collapse
|
14
|
Mesarich CH, Barnes I, Bradley EL, de la Rosa S, de Wit PJGM, Guo Y, Griffiths SA, Hamelin RC, Joosten MHAJ, Lu M, McCarthy HM, Schol CR, Stergiopoulos I, Tarallo M, Zaccaron AZ, Bradshaw RE. Beyond the genomes of Fulvia fulva (syn. Cladosporium fulvum) and Dothistroma septosporum: New insights into how these fungal pathogens interact with their host plants. MOLECULAR PLANT PATHOLOGY 2023; 24:474-494. [PMID: 36790136 PMCID: PMC10098069 DOI: 10.1111/mpp.13309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Fulvia fulva and Dothistroma septosporum are closely related apoplastic pathogens with similar lifestyles but different hosts: F. fulva is a pathogen of tomato, whilst D. septosporum is a pathogen of pine trees. In 2012, the first genome sequences of these pathogens were published, with F. fulva and D. septosporum having highly fragmented and near-complete assemblies, respectively. Since then, significant advances have been made in unravelling their genome architectures. For instance, the genome of F. fulva has now been assembled into 14 chromosomes, 13 of which have synteny with the 14 chromosomes of D. septosporum, suggesting these pathogens are even more closely related than originally thought. Considerable advances have also been made in the identification and functional characterization of virulence factors (e.g., effector proteins and secondary metabolites) from these pathogens, thereby providing new insights into how they promote host colonization or activate plant defence responses. For example, it has now been established that effector proteins from both F. fulva and D. septosporum interact with cell-surface immune receptors and co-receptors to activate the plant immune system. Progress has also been made in understanding how F. fulva and D. septosporum have evolved with their host plants, whilst intensive research into pandemics of Dothistroma needle blight in the Northern Hemisphere has shed light on the origins, migration, and genetic diversity of the global D. septosporum population. In this review, we specifically summarize advances made in our understanding of the F. fulva-tomato and D. septosporum-pine pathosystems over the last 10 years.
Collapse
Affiliation(s)
- Carl H Mesarich
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ellie L Bradley
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Silvia de la Rosa
- Laboratory of Molecular Plant Pathology, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Pierre J G M de Wit
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
| | - Yanan Guo
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec City, Québec, Canada
| | | | - Mengmeng Lu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hannah M McCarthy
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Christiaan R Schol
- Laboratory of Phytopathology, Wageningen University, Wageningen, Netherlands
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Mariana Tarallo
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Rosie E Bradshaw
- Bioprotection Aotearoa, Massey University, Palmerston North, New Zealand
- Laboratory of Molecular Plant Pathology, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
15
|
Wang N, Yin Z, Wu Y, Yang J, Zhao Y, Daly P, Pei Y, Zhou D, Dou D, Wei L. A Pythium myriotylum Small Cysteine-Rich Protein Triggers Immune Responses in Diverse Plant Hosts. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:283-293. [PMID: 37022145 DOI: 10.1094/mpmi-09-22-0187-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The oomycete Pythium myriotylum is a necrotrophic pathogen that infects many crop species worldwide, including ginger, soybean, tomato, and tobacco. Here, we identified a P. myriotylum small cysteine-rich protein, PmSCR1, that induces cell death in Nicotiana benthamiana by screening small, secreted proteins that were induced during infection of ginger and did not have a predicted function at the time of selection. Orthologs of PmSCR1 were found in other Pythium species, but these did not have cell death-inducing activity in N. benthamiana. PmSCR1 encodes a protein containing an auxiliary activity 17 family domain and triggers multiple immune responses in host plants. The elicitor function of PmSCR1 appears to be independent of enzymatic activity, because the heat inactivation of PmSCR1 protein did not affect PmSCR1-induced cell death or other defense responses. The elicitor function of PmSCR1 was also independent of BAK1 and SOBIR1. Furthermore, a small region of the protein, PmSCR186-211, is sufficient for inducing cell death. A pretreatment using the full-length PmSCR1 protein promoted the resistance of soybean and N. benthamiana to Phytophthora sojae and Phytophthora capsici infection, respectively. These results reveal that PmSCR1 is a novel elicitor from P. myriotylum, which exhibits plant immunity-inducing activity in multiple host plants. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yingke Wu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jishuo Yang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
