1
|
Pan M, Ge L, Gao W, Li Z, Li X, Chen Y, Jia M, Lu M, Jiang S, Cui H, Liang W, Wang Y, Li F. Construction of watermelon mosaic virus-Beijing isolate infectious clone and study of the dynamic localization and accumulation of virus-encoded proteins. Virology 2025; 609:110571. [PMID: 40403429 DOI: 10.1016/j.virol.2025.110571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/22/2025] [Accepted: 05/09/2025] [Indexed: 05/24/2025]
Abstract
Potyvirus is the largest genus of plant RNA viruses, and the members in the genus are known to cause significant damage to a wide variety of crops. In this study, we performed small RNA (sRNA) deep sequencing for identification of potential virus (es) in collected cucumber leaves with mosaic symptoms from fields in Beijing. Through this high-throughput sequencing and subsequent PCR amplification, we obtained a complete viral genome sequence of 10,044 bp, which showed the highest similarity to the watermelon mosaic virus (WMV) isolate FBR04-37 and exhibited the typical characteristics of potyviruses in its genome organization. The obtained WMV isolate was designated as WMV-BJ. We then constructed the infectious clone of WMV-BJ, which can successfully infect six kinds of cucurbitaceous plants by agroinfiltration. Among these, Cucumis melo showed obvious symptoms such as shrinkage and mosaic compared to other cucurbitaceous plants infected by this virus infectious clone. To understand the biological function of WMV-BJ, we further analyzed the dynamic subcellular localization and protein accumulation of WMV-BJ encoded 11 viral proteins. The results showed the WMV-BJ-encoded proteins displayed diverse subcellular localizations, and most viral proteins were easily degraded after expression in plant cells. Together, the construction of the WMV-BJ infectious clone in this study provides a valuable tool for further exploring the biology of this virus and the interaction between WMV-BJ and host plant, and useful information for investigating the functions of WMV-encoded proteins.
Collapse
Affiliation(s)
- Mengjiao Pan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Linhao Ge
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Weifang Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhaolei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xue Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yalin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxuan Jia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Minghong Lu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shoulin Jiang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
2
|
He R, Li Y, Bernards MA, Wang A. Turnip mosaic virus selectively subverts a PR-5 thaumatin-like, plasmodesmal protein to promote viral infection. THE NEW PHYTOLOGIST 2025; 245:299-317. [PMID: 39532690 PMCID: PMC11617660 DOI: 10.1111/nph.20233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/27/2024] [Indexed: 11/16/2024]
Abstract
Pathogenesis-related (PR) proteins are induced by abiotic and biotic stresses and generally considered as part of the plant defense mechanism. However, it remains yet largely unclear if and how they are involved in virus infection. Our recent quantitative, comparative proteomic study identified three PR-5 family proteins that are significantly differentially accumulated in the plasmodesmata (PD)-enriched fraction isolated from Nicotiana benthamiana leaves infected by turnip mosaic virus (TuMV). In this study, we employed the TuMV-Arabidopsis pathosystem to characterize the involvement of two Arabidopsis orthologs, AtOSM34 and AtOLP of the three N. benthamiana PR-5-like proteins. We show that AtOSM34 and AtOLP are PD-localized proteins and their expression is up- and downregulated in response to TuMV infection, respectively. Deficiency or overexpression of AtOLP does not affect viral RNA accumulation. Knockdown of AtOSM34 inhibits TuMV infection, whereas its overexpression promotes viral infection. We further demonstrate that AtOSM34 functions as a proviral factor through diminishing PD callose deposition to promote viral intercellular movement, targeting the viral replication complex to enhance viral replication, and suppressing the ROS-mediated antiviral response. Taken together, these data suggest that TuMV has evolved the ability to selectively upregulate and subvert AtOSM34, a PR-5 family protein to assist its infection.
Collapse
Affiliation(s)
- Rongrong He
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Yinzi Li
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
| | - Mark A. Bernards
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| | - Aiming Wang
- London Research and Development CentreAgriculture and Agri‐Food CanadaLondonONN5V 4T3Canada
- Department of BiologyWestern University1151 Richmond St.LondonONN6A 5B7Canada
| |
Collapse
|
3
|
Wang L, Shi W, Aziz A, Wang X, Liu H, Shen W, Cui H, Dai Z. Mutating the arginine residue within the FRNK motif of telosma mosaic virus (TelMV) HC-Pro protein attenuates viral infection and confers effective protection against TelMV in passion fruit (Passiflora edulis). PEST MANAGEMENT SCIENCE 2024; 80:5256-5265. [PMID: 38895838 DOI: 10.1002/ps.8252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Telosma mosaic virus (TelMV, Potyvirus, Potyviridae) is an emerging viral pathogen that threatens passion fruit plantations worldwide. However, an efficient strategy for controlling such a virus is not yet available. Cross protection is a phenomenon in which pre-infection of a plant with one mild strain prevents or delays subsequent infection by the same or closely related virus. HC-Pro is the potyviral encoded multifunctional protein involved in several steps of viral infection, including multiplication, movement, transmission and RNA silencing suppression. In this study, we tested whether it is possible to generate attenuated viral strains capable of conferring protection against severe TelMV infection by manipulating the HC-Pro gene. RESULTS By introducing point mutation into the conserved motif FRNK of HC-Pro that is essential for RNA silencing suppression, we have successfully obtained three attenuated mutants of TelMV (R181K, R181D, and R181E, respectively). These attenuated TelMV mutants could systemically infect passion fruit plants without noticeable symptoms. Pre-inoculation of one of these attenuated mutants confers efficient protection against subsequent infection by severe TelMV strain. Moreover, we demonstrated that the HC-Pros harbored by the attenuated mutants exhibit reduced RNA silencing suppression activity in Nicotiana benthamiana leaves. CONCLUSION The attenuated TelMV mutants developed in this study that are suitable for cross protection offer a practical, powerful tool to fight against TelMV for sustainable passion fruit production. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Linxi Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wei Shi
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Asma Aziz
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Xiaoqing Wang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Haobin Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Wentao Shen
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
4
|
Fang X, Jia Z, Yu T, Rui P, Zheng H, Lu Y, Peng J, Rao S, Wu J, Chen J, Yan F, Wu G. FATTY ACID DESATURASE4 enhances plant RNA virus replication and undergoes host vacuolar ATPase-mediated degradation. PLANT PHYSIOLOGY 2024; 196:1502-1517. [PMID: 38935533 DOI: 10.1093/plphys/kiae350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/14/2024] [Accepted: 05/14/2024] [Indexed: 06/29/2024]
Abstract
Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin-conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was downregulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast 2-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and sheds light on a new mechanism by which a V-ATPase is involved in plant antiviral defense.
