1
|
Chen C, Liu G, Xu K, Chen A, Cheng Z, Yan X, Zhang T, Sun Y, Yu T, Wang J, Luo S, Zhou W, Deng S, Liu Y, Yang Y. ATG9 inhibits Rickettsia binding to the host cell surface by blocking the rOmpB-XRCC6/KU70 interaction. Autophagy 2025:1-17. [PMID: 40259479 DOI: 10.1080/15548627.2025.2496363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/12/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025] Open
Abstract
ickettsiae are tick-borne pathogens that infect human hosts through poorly characterized mechanisms. Herein, we report that ATG9 (autophagy related 9) plays a previously unrecognized role in inhibiting Rickettsia binding to the host cell surface. Unexpectedly, this new function of ATG9 is likely independent of macroautophagy/autophagy. Instead, ATG9 acts as a host defending factor by binding to XRCC6/KU70, a receptor of the Rickettsia outer-membrane protein rOmpB. Both ATG9 and rOmpB bind to the DNA-binding domain of XRCC6, suggesting a competitive role for ATG9 occupying the binding site of rOmpB to abrogate Rickettsia binding. Furthermore, we show that rapamycin transcriptionally activates ATG9 and inhibits rOmpB-mediated infection in a mouse model. Collectively, our study reveals a novel innate mechanism regulating Rickettsia infection and suggests that agonists of ATG9 May be useful for developing therapeutic strategies for the intervention of rickettsial diseases.Abbreviation: APEX2: apurinic/apyrimidinic endodeoxyribonuclease 2; ATG: autophagy related; BafA1: bafilomycin A1; CQ: chloroquine; E. coli: Escherichia coli; GST: glutathione S-transferase; ICM: immunofluorescence confocal microscopy; IP-Mass: immunoprecipitation-mass spectrometry; KD: knockdown; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; rOmpB: rickettsial outer membrane protein B; SAP: SAF-A/B, Acinus, and PIAS; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; TFEB: transcription factor EB; VWA: von Willebrand factor A; XRCC6/KU70: X-ray repair cross complementing 6.
Collapse
Affiliation(s)
- Chen Chen
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Guoxu Liu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Kehan Xu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Aibao Chen
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| | - Ziyang Cheng
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xueping Yan
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ting Zhang
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, USA
| | - Yan Sun
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Tian Yu
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiayao Wang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shuangshuang Luo
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Weiting Zhou
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Shengqun Deng
- Department of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yan Liu
- Department of Microbiology, Anhui Province Key Laboratory of Zoonoses, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Yanan Yang
- Research Center for Immunological Diseases, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- Department of Cell Biology, School of Life Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Richardson EA, Garshong R, Chen K, Crossley D, Mclean BS, Wasserberg G, Apperson CS, Roe RM, Ponnusamy L. Orientia, Rickettsia, and the microbiome in rodent attached chiggers in North Carolina, USA. PLoS One 2024; 19:e0311698. [PMID: 39637059 PMCID: PMC11620566 DOI: 10.1371/journal.pone.0311698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/23/2024] [Indexed: 12/07/2024] Open
Abstract
Chiggers are larval mites that pose a significant health risk globally via the spread of scrub typhus. However, fundamental studies into the bacterial microbiome in North America have never been considered. In this investigation, chiggers were collected in the wild from two locally common rodent host species (i.e., Sigmodon hispidus and Peromyscus leucopus) in three different ecoregions of North Carolina (NC), United States to investigate the composition of their bacterial communities, including potential pathogens. DNA was extracted from the chiggers, and the V3-V4 regions of the bacterial 16S rRNA gene were sequenced using next-generation sequencing (NGS). Alpha diversity metrics revealed significant differences in bacterial diversity among different collection counties. Beta diversity metrics also revealed that bacterial communities across counties were significantly different, suggesting changes in the microbiome as the environment changed. Specifically, we saw that the two western NC collection counties had similar bacterial composition as did the two eastern collection counties. In addition, we found that the chigger microbiome bacterial diversity and composition differed between rodent host species. The 16S rRNA sequence reads were assigned to 64 phyla, 106 orders, 199 families, and 359 genera. The major bacterial phylum was Actinobacteria. The most abundant species were in the genera Corynebacterium, Propionibacterium, class ZB2, and Methylobacterium. Sequences derived from potential pathogens within the genera Orientia and Rickettsia were also detected. Our findings provide the first insights into the ecology of chigger microbiomes in the US. Further research is required to determine if the potential pathogens found detected in chiggers are a threat to humans and wildlife.