16
|
Ling ZL, Cao B, Hu SN, Geng JN, Liu F, Liu DM, Zhao RL. Insights into the genomic evolution and the alkali tolerance mechanisms of Agaricus sinodeliciosus by comparative genomic and transcriptomic analyses. Microb Genom 2023; 9:mgen000928. [PMID: 36884020 PMCID: PMC10132060 DOI: 10.1099/mgen.0.000928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/08/2022] [Indexed: 03/09/2023] Open
Abstract
Agaricus sinodeliciosus is a rare wild edible mushroom from northwest China, and grows naturally in mild saline-alkali soil, which is also unusual in mushrooms. A. sinodeliciosus represents a potential model organism for explaining saline-alkali tolerance mechanisms and revealing related physiological processes in mushrooms. Here, we provide a high-quality genome of A. sinodeliciosus. Comparative genomic analyses reveal A. sinodeliciosus has numerous changes to its genome organization after a solitary evolutionary history under saline-alkali environments, such as gene family contraction, retrotransposon expansion and rapid evolution of adaptative genes. Our saline and alkali tolerance tests show that mycelium growth and fruit body formation of this species are effected by mild alkalinity. Transcriptomic analyses reveal that genes involved in carbon and nitrogen utilization, cell stability and fruit body formation of A. sinodeliciosus could be activated under mildly alkaline conditions. In particular, the 'starch and sucrose metabolism', 'biosynthesis of amino acids' and 'phenylpropanoid biosynthesis' pathways are important for mildly alkaline tolerance of A. sinodeliciosus. Like plants and arbuscular mycorrhizal fungi, in the rot fungus A. sinodeliciosus, the biosynthesis of intracellular small molecules could be enhanced to counter osmotic and oxidative stresses caused by mild alkalinity, and the biosynthesis of monolignol could be suppressed to increase cell wall infiltrates under mildly alkaline conditions. This research provides an understanding of the genomic evolution and mechanisms of A. sinodeliciosus in tolerance to saline-alkali environments. The A. sinodeliciosus genome constitutes a valuable resource for evolutionary and ecological studies of Agaricus.
Collapse
Affiliation(s)
- Zhi-Lin Ling
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Song-Nian Hu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| | - Jia-Ning Geng
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Fei Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Dong-Mei Liu
- Institue of Ecology, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Rui-Lin Zhao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 101408, PR China
| |
Collapse
|
17
|
Piombo E, Kelbessa BG, Sundararajan P, Whisson SC, Vetukuri RR, Dubey M. RNA silencing proteins and small RNAs in oomycete plant pathogens and biocontrol agents. Front Microbiol 2023; 14:1076522. [PMID: 37032886 PMCID: PMC10080066 DOI: 10.3389/fmicb.2023.1076522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Oomycetes cause several damaging diseases of plants and animals, and some species also act as biocontrol agents on insects, fungi, and other oomycetes. RNA silencing is increasingly being shown to play a role in the pathogenicity of Phytophthora species, either through trans-boundary movement of small RNAs (sRNAs) or through expression regulation of infection promoting effectors. Methods To gain a wider understanding of RNA silencing in oomycete species with more diverse hosts, we mined genome assemblies for Dicer-like (DCL), Argonaute (AGO), and RNA dependent RNA polymerase (RDRP) proteins from Phytophthora plurivora, Ph. cactorum, Ph. colocasiae, Pythium oligandrum, Py. periplocum, and Lagenidium giganteum. Moreover, we sequenced small RNAs from the mycelium stage in each of these species. Results and discussion Each of the species possessed a single DCL protein, but they differed in the number and sequence of AGOs and RDRPs. SRNAs of 21nt, 25nt, and 26nt were prevalent in all oomycetes analyzed, but the relative abundance and 5' base preference of these classes differed markedly between genera. Most sRNAs mapped to transposons and other repeats, signifying that the major role for RNA silencing in oomycetes is to limit the expansion of these elements. We also found that sRNAs may act to regulate the expression of duplicated genes. Other sRNAs mapped to several gene families, and this number was higher in Pythium spp., suggesting a role of RNA silencing in regulating gene expression. Genes for most effector classes