Collapse
Affiliation(s)
- Xinxin Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Tianqi Yu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Penghuan Rui
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
5
|
Wu G, Wang L, He R, Cui X, Chen X, Wang A. Two plant membrane-shaping reticulon-like proteins play contrasting complex roles in turnip mosaic virus infection. MOLECULAR PLANT PATHOLOGY 2024; 25:e70017. [PMID: 39412487 PMCID: PMC11481689 DOI: 10.1111/mpp.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/10/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Positive-sense RNA viruses remodel cellular cytoplasmic membranes as the membranous sources for the formation of viral replication organelles (VROs) for viral genome replication. In plants, they traffic through plasmodesmata (PD), plasma membrane-lined pores enabling cytoplasmic connections between cells for intercellular movement and systemic infection. In this study, we employed turnip mosaic virus (TuMV), a plant RNA virus to investigate the involvement of RTNLB3 and RTNLB6, two ER (endoplasmic reticulum) membrane-bending, PD-located reticulon-like (RTNL) non-metazoan group B proteins (RTNLBs) in viral infection. We show that RTNLB3 interacts with TuMV 6K2 integral membrane protein and RTNLB6 binds to TuMV coat protein (CP). Knockdown of RTNLB3 promoted viral infection, whereas downregulation of RTNLB6 restricted viral infection, suggesting that these two RTNLs play contrasting roles in TuMV infection. We further demonstrate that RTNLB3 targets the α-helix motif 42LRKSM46 of 6K2 to interrupt 6K2 self-interactions and compromise 6K2-induced VRO formation. Moreover, overexpression of AtRTNLB3 apparently promoted the selective degradation of the ER and ER-associated protein calnexin, but not 6K2. Intriguingly, mutation of the α-helix motif of 6K2 that is required for induction of VROs severely affected 6K2 stability and abolished TuMV infection. Thus, RTNLB3 attenuates TuMV replication, probably through the suppression of 6K2 function. We also show that RTNLB6 promotes viral intercellular movement but does not affect viral replication. Therefore, the proviral role of RTNLB6 is probably by enhancing viral cell-to-cell trafficking. Taken together, our data demonstrate that RTNL family proteins may play diverse complex, even opposite, roles in viral infection in plants.
Collapse
Affiliation(s)
- Guanwei Wu
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Plant VirologyNingbo UniversityNingboChina
| | - Liping Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- State Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanChina
| | - Rongrong He
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Xin Chen
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial CropsJiangsu Academy of Agricultural SciencesNanjingChina
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri‐Food CanadaLondonOntarioCanada
- Department of BiologyWestern UniversityLondonOntarioCanada
| |
Collapse
|
6
|
Hu WC, Tsai JC, Cheng HW, Huang CH, Raja JAJ, Chang FY, Chen CC, Chiang CH, Yeh SD. The Fifth Residue of the Coat Protein of Turnip Mosaic Virus Is Responsible for Long-Distance Movement in a Local-Lesion Host and Aphid Transmissibility in a Systemic Host. PHYTOPATHOLOGY 2024; 114:1689-1700. [PMID: 38451704 DOI: 10.1094/phyto-08-23-0287-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
HC-Pro and coat protein (CP) genes of a potyvirus facilitate cell-to-cell movement and are involved in the systemic movement of the viruses. The interaction between HC-Pro and CP is mandatory for aphid transmission. Two turnip mosaic virus (TuMV) isolates, RC4 and YC5, were collected from calla lily plants in Taiwan. The virus derived from the infectious clone pYC5 cannot move systemically in Chenopodium quinoa plants and loses aphid transmissibility in Nicotiana benthamiana plants, like the initially isolated virus. Sequence analysis revealed that two amino acids, P5 and A206, of YC5 CP uniquely differ from RC4 and other TuMV strains. Recombination assay and site-directed mutagenesis revealed that the fifth residue of leucine (L) at the N-terminal region of the CP (TuMV-RC4), rather than proline (P) (TuMV-YC5), is critical to permit the systemic spread in C. quinoa plants. Moreover, the single substitution mutant YC5-CPP5L became aphid transmissible, similar to RC4. Fluorescence microscopy revealed that YC5-GFP was restricted in the petioles of inoculated leaves, whereas YC5-CPP5L-GFP translocated through the petioles of inoculated leaves, the main stem, and the petioles of the upper uninoculated leaves of C. quinoa plants. In addition, YC5-GUS was blocked at the basal part of the petiole connecting to the main stem of the inoculated C. quinoa plants, whereas YC5-CPP5L-GFP translocated to the upper leaves. Thus, a single amino acid, the residue L5 at the N-terminal region right before the 6DAG8 motif, is critical for the systemic translocation ability of TuMV in a local lesion host and for aphid transmissibility in a systemic host.