Collapse
Affiliation(s)
- Elise A. Richardson
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Reuben Garshong
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Kaiying Chen
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Dac Crossley
- Georgia Museum of Natural History, Natural History Building, University of Georgia, Athens, Georgia, United States of America
| | - Bryan S. Mclean
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Gideon Wasserberg
- Department of Biology, University of North Carolina at Greensboro, Greensboro, North Carolina, United States of America
| | - Charles S. Apperson
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
3
|
Jitvaropas R, Sawaswong V, Poovorawan Y, Auysawasdi N, Vuthitanachot V, Wongwairot S, Rodkvamtook W, Lindroth E, Payungporn S, Linsuwanon P. Identification of Bacteria and Viruses Associated with Patients with Acute Febrile Illness in Khon Kaen Province, Thailand. Viruses 2024; 16:630. [PMID: 38675971 PMCID: PMC11054472 DOI: 10.3390/v16040630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
The majority of cases of undifferentiated acute febrile illness (AFI) in the tropics have an undefined etiology. In Thailand, AFI accounts for two-thirds of illnesses reported to the Ministry of Public Health. To characterize the bacterial and viral causes of these AFIs, we conducted molecular pathogen screening and serological analyses in patients who sought treatment in Chum Phae Hospital, Khon Kaen province, during the period from 2015 to 2016. Through integrated approaches, we successfully identified the etiology in 25.5% of cases, with dengue virus infection being the most common cause, noted in 17% of the study population, followed by scrub typhus in 3.8% and rickettsioses in 6.8%. Further investigations targeting viruses in patients revealed the presence of Guadeloupe mosquito virus (GMV) in four patients without other pathogen co-infections. The characterization of four complete genome sequences of GMV amplified from AFI patients showed a 93-97% nucleotide sequence identity with GMV previously reported in mosquitoes. Nucleotide substitutions resulted in amino acid differences between GMV amplified from AFI patients and mosquitoes, observed in 37 positions. However, these changes had undergone purifying selection pressure and potentially had a minimal impact on protein function. Our study suggests that the GMV strains identified in the AFI patients are relatively similar to those previously reported in mosquitoes, highlighting their potential role associated with febrile illness.
Collapse
Affiliation(s)
- Rungrat Jitvaropas
- Division of Biochemistry, Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathum Thani 12120, Thailand;
| | - Vorthon Sawaswong
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nutthanun Auysawasdi
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| | | | - Sirima Wongwairot
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| | - Wuttikon Rodkvamtook
- Analytic Division, Royal Thai Army Component-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand;
| | - Erica Lindroth
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| | - Sunchai Payungporn
- Center of Excellence in Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Piyada Linsuwanon
- Department of Entomology, US Medical Directorate-Armed Forces Research Institute of Medical Science, Bangkok 10400, Thailand; (N.A.); (S.W.); (E.L.)
| |
Collapse
|
4
|
Alkathiry HA, Alghamdi SQ, Sinha A, Margos G, Stekolnikov AA, Alagaili AN, Darby AC, Makepeace BL, Khoo JJ. Microbiome and mitogenomics of the chigger mite Pentidionis agamae: potential role as an Orientia vector and associations with divergent clades of Wolbachia and Borrelia. BMC Genomics 2024; 25:380. [PMID: 38632506 PMCID: PMC11025265 DOI: 10.1186/s12864-024-10301-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Trombiculid mites are globally distributed, highly diverse arachnids that largely lack molecular resources such as whole mitogenomes for the elucidation of taxonomic relationships. Trombiculid larvae (chiggers) parasitise vertebrates and can transmit bacteria (Orientia spp.) responsible for scrub typhus, a zoonotic febrile illness. Orientia tsutsugamushi causes most cases of scrub typhus and is endemic to the Asia-Pacific Region, where it is transmitted by Leptotrombidium spp. chiggers. However, in Dubai, Candidatus Orientia chuto was isolated from a case of scrub typhus and is also known to circulate among rodents in Saudi Arabia and Kenya, although its vectors remain poorly defined. In addition to Orientia, chiggers are often infected with other potential pathogens or arthropod-specific endosymbionts, but their significance for trombiculid biology and public health is unclear. RESULTS Ten chigger species were collected from rodents in southwestern Saudi Arabia. Chiggers were pooled according to species and screened for Orientia DNA by PCR. Two species (Microtrombicula muhaylensis and Pentidionis agamae) produced positive results for the htrA gene, although Ca. Orientia chuto DNA was confirmed by Sanger sequencing only in P. agamae. Metagenomic sequencing of three pools of P. agamae provided evidence for two other bacterial associates: a spirochaete and a Wolbachia symbiont. Phylogenetic analysis of 16S rRNA and multi-locus sequence typing genes placed the spirochaete in a clade of micromammal-associated Borrelia spp. that are widely-distributed globally with no known vector. For the Wolbachia symbiont, a genome assembly was obtained that allowed phylogenetic localisation in a novel, divergent clade. Cytochrome c oxidase I (COI) barcodes for Saudi Arabian chiggers enabled comparisons with global chigger diversity, revealing several cases of discordance with classical taxonomy. Complete mitogenome assemblies were obtained for the three P. agamae pools and almost 50 SNPs were identified, despite a common geographic origin. CONCLUSIONS P. agamae was identified as a potential vector of Ca. Orientia chuto on the Arabian Peninsula. The detection of an unusual Borrelia sp. and a divergent Wolbachia symbiont in P. agamae indicated links with chigger microbiomes in other parts of the world, while COI barcoding and mitogenomic analyses greatly extended our understanding of inter- and intraspecific relationships in trombiculid mites.