were the source of sRNAs of variable size, but some gene families showed a preference for specific classes of sRNAs, such as 25/26 nt sRNAs targeting RxLR effector genes in Phytophthora species. Novel miRNA-like RNAs (milRNAs) were discovered in all species, and two were predicted to target transcripts for RxLR effectors in Ph. plurivora and Ph. cactorum, indicating a putative role in regulating infection. Moreover, milRNAs from the biocontrol Pythium species had matches in the predicted transcriptome of Phytophthora infestans and Botrytis cinerea, and L. giganteum milRNAs matched candidate genes in the mosquito Aedes aegypti. This suggests that trans-boundary RNA silencing may have a role in the biocontrol action of these oomycetes.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bekele Gelena Kelbessa
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Poorva Sundararajan
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Stephen C. Whisson
- Department of Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ramesh Raju Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- *Correspondence: Ramesh Raju Vetukuri, ; Mukesh Dubey,
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Ramesh Raju Vetukuri, ; Mukesh Dubey,
| |
Collapse
|
18
|
A conserved enzyme of smut fungi facilitates cell-to-cell extension in the plant bundle sheath. Nat Commun 2022; 13:6003. [PMID: 36224193 PMCID: PMC9556619 DOI: 10.1038/s41467-022-33815-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/04/2022] [Indexed: 12/01/2022] Open
Abstract
Smut fungi comprise one of the largest groups of fungal plant pathogens causing disease in all cereal crops. They directly penetrate host tissues and establish a biotrophic interaction. To do so, smut fungi secrete a wide range of effector proteins, which suppress plant immunity and modulate cellular functions as well as development of the host, thereby determining the pathogen’s lifestyle and virulence potential. The conserved effector Erc1 (enzyme required for cell-to-cell extension) contributes to virulence of the corn smut Ustilago maydis in maize leaves but not on the tassel. Erc1 binds to host cell wall components and displays 1,3-β-glucanase activity, which is required to attenuate β-glucan-induced defense responses. Here we show that Erc1 has a cell type-specific virulence function, being necessary for fungal cell-to-cell extension in the plant bundle sheath and this function is fully conserved in the Erc1 orthologue of the barley pathogen Ustilago hordei. Smut fungi secrete effector proteins that suppress host plant immunity. Here the authors show that the corn smut effector Erc1 has 1,3-β-glucanase activity and promotes virulence in maize leaves by attenuating β-glucan-induced defense responses.
Collapse
|
19
|
Khairi MHF, Nor Muhammad NA, Bunawan H, Abdul Murad AM, Ramzi AB. Unveiling the Core Effector Proteins of Oil Palm Pathogen Ganoderma boninense via Pan-Secretome Analysis. J Fungi (Basel) 2022; 8:jof8080793. [PMID: 36012782 PMCID: PMC9409662 DOI: 10.3390/jof8080793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
Ganoderma boninense is the major causal agent of basal stem rot (BSR) disease in oil palm, causing the progressive rot of the basal part of the stem. Despite its prominence, the key pathogenicity determinants for the aggressive nature of hemibiotrophic infection remain unknown. In this study, genome sequencing and the annotation of G. boninense T10 were carried out using the Illumina sequencing platform, and comparative genome analysis was performed with previously reported G. boninense strains (NJ3 and G3). The pan-secretome of G. boninense was constructed and comprised 937 core orthogroups, 243 accessory orthogroups, and 84 strain-specific orthogroups. In total, 320 core orthogroups were enriched with candidate effector proteins (CEPs) that could be classified as carbohydrate-active enzymes, hydrolases, and non-catalytic proteins. Differential expression analysis revealed an upregulation of five CEP genes that was linked to the suppression of PTI signaling cascade, while the downregulation of four CEP genes was linked to the inhibition of PTI by preventing host defense elicitation. Genome architecture analysis revealed the one-speed architecture of the G. boninense genome and the lack of preferential association of CEP genes to transposable elements. The findings obtained from this study aid in the characterization of pathogenicity determinants and molecular biomarkers of BSR disease.
Collapse
Affiliation(s)
- Mohamad Hazwan Fikri Khairi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
| | - Abdul Munir Abdul Murad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Ahmad Bazli Ramzi
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (M.H.F.K.); (N.A.N.M.); (H.B.)