Collapse
Affiliation(s)
- Wen-Chi Hu
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jui-Chi Tsai
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Hao-Wen Cheng
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Hao Huang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Joseph A J Raja
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Fang-Yu Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Chih Chen
- Plant Pathology Division, Taiwan Agricultural Research Institute, Council of Agriculture, Executive Yuan, Taichung 41362, Taiwan
| | - Chu-Hui Chiang
- Department of Plant Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Shyi-Dong Yeh
- Advanced Plant and Food Crop Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Plant Pathology, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
7
|
Xue M, Sofer L, Simon V, Arvy N, Diop M, Lion R, Beucher G, Bordat A, Tilsner J, Gallois J, German‐Retana S. AtHVA22a, a plant-specific homologue of Reep/DP1/Yop1 family proteins is involved in turnip mosaic virus propagation. MOLECULAR PLANT PATHOLOGY 2024; 25:e13466. [PMID: 38767756 PMCID: PMC11104427 DOI: 10.1111/mpp.13466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/08/2024] [Accepted: 04/14/2024] [Indexed: 05/22/2024]
Abstract
The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Luc Sofer
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Vincent Simon
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Mamoudou Diop
- UR 1052, INRAe, GAFL Domaine St MauriceMontfavet CedexFrance
| | - Roxane Lion
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Guillaume Beucher
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Amandine Bordat
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| | - Jens Tilsner
- Cell and Molecular SciencesJames Hutton InstituteDundeeUK
- Biomedical Sciences Research ComplexUniversity of St AndrewsSt AndrewsUK
| | | | - Sylvie German‐Retana
- Univ. Bordeaux UMR 1332, Biologie du Fruit et Pathologie, INRAe, Equipe de VirologieVillenave d'Ornon CedexFrance
| |
Collapse
|
8
|
Ying X, Bera S, Liu J, Toscano-Morales R, Jang C, Yang S, Ho J, Simon AE. Umbravirus-like RNA viruses are capable of independent systemic plant infection in the absence of encoded movement proteins. PLoS Biol 2024; 22:e3002600. [PMID: 38662792 PMCID: PMC11081511 DOI: 10.1371/journal.pbio.3002600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/09/2024] [Accepted: 03/26/2024] [Indexed: 05/12/2024] Open
Abstract
The signature feature of all plant viruses is the encoding of movement proteins (MPs) that supports the movement of the viral genome into adjacent cells and through the vascular system. The recent discovery of umbravirus-like viruses (ULVs), some of which only encode replication-associated proteins, suggested that they, as with umbraviruses that lack encoded capsid proteins (CPs) and silencing suppressors, would require association with a helper virus to complete an infection cycle. We examined the infection properties of 2 ULVs: citrus yellow vein associated virus 1 (CY1), which only encodes replication proteins, and closely related CY2 from hemp, which encodes an additional protein (ORF5CY2) that was assumed to be an MP. We report that both CY1 and CY2 can independently infect the model plant Nicotiana benthamiana in a phloem-limited fashion when delivered by agroinfiltration. Unlike encoded MPs, ORF5CY2 was dispensable for infection of CY2, but was associated with faster symptom development. Examination of ORF5CY2 revealed features more similar to luteoviruses/poleroviruses/sobemovirus CPs than to 30K class MPs, which all share a similar single jelly-roll domain. In addition, only CY2-infected plants contained virus-like particles (VLPs) associated with CY2 RNA and ORF5CY2. CY1 RNA and a defective (D)-RNA that arises during infection interacted with host protein phloem protein 2 (PP2) in vitro and in vivo, and formed a high molecular weight complex with sap proteins in vitro that was partially resistant to RNase treatment. When CY1 was used as a virus-induced gene silencing (VIGS) vector to target PP2 transcripts, CY1 accumulation was reduced in systemic leaves, supporting the usage of PP2 for systemic movement. ULVs are therefore the first plant viruses encoding replication and CPs but no MPs, and whose systemic movement relies on a host MP. This explains the lack of discernable helper viruses in many ULV-infected plants and evokes comparisons with the initial viruses transferred into plants that must have similarly required host proteins for movement.
Collapse
Affiliation(s)
- Xiaobao Ying
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Jinyuan Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Roberto Toscano-Morales
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Chanyong Jang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Stephen Yang
- Silvec Biologics, Inc., Gaithersburg, Maryland, United States of America
| | - Jovia Ho
- Silvec Biologics, Inc., Gaithersburg, Maryland, United States of America
| | - Anne E. Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Silvec Biologics, Inc., Gaithersburg, Maryland, United States of America
| |
Collapse
|
9
|
Qin L, Liu H, Liu P, Jiang L, Cheng X, Li F, Shen W, Qiu W, Dai Z, Cui H. Rubisco small subunit (RbCS) is co-opted by potyvirids as the scaffold protein in assembling a complex for viral intercellular movement. PLoS Pathog 2024; 20:e1012064. [PMID: 38437247 PMCID: PMC10939294 DOI: 10.1371/journal.ppat.1012064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/14/2024] [Accepted: 02/21/2024] [Indexed: 03/06/2024] Open
Abstract
Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered. Here, we found that HCPro2 encoded by areca palm necrotic ring spot virus (ANRSV) assists viral intercellular movement, which could be functionally complemented by its counterpart HCPro from a potyvirus. Affinity purification and mass spectrometry identified several viral factors (including CI and CP) and host proteins that are physically associated with HCPro2. We demonstrated that HCPro2 interacts with both CI and CP in planta in forming PD-localized complexes during viral infection. Further, we screened HCPro2-associating host proteins, and identified a common host protein in Nicotiana benthamiana-Rubisco small subunit (NbRbCS) that mediates the interactions of HCPro2 with CI or CP, and CI with CP. Knockdown of NbRbCS impairs these interactions, and significantly attenuates the intercellular and systemic movement of ANRSV and three other potyvirids (turnip mosaic virus, pepper veinal mottle virus, and telosma mosaic virus). This study indicates that a nucleus-encoded chloroplast-targeted protein is hijacked by potyvirids as the scaffold protein to assemble a complex to facilitate viral movement across cells.
Collapse
Affiliation(s)
- Li Qin
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongjun Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Peilan Liu
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Lu Jiang
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Cheng
- College of Plant Protection/Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region of Chinese Education Ministry, Northeast Agricultural University, Harbin, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wentao Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wenping Qiu
- Center for Grapevine Biotechnology, William H. Darr College of Agriculture, Missouri State University, Mountain Grove, United States of America
| | - Zhaoji Dai
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Hongguang Cui
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education) and School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| |
Collapse
|
10
|
Xue M, Arvy N, German‐Retana S. The mystery remains: How do potyviruses move within and between cells? MOLECULAR PLANT PATHOLOGY 2023; 24:1560-1574. [PMID: 37571979 PMCID: PMC10632792 DOI: 10.1111/mpp.13383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
The genus Potyvirus is considered as the largest among plant single-stranded (positive-sense) RNA viruses, causing considerable economic damage to vegetable and fruit crops worldwide. Through the coordinated action of four viral proteins and a few identified host factors, potyviruses exploit the endomembrane system of infected cells for their replication and for their intra- and intercellular movement to and through plasmodesmata (PDs). Although a significant amount of data concerning potyvirus movement has been published, no synthetic review compiling and integrating all information relevant to our current understanding of potyvirus transport is available. In this review, we highlight the complexity of potyvirus movement pathways and present three potential nonexclusive mechanisms based on (1) the use of the host endomembrane system to produce membranous replication vesicles that are targeted to PDs and move from cell to cell, (2) the movement of extracellular viral vesicles in the apoplasm, and (3) the transport of virion particles or ribonucleoprotein complexes through PDs. We also present and discuss experimental data supporting these different models as well as the aspects that still remain mostly speculative.