Collapse
Affiliation(s)
- Hadil A Alkathiry
- Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Samia Q Alghamdi
- Department of Biology, Faculty of Science, Al-Baha University, P.O.Box1988, Al-Baha, 65799, Saudi Arabia
| | - Amit Sinha
- New England Biolabs, Ipswich, Massachusetts, 01938, USA
| | - Gabriele Margos
- National Reference Centre for Borrelia, Bavarian Health and Food Safety Authority, Veterinärstr. 2, Oberschleissheim, 85764, Germany
| | - Alexandr A Stekolnikov
- Laboratory of Parasitic Arthropods, Zoological Institute of the Russian Academy of Sciences, Universitetskaya embankment 1, St. Petersburg, 199034, Russia
| | | | - Alistair C Darby
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK
| | - Jing Jing Khoo
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|
5
|
Chaisiri K, Linsuwanon P, Makepeace BL. The chigger microbiome: big questions in a tiny world. Trends Parasitol 2023; 39:696-707. [PMID: 37270375 DOI: 10.1016/j.pt.2023.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/05/2023]
Abstract
'Chiggers' (trombiculid mite larvae) are best known as vectors of rickettsial pathogens, Orientia spp., which cause a zoonosis, scrub typhus. However, several other pathogens (e.g., Hantaan orthohantavirus, Dabie bandavirus, Anaplasma spp., Bartonella spp., Borrelia spp., and Rickettsia spp.) and bacterial symbionts (e.g., Cardinium, Rickettsiella, and Wolbachia) are being reported from chiggers with increasing frequency. Here, we explore the surprisingly diverse chigger microbiota and potential interactions within this microcosm. Key conclusions include a possible role for chiggers as vectors of viral diseases; the dominance in some chigger populations of unidentified symbionts in several bacterial families; and increasing evidence for vertical transmission of potential pathogens and symbiotic bacteria in chiggers, suggesting intimate interactions and not simply incidental acquisition of bacteria from the environment or host.
Collapse
Affiliation(s)
- Kittipong Chaisiri
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Ratchathewi, Bangkok 10400, Thailand
| | - Piyada Linsuwanon
- Department of Entomology, US Army Medical Component, Armed Forces Research Institute of Medical Sciences, Ratchathewi, Bangkok 10400, Thailand
| | - Benjamin L Makepeace
- Institute of Infection, Veterinary & Ecological Sciences, University of Liverpool, Liverpool L3 5RF, UK.
| |
Collapse
|
6
|
Chen K, Roe RM, Ponnusamy L. Biology, Systematics, Microbiome, Pathogen Transmission and Control of Chiggers (Acari: Trombiculidae, Leeuwenhoekiidae) with Emphasis on the United States. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15147. [PMID: 36429867 PMCID: PMC9690316 DOI: 10.3390/ijerph192215147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/26/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Chiggers are the larval stage of Trombiculidae and Leeuwenhoekiidae mites of medical and veterinary importance. Some species in the genus Leptotrombidium and Herpetacarus vector Orientia species, the bacteria that causes scrub typhus disease in humans. Scrub typhus is a life-threatening, febrile disease. Chigger bites can also cause dermatitis. There were 248 chigger species reported from the US from almost every state. However, there are large gaps in our knowledge of the life history of other stages of development. North American wide morphological keys are needed for better species identification, and molecular sequence data for identification are minimal and not clearly matched with morphological data. The role of chiggers in disease transmission in the US is especially understudied, and the role of endosymbionts in Orientia infection are suggested in the scientific literature but not confirmed. The most common chiggers in the eastern United States were identified as Eutrombicula alfreddugesi but were likely misidentified and should be replaced with Eutrombicula cinnabaris. Scrub typhus was originally believed to be limited to the Tsutsugamushi Triangle and the chigger genus, Leptotrombidium, but there is increasing evidence this is not the case. The potential of Orientia species establishing in the US is high. In addition, several other recognized pathogens to infect humans, namely Hantavirus, Bartonella, Borrelia, and Rickettsia, were also detected in chiggers. The role that chiggers play in these disease transmissions in the US needs further investigation. It is possible some of the tick-borne diseases and red meat allergies are caused by chiggers.