- Correspondence: ; Tel.: +603-8921-4546; Fax: +603-8921-3398
| |
Collapse
|
20
|
Zhang S, Li C, Si J, Han Z, Chen D. Action Mechanisms of Effectors in Plant-Pathogen Interaction. Int J Mol Sci 2022; 23:6758. [PMID: 35743201 PMCID: PMC9224169 DOI: 10.3390/ijms23126758] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/09/2022] [Accepted: 06/15/2022] [Indexed: 02/08/2023] Open
Abstract
Plant pathogens are one of the main factors hindering the breeding of cash crops. Pathogens, including oomycetes, fungus, and bacteria, secrete effectors as invasion weapons to successfully invade and propagate in host plants. Here, we review recent advances made in the field of plant-pathogen interaction models and the action mechanisms of phytopathogenic effectors. The review illustrates how effectors from different species use similar and distinct strategies to infect host plants. We classify the main action mechanisms of effectors in plant-pathogen interactions according to the infestation process: targeting physical barriers for disruption, creating conditions conducive to infestation, protecting or masking themselves, interfering with host cell physiological activity, and manipulating plant downstream immune responses. The investigation of the functioning of plant pathogen effectors contributes to improved understanding of the molecular mechanisms of plant-pathogen interactions. This understanding has important theoretical value and is of practical significance in plant pathology and disease resistance genetics and breeding.
Collapse
Affiliation(s)
| | | | | | - Zhigang Han
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| | - Donghong Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China; (S.Z.); (C.L.); (J.S.)
| |
Collapse
|
21
|
Bradley EL, Ökmen B, Doehlemann G, Henrissat B, Bradshaw RE, Mesarich CH. Secreted Glycoside Hydrolase Proteins as Effectors and Invasion Patterns of Plant-Associated Fungi and Oomycetes. FRONTIERS IN PLANT SCIENCE 2022; 13:853106. [PMID: 35360318 PMCID: PMC8960721 DOI: 10.3389/fpls.2022.853106] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/14/2022] [Indexed: 05/06/2023]
Abstract
During host colonization, plant-associated microbes, including fungi and oomycetes, deliver a collection of glycoside hydrolases (GHs) to their cell surfaces and surrounding extracellular environments. The number and type of GHs secreted by each organism is typically associated with their lifestyle or mode of nutrient acquisition. Secreted GHs of plant-associated fungi and oomycetes serve a number of different functions, with many of them acting as virulence factors (effectors) to promote microbial host colonization. Specific functions involve, for example, nutrient acquisition, the detoxification of antimicrobial compounds, the manipulation of plant microbiota, and the suppression or prevention of plant immune responses. In contrast, secreted GHs of plant-associated fungi and oomycetes can also activate the plant immune system, either by acting as microbe-associated molecular patterns (MAMPs), or through the release of damage-associated molecular patterns (DAMPs) as a consequence of their enzymatic activity. In this review, we highlight the critical roles that secreted GHs from plant-associated fungi and oomycetes play in plant-microbe interactions, provide an overview of existing knowledge gaps and summarize future directions.
Collapse
Affiliation(s)
- Ellie L. Bradley
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Bilal Ökmen
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
- Department of Microbial Interactions, IMIT/ZMBP, University of Tübingen, Tübingen, Germany
| | - Gunther Doehlemann
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| | - Bernard Henrissat
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby, Denmark
- Architecture et Fonction des Macromolécules Biologiques (AFMB), UMR 7257 Centre National de la Recherche Scientifique (CNRS), Université Aix-Marseille, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rosie E. Bradshaw
- Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Carl H. Mesarich
- Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| |
Collapse
|
22
|
Guo X, Liu N, Zhang Y, Chen J. Pathogen-Associated Molecular Pattern Active Sites of GH45 Endoglucanohydrolase from Rhizoctonia solani. PHYTOPATHOLOGY 2022; 112:355-363. [PMID: 34165320 DOI: 10.1094/phyto-04-21-0164-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A 207-amino-acid residue endoglucanohydrolase (EG1) belonging to the glycoside hydrolase 45 (GH45) from Rhizoctonia solani acts as a pathogen-associated molecular pattern (PAMP). However, the mechanism of EG1 inducing plant immunity is unclear. Here, we found that EG1 contains two domains related to its PAMP function. Transient expression showed that EG1-1, the mutation deleting 60 amino acid residues from the N-terminal, still reserved the PAMP function. Further truncation of EG1-1 obtained two truncating mutations: EG1-2, deleting seven amino acid residues from the N-terminal of EG1-1 (SPWAVND), and EG1-3, deleting five amino acid residues from the C-terminal of EG1-1 (GCSRK). Transient expression showed that the two truncating mutations EG1-2 and EG1-3 all lost the PAMP function. Site-directed mutagenesis of EG1-1 showed that the three amino acid residues (P, W, and D) in the region SPWAVND and the two amino acid residues (C and R) in the region GCSRK were involved in the PAMP function. The homology model showed that the two regions were located at a surface on the EG1 and structurally independent. These results demonstrate that there are two functional regions for the plant immune function of the EG1 released by R. solani, and the two functional regions are independent of each other.