Collapse
Affiliation(s)
- Mingshuo Xue
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Nathalie Arvy
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| | - Sylvie German‐Retana
- Univ. Bordeaux, INRAE, UMR 1332 Biologie du fruit et PathologieVillenave d'Ornon CedexFrance
| |
Collapse
|
11
|
Song Z, Seo EY, Hu WX, Kim JK, Kang JS, Lee SE, Hammond J, Lim HS. Evaluation of a Series of Turnip Mosaic Virus Chimeric Clones Reveals Two Amino Acid Sites Critical for Systemic Infection in Chinese Cabbage. PHYTOPATHOLOGY 2023; 113:2006-2013. [PMID: 37260102 DOI: 10.1094/phyto-01-23-0013-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Two infectious clones of turnip mosaic virus (TuMV), pKBC-1 and pKBC-8, with differential infectivity in Chinese cabbage (Brassica rapa subsp. pekinensis), were obtained. Both infected Nicotiana benthamiana systemically, inducing similar symptoms, whereas only virus KBC-8 infected Chinese cabbage systemically. To identify the determinants affecting infectivity on Chinese cabbage, chimeric clones were constructed by restriction fragment exchange between the parental clones and tested on several Chinese cabbage cultivars. Chimeric clones p1N8C and p8N1C demonstrated that the C-terminal portion of the polyprotein determines systemic infection of Chinese cabbage despite only three amino acid differences in this region, in the cylindrical inclusion (CI), viral protein genome-linked (VPg), and coat protein (CP). A second pair of hybrid constructs, pHindIII-1N8C and pHindIII-8N1C, failed to infect cultivars CR Victory and Jinseonnorang systemically, yet pHindIII-1N8C caused hypersensitive response-like lesions on inoculated leaves of these cultivars, and could systemically infect cultivars CR Chusarang and Jeongsang; this suggests that R genes effective against TuMV may exist in the first two cultivars but not the latter two. Constructs with single amino acid changes in both VPg (K2045E) and CP (Y3095H) failed to infect Chinese cabbage, implying that at least one of these two amino acid substitutions is essential for successful infection on Chinese cabbage. Successful infection by mutant KBC-8-CP-H and delayed infection with mutant HJY1-VPg-E following mutation or reversion suggested that VPg (2045K) is the residue required for infection of Chinese cabbage and involved in the interaction between VPg and eukaryotic initiation factor eIF(iso)4E, confirmed by yeast two-hybrid assay.
Collapse
Affiliation(s)
- Zhengxing Song
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eun-Young Seo
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Wen-Xing Hu
- College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Jung-Kyu Kim
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jun-Seong Kang
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Seung-Eun Lee
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - John Hammond
- U.S. Department of Agriculture-Agricultural Research Service, U.S. National Arboretum, Floral and Nursery Plants Research Unit, Beltsville, MD 20705
| | - Hyoun-Sub Lim
- Department of Smart Agriculture Systems, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
- Department of Applied Biology, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
12
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Jovanović I, Frantová N, Zouhar J. A sword or a buffet: plant endomembrane system in viral infections. FRONTIERS IN PLANT SCIENCE 2023; 14:1226498. [PMID: 37636115 PMCID: PMC10453817 DOI: 10.3389/fpls.2023.1226498] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023]
Abstract
The plant endomembrane system is an elaborate collection of membrane-bound compartments that perform distinct tasks in plant growth and development, and in responses to abiotic and biotic stresses. Most plant viruses are positive-strand RNA viruses that remodel the host endomembrane system to establish intricate replication compartments. Their fundamental role is to create optimal conditions for viral replication, and to protect replication complexes and the cell-to-cell movement machinery from host defenses. In addition to the intracellular antiviral defense, represented mainly by RNA interference and effector-triggered immunity, recent findings indicate that plant antiviral immunity also includes membrane-localized receptor-like kinases that detect viral molecular patterns and trigger immune responses, which are similar to those observed for bacterial and fungal pathogens. Another recently identified part of plant antiviral defenses is executed by selective autophagy that mediates a specific degradation of viral proteins, resulting in an infection arrest. In a perpetual tug-of-war, certain host autophagy components may be exploited by viral proteins to support or protect an effective viral replication. In this review, we present recent advances in the understanding of the molecular interplay between viral components and plant endomembrane-associated pathways.
Collapse
Affiliation(s)
- Ivana Jovanović
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Nicole Frantová
- Department of Crop Science, Breeding and Plant Medicine, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| | - Jan Zouhar
- Central European Institute of Technology, Faculty of AgriSciences, Mendel University in Brno, Brno, Czechia
| |
Collapse
|
14
|
Wang L, Liu H, Liu P, Wu G, Shen W, Cui H, Dai Z. Cotyledon peeling method for passion fruit protoplasts: a versatile cell system for transient gene expression in passion fruit (Passiflora edulis). FRONTIERS IN PLANT SCIENCE 2023; 14:1236838. [PMID: 37636087 PMCID: PMC10449601 DOI: 10.3389/fpls.2023.1236838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023]
Abstract
Passion fruit (Passiflora edulis) is a perennial evergreen vine that grows mainly in tropical and subtropical regions due to its nutritional, medicinal and ornamental values. However, the molecular biology study of passion fruit is extremely hindered by the lack of an easy and efficient method for transformation. The protoplast transformation system plays a vital role in plant regeneration, gene function analysis and genome editing. Here, we present a new method ('Cotyledon Peeling Method') for simple and efficient passion fruit protoplast isolation using cotyledon as the source tissue. A high yield (2.3 × 107 protoplasts per gram of fresh tissues) and viability (76%) of protoplasts were obtained upon incubation in the enzyme solution [1% (w/v) cellulase R10, 0.25% (w/v) macerozyme R10, 0.4 M mannitol, 10 mM CaCl2, 20 mM KCl, 20 mM MES and 0.1% (w/v) BSA, pH 5.7] for 2 hours. In addition, we achieved high transfection efficiency of 83% via the polyethylene glycol (PEG)-mediated transformation with a green fluorescent protein (GFP)-tagged plasmid upon optimization. The crucial factors affecting transformation efficiency were optimized as follows: 3 μg of plasmid DNA, 5 min transfection time, PEG concentration at 40% and protoplast density of 100 × 104 cells/ml. Furthermore, the established protoplast system was successfully applied for subcellular localization analysis of multiple fluorescent organelle markers and protein-protein interaction study. Taken together, we report a simple and efficient passion fruit protoplast isolation and transformation system, and demonstrate its usage in transient gene expression for the first time in passion fruit. The protoplast system would provide essential support for various passion fruit biology studies, including genome editing, gene function analysis and whole plant regeneration.