Collapse
Affiliation(s)
- Kaiying Chen
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| | - Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
Moniuszko H, Wojnarowski K, Cholewińska P. Not Only Leptotrombidium spp. an Annotated Checklist of Chigger Mites (Actinotrichida: Trombiculidae) Associated with Bacterial Pathogens. Pathogens 2022; 11:1084. [PMID: 36297141 PMCID: PMC9611227 DOI: 10.3390/pathogens11101084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
Abstract
Mites of the family Trombiculidae are known for playing a role in maintaining and spreading the scrub typhus etiologic agent, an intracellular Gram-negative bacterium, Orientia tsutsugamushi. Species of the genus Leptotrombidium are investigated most thoroughly, particularly in SE Asia, and a few are proven vectors for the pathogen. The mentioned association, however, is not the only one among trombiculids. Here, we present a list of chiggers indicated in the literature as positive for bacterial pathogens, tested throughout almost 100 years of research. Taxonomic identities of trombiculids follow recent revisions and checklists. Results point at 100 species, from 28 genera, evidenced for association with 31 bacterial taxa. Pathogen-positive mites constitute around 3.3% of the total number of species comprising the family. Discussed arachnids inhabit six biogeographic realms and represent free-living instars as well as external and internal parasites of rodents, soricomorphs, scadents, lagomorphs, peramelemorphs, bats, passerine birds, reptiles and humans. A variety of so far detected bacteria, including novel species, along with the mites' vast geographical distribution and parasitism on differentiated hosts, indicate that revealing of more cases of Trombiculidae-pathogens association is highly probable, especially utilizing the newest techniques enabling a large-scale bacterial communities survey.
Collapse
Affiliation(s)
- Hanna Moniuszko
- Section of Basic Research in Horticulture, Department of Plant Protection, Institute of Horticultural Sciences, Warsaw University of Life Sciences—SGGW, 02-776 Warsaw, Poland
| | - Konrad Wojnarowski
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University of Munich, 80539 Munich, Germany
| | - Paulina Cholewińska
- Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland
| |
Collapse
|
8
|
Ponnusamy L, Garshong R, McLean BS, Wasserberg G, Durden LA, Crossley D, Apperson CS, Roe RM. Rickettsia felis and Other Rickettsia Species in Chigger Mites Collected from Wild Rodents in North Carolina, USA. Microorganisms 2022; 10:microorganisms10071342. [PMID: 35889061 PMCID: PMC9324336 DOI: 10.3390/microorganisms10071342] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Chiggers are vectors of rickettsial pathogenic bacteria, Orientia spp., that cause the human disease, scrub typhus, in the Asian–Pacific area and northern Australia (known as the Tsutsugamushi Triangle). More recently, reports of scrub typhus in Africa, southern Chile, and the Middle East have reshaped our understanding of the epidemiology of this disease, indicating it has a broad geographical distribution. Despite the growing number of studies and discoveries of chigger-borne human disease outside of the Tsutsugamushi Triangle, rickettsial pathogens in chigger mites in the US are still undetermined. The aim of our study was to investigate possible Rickettsia DNA in chiggers collected from rodents in North Carolina, USA. Of 46 chiggers tested, 47.8% tested positive for amplicons of the 23S-5S gene, 36.9% tested positive for 17 kDa, and 15.2% tested positive for gltA. Nucleotide sequence analyses of the Rickettsia-specific 23S-5S intergenic spacer (IGS), 17 kDa, and gltA gene fragments indicated that the amplicons from these chiggers were closely related to those in R. felis, R. conorii, R. typhi, and unidentified Rickettsia species. In this study, we provide the first evidence of Rickettsia infection in chiggers collected from rodents within the continental USA. In North Carolina, a US state with the highest annual cases of spotted fever rickettsioses, these results suggest chigger bites could pose a risk to public health, warranting further study.
Collapse
Affiliation(s)
- Loganathan Ponnusamy
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA; (C.S.A.); (R.M.R.)
- Correspondence:
| | - Reuben Garshong
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; (R.G.); (B.S.M.); (G.W.)
| | - Bryan S. McLean
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; (R.G.); (B.S.M.); (G.W.)
| | - Gideon Wasserberg
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27402, USA; (R.G.); (B.S.M.); (G.W.)
| | - Lance A. Durden
- Department of Biology, Georgia Southern University, 4324 Old Register Road Statesboro, Statesboro, GA 30458, USA;
| | - Dac Crossley
- Georgia Museum of Natural History, Natural History Building, University of Georgia, Athens, GA 30602, USA;
| | - Charles S. Apperson
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA; (C.S.A.); (R.M.R.)
| | - R. Michael Roe
- Department of Entomology and Plant Pathology, Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA; (C.S.A.); (R.M.R.)
| |
Collapse
|