Collapse
Affiliation(s)
- Xiuna Guo
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Ning Liu
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuanyuan Zhang
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Jinyin Chen
- Department of Plant Pathology, Shandong Agricultural University, Taian, Shandong 271018, China
| |
Collapse
|
23
|
Yang B, Yang S, Zheng W, Wang Y. Plant immunity inducers: from discovery to agricultural application. STRESS BIOLOGY 2022; 2:5. [PMID: 37676359 PMCID: PMC10442025 DOI: 10.1007/s44154-021-00028-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/13/2021] [Indexed: 09/08/2023]
Abstract
While conventional chemical fungicides directly eliminate pathogens, plant immunity inducers activate or prime plant immunity. In recent years, considerable progress has been made in understanding the mechanisms of immune regulation in plants. The development and application of plant immunity inducers based on the principles of plant immunity represent a new field in plant protection research. In this review, we describe the mechanisms of plant immunity inducers in terms of plant immune system activation, summarize the various classes of reported plant immunity inducers (proteins, oligosaccharides, chemicals, and lipids), and review methods for the identification or synthesis of plant immunity inducers. The current situation, new strategies, and future prospects in the development and application of plant immunity inducers are also discussed.
Collapse
Affiliation(s)
- Bo Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyue Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Akbar S, Yao W, Qin L, Yuan Y, Powell CA, Chen B, Zhang M. Comparative Analysis of Sugar Metabolites and Their Transporters in Sugarcane Following Sugarcane mosaic virus (SCMV) Infection. Int J Mol Sci 2021; 22:ijms222413574. [PMID: 34948367 PMCID: PMC8707430 DOI: 10.3390/ijms222413574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/19/2022] Open
Abstract
Sugarcane mosaic virus (SCMV) is one of the major pathogens of sugarcane. SCMV infection causes dynamic changes in plant cells, including decreased photosynthetic rate, respiration, and sugar metabolism. To understand the basics of pathogenicity mechanism, we performed transcriptome and proteomics analysis in two sugarcane genotypes (Badila: susceptible to SCMV and B-48: SCMV resistant). Using Saccharum spontaneum L. genome as a reference, we identified the differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) that participate in sugar metabolism, transport of their metabolites, and Carbohydrate Activating enZYmes (CAZymes). Sequencing data revealed 287 DEGs directly or indirectly involved in sugar metabolism, transport, and storage, while 323 DEGs are associated with CAZymes. Significant upregulation of glucose, sucrose, fructose, starch, and SWEET-related transcripts was observed in the Badila after infection of SCMV. B-48 showed resistance against SCMV with a limited number of sugar transcripts up-regulation at the post-infection stage. For CAZymes, only glycosyltransferase (GT)1 and glycosyl hydrolase (GH)17 were upregulated in B-48. Regulation of DEGs was analyzed at the proteomics level as well. Starch, fructose, glucose, GT1, and GH17 transcripts were expressed at the post-translational level. We verified our transcriptomic results with proteomics and qPCR data. Comprehensively, this study proved that Badila upregulated sugar metabolizing and transporting transcripts and proteins, which enhance virus multiplication and infectionl.