Collapse
Affiliation(s)
- Linxi Wang
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Haobin Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Peilan Liu
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
| | - Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Wentao Shen
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou & Sanya, Hainan, China
| | - Hongguang Cui
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| | - Zhaoji Dai
- Sanya Nanfan Research Institute, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Ministry of Education), School of Plant Protection, Hainan University, Haikou, Hainan, China
- Collaborative Innovation Center of Nanfan and High-Efficiency Tropical Agriculture, Hainan University, Haikou, Hainan, China
| |
Collapse
|
15
|
Yuan M, Lyu S, Wang Y, E L, Liu T, Hou X, Li Y, Zhang C. Host Factors Genes BcCLC1 and BcCLC2 Confer Turnip Mosaic Virus Resistance in Non-Heading Chinese Cabbage ( Brassica campestris ssp. chinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:2269. [PMID: 37375894 DOI: 10.3390/plants12122269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Clathrin is an evolutionarily highly conserved evolutionary protein consisting of clathrin light chains (CLC) and clathrin heavy chains (CHC), and these form its basic structure. Clathrin is an important host factor in the process of viral infection. In this study, we cloned the BcCLC1 gene and the BcCLC2 gene from the '49CX' variety of non-heading Chinese cabbage (NHCC, Brassica campestris L. ssp. chinensis Makino) and verified their functions. The results showed that BcCLC1 was mainly localized in the cytomembrane and cytoplasm, and only a small amount entered the nucleus. BcCLC2 encoded a protein comprising 265 amino acids that were distributed in the cytomembrane, nucleus, and cytoplasm. A BiFC assay and yeast two-hybrid (Y2H) analysis showed that BcCLCs (BcCLC1 and BcCLC2) could interact with several TuMV proteins. We further investigated the mechanism of BcCLCs in regulating TuMV virus infections in NHCC, and observed that BcCLCs gene silencing inhibited TuMV infections and overexpression of BcCLCs in Arabidopsis promoted TuMV infections in NHCC. Finally, mutants of Arabidopsis homologs of BcCLCs were also screened and subjected to TuMV inoculation tests. In conclusion, we speculate that BcCLCs confer Turnip mosaic virus (TuMV) resistance in NHCC by interacting with TuMV proteins to promote the intracellular transport of the virus.
Collapse
Affiliation(s)
- Mengguo Yuan
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yaolong Wang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Liu E
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
17
|
Shakir S, Zaidi SSEA, Hashemi FSG, Nyirakanani C, Vanderschuren H. Harnessing plant viruses in the metagenomics era: from the development of infectious clones to applications. TRENDS IN PLANT SCIENCE 2023; 28:297-311. [PMID: 36379846 DOI: 10.1016/j.tplants.2022.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Recent metagenomic studies which focused on virus characterization in the entire plant environment have revealed a remarkable viral diversity in plants. The exponential discovery of viruses also requires the concomitant implementation of high-throughput methods to perform their functional characterization. Despite several limitations, the development of viral infectious clones remains a method of choice to understand virus biology, their role in the phytobiome, and plant resilience. Here, we review the latest approaches for efficient characterization of plant viruses and technical advances built on high-throughput sequencing and synthetic biology to streamline assembly of viral infectious clones. We then discuss the applications of plant viral vectors in fundamental and applied plant research as well as their technical and regulatory limitations, and we propose strategies for their safer field applications.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| | - Syed Shan-E-Ali Zaidi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Farahnaz Sadat Golestan Hashemi
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Chantal Nyirakanani
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Department of Crop Science, School of Agriculture, University of Rwanda, Musanze, Rwanda
| | - Hervé Vanderschuren
- Plant Genetics and Rhizosphere Processes Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, Biosystems Department, KU Leuven, Leuven, Belgium.
| |
Collapse
|
18
|
VanderBurgt JT, Harper O, Garnham CP, Kohalmi SE, Menassa R. Plant production of a virus-like particle-based vaccine candidate against porcine reproductive and respiratory syndrome. FRONTIERS IN PLANT SCIENCE 2023; 14:1044675. [PMID: 36760639 PMCID: PMC9902946 DOI: 10.3389/fpls.2023.1044675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a disease leading to spontaneous abortions and stillbirths in sows and lowered life quality and expectancy in growing pigs. PRRS is prevalent worldwide and has significant economic impacts to swine industries around the globe. Co-expression of the two most abundant proteins in the viral envelope, the matrix protein (M) and glycosylated protein 5 (GP5), can produce a neutralizing immune response for the virus providing a potentially effective subunit vaccine against the disease, but these proteins are difficult to express. The goal of this research was to display antigenic portions of the M and GP5 proteins on the surface of tobacco mosaic virus-like particles. A modified tobacco mosaic virus coat protein (TMVc) was transiently expressed in Nicotiana benthamiana leaves and targeted to three subcellular compartments along the secretory pathway to introduce glycosylation patterns important for M-GP5 epitope immunogenicity. We found that accumulation levels in the apoplast were similar to the ER and the vacuole. Because glycans present on plant apoplastic proteins are closest to those present on PRRSV proteins, a TMVc-M-GP5 fusion construct was targeted to the apoplast and accumulated at over 0.5 mg/g of plant fresh weight. TMVc virus-like particles self-assembled in plant cells and surface-displayed the M-GP5 epitope, as visualized by transmission electron microscopy and immunogold localization. These promising findings lay the foundation for immunogenicity and protective-immunity studies in animals to examine the efficacy of this vaccine candidate as a measure to control PRRS.
Collapse
Affiliation(s)
- Jordan T. VanderBurgt
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Ondre Harper
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | - Christopher P. Garnham
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Biochemistry Department, University of Western Ontario, London, ON, Canada
| | | | - Rima Menassa
- Biology Department, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| |
Collapse
|
19
|
Zhang R, Zhang C, Lyu S, Wu H, Yuan M, Fang Z, Li F, Hou X. BcTFIIIA Negatively Regulates Turnip Mosaic Virus Infection through Interaction with Viral CP and VPg Proteins in Pak Choi (Brassica campestris ssp. chinensis). Genes (Basel) 2022; 13:genes13071209. [PMID: 35885992 PMCID: PMC9317785 DOI: 10.3390/genes13071209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
TFIIIA is a zinc-finger transcription factor that is involved in post-transcriptional regulation during development. Here, the BcTFIIIA gene was isolated from pak choi. Sequence analysis showed that BcTFIIIA encodes 383 amino acids (aa) with an open reading frame (ORF) of 1152 base pairs (bp). We investigated the subcellular location of BcTFIIIA and found the localized protein in the nucleus. BcTFIIIA was suppressed when the pak choi was infected by the turnip mosaic virus (TuMV). The BcTFIIIA mRNA expression level in a resistant variety was higher than that in a sensitive variety, as determined by qRT-PCR analysis. Yeast two hybrid (Y2H) assay and bimolecular fluorescence complementation (BiFC) suggested that BcTFIIIA interacts with TuMV CP and VPg in vivo, respectively, and in vitro. A virus-induced gene silencing (VIGS) experiment showed that the silencing of BcTFIIIA gene expression in pak choi promoted the accumulation of TuMV. These results suggest that BcTFIIIA negatively regulates viral infection through the interaction with TuMV CP and VPg.
Collapse
Affiliation(s)
- Rujia Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Shanwu Lyu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Huiyuan Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengguo Yuan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Fang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China; (R.Z.); (C.Z.); (S.L.); (H.W.); (M.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
20
|
Yan ZY, Fang L, Xu XJ, Cheng DJ, Yu CM, Wang DY, Tian YP, Yuan XF, Geng C, Li XD. A Predicted Stem Loop in Coat Protein-Coding Sequence of Tobacco Vein Banding Mosaic Virus Is Required for Efficient Replication. PHYTOPATHOLOGY 2022; 112:441-451. [PMID: 34191551 DOI: 10.1094/phyto-10-20-0463-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Potyviral coat protein (CP) is involved in the replication and movement of potyviruses. However, little information is available on the roles of CP-coding sequence in potyviral infection. Here, we introduced synonymous substitutions to the codon C574G575C576 coding conserved residue arginine at position 192 (R192) of tobacco vein banding mosaic virus (TVBMV) CP. Substitution of the codon C574G575C576 to A574G575A576 or A574G575G576, but not C574G575A576, C574G575T576, or C574G575G576, reduced the replication, cell-to-cell movement, and accumulation of TVBMV in Nicotiana benthamiana plants, suggesting that C574 was critical for replication of TVBMV. Nucleotides 531 to 576 of the TVBMV CP-coding sequence were predicted to form a stem-loop structure, in which four consecutive C-G base pairs (C576-G531, C532-G575, C574-G533, and C534-G573) were located at the stem. Synonymous substitutions of R178-codon C532G533C534 to A532G533A534 and A532G533G534, but not C532G533A534, C532G533T534, or C532G533G534, reduced the replication levels, cell-to-cell, and systemic movement of TVBMV, suggesting that C532 was critical for TVBMV replication. Synonymous substitutions disrupting base pairs C576-G531 and C534-G573 did not affect viral accumulation. After three serial-passage inoculations, the accumulation of spontaneous mutant viruses was restored, and codons A532G533A534, A532G533G534, A574G575A576, or A574G575G576 of mutants were each separately changed to C532G533A534, C532G533G534, C574G575A576, or C574G575G576. Synonymous mutation of R178 and R192 also reduced viral accumulation in N. tabacum plants. Therefore, we concluded that the two consecutive C532-G575 and C574-G533 base pairs played critical roles in TVBMV replication via maintaining the stability of the stem-loop structures formed by nucleotides 531 to 576 of the CP-coding sequence.
Collapse
Affiliation(s)
- Zhi-Yong Yan
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Le Fang
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiao-Jie Xu
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - De-Jie Cheng
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Cheng-Ming Yu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - De-Ya Wang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Yan-Ping Tian
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Xue-Feng Yuan
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Chao Geng
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| | - Xiang-Dong Li
- Laboratory of Plant Virology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
- Shandong Provincial Key Laboratory of Agricultural Microbiology, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
21
|
Abstract
Protoplasts are the naked plant cells lacking the rigid cell wall and have been broadly utilized as an excellent tool to study the molecular virus-plant interactions, particularly at the early stages of the infection process, such as virion disassembly, viral genome translation, intracellular trafficking, and virus replication. Compared to the use of whole plants, the protoplast system has several major advantages in plant virology research, including homogeneous cell populations, high percentage of infected cells, synchronous infection, effects free from other cells/tissues, and ease of extraction of the viral RNA. This chapter describes a simple, streamlined, and efficient protocol for isolation and purification of mesophyll protoplasts from the model plants Arabidopsis thaliana and Nicotiana benthamiana, and subsequent transfection of the isolated protoplasts with a potyvirus infectious clone.
Collapse
Affiliation(s)
- Zhaoji Dai
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
| |
Collapse
|
22
|
Dai Z, Wang A. Monitoring Virus Intercellular Movement from Primary Infected Cells to Neighboring Cells in Plants. Methods Mol Biol 2022; 2400:63-73. [PMID: 34905191 DOI: 10.1007/978-1-0716-1835-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Viral cell-to-cell movement from the primary infected cells to neighboring cells is an essential step for viruses to establish systemic infection in plants. The classic experimental design for studying this process involves the application of a reporter protein such as β-glucuronidase (GUS), green fluorescent protein (GFP), or monomeric red fluorescent protein (mRFP or mCherry). However, such experimental settings are unable to unambiguously distinguish primary and secondary infected cells. In recent years, we have developed several double-labeling potyvirus infectious clones. Upon introduction of such vectors into plant leaf tissues, primary infected cells emit dual fluorescence (green and red) whereas secondary infected cells emit only green fluorescence. In this chapter, we provide detailed protocols on (1) construction of a GFP and mCherry-tagged turnip mosaic virus infectious clone, (2) delivery of the recombinant viral clones into plant cells by agroinfiltration, (3) confocal imaging of viral cell-to-cell movement, and (4) analysis of viral systemic infection. Using this dual-color imaging system, we have revealed coat protein (CP) is essential for TuMV cell-to-cell movement. This system provides a valuable and robust tool to study plant virus cell-to-cell movement.