Collapse
Affiliation(s)
- Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Wei Yao
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Lifang Qin
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Yuan Yuan
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | | | - Baoshan Chen
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
| | - Muqing Zhang
- Guangxi Key Laboratory for Sugarcane Biology & State Key Laboratory for Conservation and Utilization of Agro Bioresources, Guangxi University, Nanning 530005, China; (S.A.); (W.Y.); (L.Q.); (Y.Y.); (B.C.)
- IRREC-IFAS, University of Florida, Fort Pierce, FL 34945, USA;
- Correspondence:
| |
Collapse
|
25
|
Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nat Commun 2021. [DOI: 10.1038/s41467-021-22456-x\] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
AbstractMany phytopathogens secrete cell wall degradation enzymes (CWDEs) to damage host cells and facilitate colonization. As the major components of the plant cell wall, cellulose and hemicellulose are the targets of CWDEs. Damaged plant cells often release damage-associated molecular patterns (DAMPs) to trigger plant immune responses. Here, we establish that the fungal pathogen Magnaporthe oryzae secretes the endoglucanases MoCel12A and MoCel12B during infection of rice (Oryza sativa). These endoglucanases target hemicellulose of the rice cell wall and release two specific oligosaccharides, namely the trisaccharide 31-β-D-Cellobiosyl-glucose and the tetrasaccharide 31-β-D-Cellotriosyl-glucose. 31-β-D-Cellobiosyl-glucose and 31-β-D-Cellotriosyl-glucose bind the immune receptor OsCERK1 but not the chitin binding protein OsCEBiP. However, they induce the dimerization of OsCERK1 and OsCEBiP. In addition, these Poaceae cell wall-specific oligosaccharides trigger a burst of reactive oxygen species (ROS) that is largely compromised in oscerk1 and oscebip mutants. We conclude that 31-β-D-Cellobiosyl-glucose and 31-β-D-Cellotriosyl-glucose are specific DAMPs released from the hemicellulose of rice cell wall, which are perceived by an OsCERK1 and OsCEBiP immune complex during M. oryzae infection in rice.
Collapse
|
26
|
Tariqjaveed M, Mateen A, Wang S, Qiu S, Zheng X, Zhang J, Bhadauria V, Sun W. Versatile effectors of phytopathogenic fungi target host immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1856-1873. [PMID: 34383388 DOI: 10.1111/jipb.13162] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Phytopathogenic fungi secrete a large arsenal of effector molecules, including proteinaceous effectors, small RNAs, phytohormones and derivatives thereof. The pathogenicity of fungal pathogens is primarily determined by these effectors that are secreted into host cells to undermine innate immunity, as well as to facilitate the acquisition of nutrients for their in planta growth and proliferation. After conventional and non-conventional secretion, fungal effectors are translocated into different subcellular compartments of the host cells to interfere with various biological processes. In extracellular spaces, apoplastic effectors cope with physical and chemical barriers to break the first line of plant defenses. Intracellular effectors target essential immune components on the plasma membrane, in the cytosol, including cytosolic organelles, and in the nucleus to suppress host immunity and reprogram host physiology, favoring pathogen colonization. In this review, we comprehensively summarize the recent advances in fungal effector biology, with a focus on the versatile virulence functions of fungal effectors in promoting pathogen infection and colonization. A perspective of future research on fungal effector biology is also discussed.