Collapse
Affiliation(s)
- Zhaoji Dai
- Department of Biology, University of Western Ontario, London, ON, Canada
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Aiming Wang
- Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
23
|
Wu G, Jia Z, Ding K, Zheng H, Lu Y, Lin L, Peng J, Rao S, Wang A, Chen J, Yan F. Turnip mosaic virus co-opts the vacuolar sorting receptor VSR4 to promote viral genome replication in plants by targeting viral replication vesicles to the endosome. PLoS Pathog 2022; 18:e1010257. [PMID: 35073383 PMCID: PMC8812904 DOI: 10.1371/journal.ppat.1010257] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/03/2022] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection. A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host endomembrane system to produce a membranous replication organelle. Recent reports suggest that the late endosome (LE) serves as a replication site for the potyvirus Turnip mosaic virus (TuMV), but the mechanism(s) by which TuMV replication vesicles target LE are far from being fully elucidated. Identification of the host factors involved in this transport process could lead to new strategies to combat TuMV infection. In this report, we provide evidence that TuMV replication depends on functional vesicle transport from cis-Golgi to the enlarged LE pathway that is mediated by a specific VSR family member, VSR4, from Arabidopsis. Knock out of VSR4 impaired the targeting of TuMV replication vesicles to enlarged LE and suppressed viral infection, and this process depends on the specific interaction between VSR4 and the viral replication vesicle-forming protein 6K2. We also showed that N-glycosylation of VSR4 modulates the targeting of TuMV replication vesicles to enlarged LE and enhances viral infection, thus contributing to our understanding of how TuMV manipulates host factors in order to establish optimal infection. These results may have implications for the role of VSR in other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Guanwei Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Zhaoxing Jia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Kaida Ding
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hongying Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuwen Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Lin Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiejun Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Shaofei Rao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario, Canada
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JC); (FY)
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- * E-mail: (JC); (FY)
| |
Collapse
|
24
|
Simkovich AJ, Li Y, Kohalmi SE, Griffiths JS, Wang A. Molecular Identification of Prune Dwarf Virus (PDV) Infecting Sweet Cherry in Canada and Development of a PDV Full-Length Infectious cDNA Clone. Viruses 2021; 13:2025. [PMID: 34696454 PMCID: PMC8541084 DOI: 10.3390/v13102025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 01/06/2023] Open
Abstract
Prune dwarf virus (PDV) is a member of ilarviruses that infects stone fruit species such as cherry, plum and peach, and ornamentally grown trees worldwide. The virus lacks an RNA silencing suppressor. Infection by PDV either alone, or its mixed infection with other viruses causes deteriorated fruit marketability and reduced fruit yields. Here, we report the molecular identification of PDV from sweet cherry in the prominent fruit growing region of Ontario, Canada known as the Niagara fruit belt using next generation sequencing of small interfering RNAs (siRNAs). We assessed its incidence in an experimental farm and determined the full genome sequence of this PDV isolate. We further constructed an infectious cDNA clone. Inoculation of the natural host cherry with this clone induced a dwarfing phenotype. We also examined its infectivity on several common experimental hosts. We found that it was infectious on cucurbits (cucumber and squash) with clear symptoms and Nicotiana benthamiana without causing noticeable symptoms, and it was unable to infect Arabidopsis thaliana. As generating infectious clones for woody plants is very challenging with limited success, the PDV infectious clone developed from this study will be a useful tool to facilitate molecular studies on PDV and related Prunus-infecting viruses.
Collapse
Affiliation(s)
- Aaron J. Simkovich
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
| | - Susanne E. Kohalmi
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| | - Jonathan S. Griffiths
- London Research and Development Centre, Agriculture and Agri-Food Canada, 4902 Victoria Ave N, Vineland Station, ON L0R 2E0, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada; (A.J.S.); (Y.L.)
- Department of Biology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada;
| |
Collapse
|
25
|
Pepper Mottle Virus and Its Host Interactions: Current State of Knowledge. Viruses 2021; 13:v13101930. [PMID: 34696360 PMCID: PMC8539092 DOI: 10.3390/v13101930] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 01/08/2023] Open
Abstract
Pepper mottle virus (PepMoV) is a destructive pathogen that infects various solanaceous plants, including pepper, bell pepper, potato, and tomato. In this review, we summarize what is known about the molecular characteristics of PepMoV and its interactions with host plants. Comparisons of symptom variations caused by PepMoV isolates in plant hosts indicates a possible relationship between symptom development and genetic variation. Researchers have investigated the PepMoV–plant pathosystem to identify effective and durable genes that confer resistance to the pathogen. As a result, several recessive pvr or dominant Pvr resistance genes that confer resistance to PepMoV in pepper have been characterized. On the other hand, the molecular mechanisms underlying the interaction between these resistance genes and PepMoV-encoded genes remain largely unknown. Our understanding of the molecular interactions between PepMoV and host plants should be increased by reverse genetic approaches and comprehensive transcriptomic analyses of both the virus and the host genes.