Collapse
Affiliation(s)
- Muhammad Tariqjaveed
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Abdul Mateen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanzhi Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Shanshan Qiu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Xinhang Zheng
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
| | - Jie Zhang
- Institute of Microbiology, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Vijai Bhadauria
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wenxian Sun
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- The Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, 100193, China
- Department of Plant Pathology, College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
27
|
Balotf S, Wilson R, Tegg RS, Nichols DS, Wilson CR. In Planta Transcriptome and Proteome Profiles of Spongospora subterranea in Resistant and Susceptible Host Environments Illuminates Regulatory Principles Underlying Host-Pathogen Interaction. BIOLOGY 2021; 10:biology10090840. [PMID: 34571717 PMCID: PMC8471823 DOI: 10.3390/biology10090840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/13/2023]
Abstract
Simple Summary Infections of potato tubers and roots by Spongospora subterranea result in powdery scab and root diseases. Losses due to infections with S. subterranea are substantial in most potato-growing regions of the world with no fully effective treatments available. Understanding the gene regulation of pathogens in their host is dependent on multidimensional datasets. In this study, we profiled the transcriptome and proteome of S. subterranea within the susceptible and resistant host. Enzyme activity and nucleic acid metabolism appear to be important to the virulence of S. subterranea. Our results provide a good resource for future functional studies of powdery scab and might be useful in S. subterranea inoculum management. Abstract Spongospora subterranea is an obligate biotrophic pathogen, causing substantial economic loss to potato industries globally. Currently, there are no fully effective management strategies for the control of potato diseases caused by S. subterranea. To further our understanding of S. subterranea biology during infection, we characterized the transcriptome and proteome of the pathogen during the invasion of roots of a susceptible and a resistant potato cultivar. A total of 7650 transcripts from S. subterranea were identified in the transcriptome analysis in which 1377 transcripts were differentially expressed between two cultivars. In proteome analysis, we identified 117 proteins with 42 proteins significantly changed in comparisons between resistant and susceptible cultivars. The functional annotation of transcriptome data indicated that the gene ontology terms related to the transportation and actin processes were induced in the resistant cultivar. The downregulation of enzyme activity and nucleic acid metabolism in the resistant cultivar suggests a probable influence of these processes in the virulence of S. subterranea. The protein analysis results indicated that the majority of differentially expressed proteins were related to the metabolic processes and transporter activity. The present study provides a comprehensive molecular insight into the multiple layers of gene regulation that contribute to S. subterranea infection and development in planta and illuminates the role of host immunity in affecting pathogen responses.
Collapse
Affiliation(s)
- Sadegh Balotf
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; (R.W.); (D.S.N.)
| | - Robert S. Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
| | - David S. Nichols
- Central Science Laboratory, University of Tasmania, Hobart, TAS 7001, Australia; (R.W.); (D.S.N.)
| | - Calum R. Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, New Town, TAS 7008, Australia; (S.B.); (R.S.T.)
- Correspondence:
| |
Collapse
|
28
|
Pervaiz T, Liu T, Fang X, Ren Y, Li X, Liu Z, Fiaz M, Fang J, Shangguan L. Identification of GH17 gene family in Vitis vinifera and expression analysis of GH17 under various adversities. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1423-1436. [PMID: 34366587 PMCID: PMC8295436 DOI: 10.1007/s12298-021-01014-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/20/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Glycoside hydrolase (GH, EC 3.2.1) is a group of enzymes that hydrolyzes glycosidic bonds and play a role in the hydrolysis and synthesis of sugars in living organisms. Vitis vinifera is an important fruit crop and it harbors GH17 gene family however, their function in grapes has not been systematically investigated. In this study, a total of 870 GH17 genes were identified from 14 plant species and their structural domain, sequence alignment, phylogenetic tree, collinear analysis, with the expression profiles of VviGH17 gene family was performed. The promoter analysis of VviGH17 gene showed the presence of cis-acting elements, which are responsive to plant growth and development. In addition, elements for plant hormones were found that are triggered in response to abiotic/biological stress. Transcriptomic data led to the identification of several VviGH17 genes, which are associated with bud dormancy and in response to abiotic stress. Transcript analysis was carried out for some of the selected VviGH17 genes RT-qPCR. VviGH17-16 and VviGH17-30 genes were differentially expressed during bud dormancy, fruit development and different abiotic stresses. Moreover, VviGH17-37 and VviGH17-44 were differentially expressed at fruit development, in response to abiotic stress. In addition, subcellular localization predicts that the VviGH17-16, VviGH17-30, and VviGH17-37 genes were located in the cell membrane, while VviGH17-44 gene was located in the vacuole. In conclusion, our study led to the identification of several GH17s and their probable role in development and stress. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01014-1.
Collapse
Affiliation(s)
- Tariq Pervaiz
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083 People’s Republic of China
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
| | - Yanhua Ren
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Xiyang Li
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Muhammad Fiaz
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095 People’s Republic of China
- Fruit Crop Genetic Improvement and Seedling Propagation Engineering, Center of Jiangsu Province, Nanjing, 210095 People’s Republic of China
| |
Collapse
|
29
|
Wen Q, Sun M, Kong X, Yang Y, Zhang Q, Huang G, Lu W, Li W, Meng Y, Shan W. The novel peptide NbPPI1 identified from Nicotiana benthamiana triggers immune responses and enhances resistance against Phytophthora pathogens. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:961-976. [PMID: 33205861 DOI: 10.1111/jipb.13033] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
In plants, recognition of small secreted peptides, such as damage/danger-associated molecular patterns (DAMPs), regulates diverse processes, including stress and immune responses. Here, we identified an SGPS (Ser-Gly-Pro-Ser) motif-containing peptide, Nicotiana tabacum NtPROPPI, and its two homologs in Nicotiana benthamiana, NbPROPPI1 and NbPROPPI2. Phytophthora parasitica infection and salicylic acid (SA) treatment induced NbPROPPI1/2 expression. Moreover, SignalP predicted that the 89-amino acid NtPROPPI includes a 24-amino acid N-terminal signal peptide and NbPROPPI1/2-GFP fusion proteins were mainly localized to the periplasm. Transient expression of NbPROPPI1/2 inhibited P. parasitica colonization, and NbPROPPI1/2 knockdown rendered plants more susceptible to P. parasitica. An eight-amino-acid segment in the NbPROPPI1 C-terminus was essential for its immune function and a synthetic 20-residue peptide, NbPPI1, derived from the C-terminus of NbPROPPI1 provoked significant immune responses in N. benthamiana. These responses led to enhanced accumulation of reactive oxygen species, activation of mitogen-activated protein kinases, and up-regulation of the defense genes Flg22-induced receptor-like kinase (FRK) and WRKY DNA-binding protein 33 (WRKY33). The NbPPI1-induced defense responses require Brassinosteroid insensitive 1-associated receptor kinase 1 (BAK1). These results suggest that NbPPI1 functions as a DAMP in N. benthamiana; this novel DAMP provides a potentially useful target for improving plant resistance to Pytophthora pathogens.
Collapse
Affiliation(s)
- Qujiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Manli Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Xianglan Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Qiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Wenqin Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, 712100, China
| | - Wanyue Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
30
|
Yang C, Liu R, Pang J, Ren B, Zhou H, Wang G, Wang E, Liu J. Poaceae-specific cell wall-derived oligosaccharides activate plant immunity via OsCERK1 during Magnaporthe oryzae infection in rice. Nat Commun 2021; 12:2178. [PMID: 33846336 PMCID: PMC8042013 DOI: 10.1038/s41467-021-22456-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/10/2021] [Indexed: 02/01/2023] Open
Abstract
Many phytopathogens secrete cell wall degradation enzymes (CWDEs) to damage host cells and facilitate colonization. As the major components of the plant cell wall, cellulose and hemicellulose are the targets of CWDEs. Damaged plant cells often release damage-associated molecular patterns (DAMPs) to trigger plant immune responses. Here, we establish that the fungal pathogen Magnaporthe oryzae secretes the endoglucanases MoCel12A and MoCel12B during infection of rice (Oryza sativa). These endoglucanases target hemicellulose of the rice cell wall and release two specific oligosaccharides, namely the trisaccharide 31-β-D-Cellobiosyl-glucose and the tetrasaccharide 31-β-D-Cellotriosyl-glucose. 31-β-D-Cellobiosyl-glucose and 31-β-D-Cellotriosyl-glucose bind the immune receptor OsCERK1 but not the chitin binding protein OsCEBiP. However, they induce the dimerization of OsCERK1 and OsCEBiP. In addition, these Poaceae cell wall-specific oligosaccharides trigger a burst of reactive oxygen species (ROS) that is largely compromised in oscerk1 and oscebip mutants. We conclude that 31-β-D-Cellobiosyl-glucose and 31-β-D-Cellotriosyl-glucose are specific DAMPs released from the hemicellulose of rice cell wall, which are perceived by an OsCERK1 and OsCEBiP immune complex during M. oryzae infection in rice.
Collapse
Affiliation(s)
- Chao Yang
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Rui Liu
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhuan Pang
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Ren
- grid.410727.70000 0001 0526 1937State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huanbin Zhou
- grid.410727.70000 0001 0526 1937State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Gang Wang
- grid.9227.e0000000119573309National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- grid.9227.e0000000119573309National key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Liu
- grid.9227.e0000000119573309State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|