Collapse
|
26
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
27
|
Yan ZY, Xu XJ, Fang L, Cheng DJ, Tian YP, Geng C, Li XD, Valkonen JPT. Residues R 192 and K 225 in RNA-Binding Pocket of Tobacco Vein Banding Mosaic Virus CP Control Virus Cell-to-Cell Movement and Replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:658-668. [PMID: 33534601 DOI: 10.1094/mpmi-09-20-0265-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses move to neighboring cells in the form of virus particles or a coat protein (CP)-containing ribonucleoprotein complex. However, the precise roles of RNA-binding residues in potyviral CP in viral cell-to-cell movement remain to be elucidated. In this study, we predicted the three-dimensional model of tobacco vein banding mosaic virus (TVBMV)-encoded CP and found nine residues presumably located in the CP RNA-binding pocket. Substitutions of the two basic residues at positions 192 and 225 (R192 and K225) with either alanine, cysteine, or glutamic acid abolished TVBMV cell-to-cell and systemic movement in Nicotiana benthamiana plants. These substitutions also reduced the replication of the mutant viruses. Results from the electrophoretic mobility shift assay showed that the RNA-binding activity of mutant CPs derived from R192 or K225 substitutions was significantly lower than that of wild-type CP. Analysis of purified virus particles showed that mutant viruses with R192 or K225 substitutions formed RNA-free virus-like particles. Mutations of R192 and K225 did not change the CP plasmodesmata localization. The wild-type TVBMV CP could rescue the deficient cell-to-cell movement of mutant viruses. Moreover, deletion of any of the other seven residues also abolished TVBMV cell-to-cell movement and reduced the CP RNA-binding activity. The corresponding nine residues in watermelon mosaic virus CP were also found to play essential roles in virus cell-to-cell movement. In conclusion, residues R192 and K225 in the CP RNA-binding pocket are critical for viral RNA binding and affect both virus replication and cell-to-cell movement.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Zhi-Yong Yan
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiao-Jie Xu
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Le Fang
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - De-Jie Cheng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yan-Ping Tian
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Chao Geng
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Xiang-Dong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Jari P T Valkonen
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, Helsinki 00014, Finland
| |
Collapse
|
28
|
Wang A. Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Curr Opin Virol 2021; 48:10-16. [PMID: 33784579 DOI: 10.1016/j.coviro.2021.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 01/18/2023]
Abstract
Plant viruses have evolved efficient mechanisms to move cell-to-cell through plasmodesmata (PD) for systemic infection. Potyviruses including many economically important viruses constitute the largest group of known plant-infecting RNA viruses. Potyviral intercellular movement is accomplished by the coordinated action of at least three viral proteins and diverse host components. It requires the viral coat protein and is interlinked with active virus replication that generates, through RNA-polymerase slippage, a small percentage of frameshift viral RNA for the production of another essential movement protein named P3N-PIPO. This PD-located protein targets the virus-encoded cylindrical inclusion protein to PD to form special conical structures for potyviral passage, possibly in the form of virion. Here, I highlight and discuss major advances of potyviral intercellular trafficking.
Collapse
Affiliation(s)
- Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ontario, N5V 4T3, Canada.
| |
Collapse
|
29
|
Kumar G, Dasgupta I. Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 2021; 9:microorganisms9040695. [PMID: 33801711 PMCID: PMC8066623 DOI: 10.3390/microorganisms9040695] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.
Collapse
|
30
|
A Newly Identified Virus in the Family Potyviridae Encodes Two Leader Cysteine Proteases in Tandem That Evolved Contrasting RNA Silencing Suppression Functions. J Virol 2020; 95:JVI.01414-20. [PMID: 33055249 DOI: 10.1128/jvi.01414-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Potyviridae is the largest family of plant-infecting RNA viruses and includes many agriculturally and economically important viral pathogens. The viruses in the family, known as potyvirids, possess single-stranded, positive-sense RNA genomes with polyprotein processing as a gene expression strategy. The N-terminal regions of potyvirid polyproteins vary greatly in sequence. Previously, we identified a novel virus species within the family, Areca palm necrotic spindle-spot virus (ANSSV), which was predicted to encode two cysteine proteases, HCPro1 and HCPro2, in tandem at the N-terminal region. Here, we present evidence showing self-cleavage activity of these two proteins and define their cis-cleavage sites. We demonstrate that HCPro2 is a viral suppressor of RNA silencing (VSR), and both the variable N-terminal and conserved C-terminal (protease domain) moieties have antisilencing activity. Intriguingly, the N-terminal region of HCPro1 also has RNA silencing suppression activity, which is, however, suppressed by its C-terminal protease domain, leading to the functional divergence of HCPro1 and HCPro2 in RNA silencing suppression. Moreover, the deletion of HCPro1 or HCPro2 in a newly created infectious clone abolishes viral infection, and the deletion mutants cannot be rescued by addition of corresponding counterparts of a potyvirus. Altogether, these data suggest that the two closely related leader proteases of ANSSV have evolved differential and essential functions to concertedly maintain viral viability.IMPORTANCE The Potyviridae represent the largest group of known plant RNA viruses and account for more than half of the viral crop damage worldwide. The leader proteases of viruses within the family vary greatly in size and arrangement and play key roles during the infection. Here, we experimentally demonstrate the presence of a distinct pattern of leader proteases, HCPro1 and HCPro2 in tandem, in a newly identified member within the family. Moreover, HCPro1 and HCPro2, which are closely related and typically characterized with a short size, have evolved contrasting RNA silencing suppression activity and seem to function in a coordinated manner to maintain viral infectivity. Altogether, the new knowledge fills a missing piece in the evolutionary relationship history of potyvirids and improves our understanding of the diversification of potyvirid genomes.
Collapse
|
31
|
Martínez-Turiño S, García JA. Potyviral coat protein and genomic RNA: A striking partnership leading virion assembly and more. Adv Virus Res 2020; 108:165-211. [PMID: 33837716 DOI: 10.1016/bs.aivir.2020.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Potyvirus genus clusters a significant and expanding number of widely distributed plant viruses, responsible for large losses impacting most crops of economic interest. The potyviral genome is a single-stranded, linear, positive-sense RNA of around 10kb that is encapsidated in flexuous rod-shaped filaments, mostly made up of a helically arranged coat protein (CP). Beyond its structural role of protecting the viral genome, the potyviral CP is a multitasking protein intervening in practically all steps of the virus life cycle. In particular, interactions between the CP and the viral RNA must be tightly controlled to allow the correct assignment of the RNA to each of its functions through the infection process. This review attempts to bring together the most relevant available information regarding the architecture and modus operandi of potyviral CP and virus particles, highlighting significant discoveries, but also substantial gaps in the existing knowledge on mechanisms orchestrating virion assembly and disassembly. Biotechnological applications based on potyvirus nanoparticles is another important topic addressed here.
Collapse
|