1
|
Nascimento T, Inácio J, Guerreiro D, Diaz P, Patrício P, Proença L, Toscano C, Barroso H. Susceptibility patterns of Candida species collected from intensive care units in Portugal: a prospective study in 2020-2022. Infect Prev Pract 2024; 6:100403. [PMID: 39886460 PMCID: PMC11780368 DOI: 10.1016/j.infpip.2024.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/03/2024] [Indexed: 02/01/2025] Open
Abstract
Background For Candida infections antifungal therapy is often empirical and mainly depends on locally antifungal surveillance data, which differs between geographic regions. Aims To monitor the epidemiology and antifungal susceptibility of Candida spp. from combined axillar-groin samples in intensive care unit (ICU) patients on admission (day1, D1), day 5 (D5) and day 8 (D8). Methods From 2020 to 2022, 675 patients from three ICUs were enrolled. Candida isolates were identified by MALDI-TOF MS and PCR. In vitro antifungals susceptibility tests (AFST) were performed for fluconazole, voriconazole, amphotericin B and anidulafungin, by concentration gradient Etest® strip technique. Results Out of 988 swabs, 355 isolates were identified as Candida species from 232 patients, being 89 isolates retrieved from patients that remained colonised at D5 and D8. AFST was conducted for all Candida isolates. The overall rate of resistance to fluconazole was 2.7%, with 3 out of 133 C. albicans, 2 out of 89 C. parapsilosis and 2 out of 24 C. glabrata isolates identified as resistant. Voriconazole susceptibility was observed in 99.2% of the isolates, with only one C. albicans isolate identified as resistant to this triazole. All isolates were susceptible to amphotericin B and 98.5% to anidulafungin. Three Candida spp. exhibited resistance to anidulafungin, C. albicans, C. tropicalis, and C. parapsilosis. Conclusions This study highlights the importance of C. albicans as a frequent coloniser and showed that antifungal resistance remains uncommon among Candida isolates from ICUs in Portugal. The results may contribute to better management within institutions to guide therapeutic decision making.
Collapse
Affiliation(s)
- Teresa Nascimento
- Unidade de Microbiologia Médica, Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical/Universidade Nova de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| | - João Inácio
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Daniela Guerreiro
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| | - Priscila Diaz
- Hospital Prof. Doutor Fernando da Fonseca, Amadora, Portugal
| | | | - Luís Proença
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| | - Cristina Toscano
- Centro Hospitalar Lisboa Ocidental Hospital Egas Moniz, Lisboa, Portugal
| | - Helena Barroso
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511, Caparica, Almada, Portugal
| |
Collapse
|
2
|
Nguyen TA, Kim HY, Stocker S, Kidd S, Alastruey-Izquierdo A, Dao A, Harrison T, Wahyuningsih R, Rickerts V, Perfect J, Denning DW, Nucci M, Cassini A, Beardsley J, Gigante V, Sati H, Morrissey CO, Alffenaar JW. Pichia kudriavzevii (Candida krusei): A systematic review to inform the World Health Organisation priority list of fungal pathogens. Med Mycol 2024; 62:myad132. [PMID: 38935911 PMCID: PMC11210618 DOI: 10.1093/mmy/myad132] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
In response to the growing global threat of fungal infections, in 2020 the World Health Organisation (WHO) established an Expert Group to identify priority fungi and develop the first WHO fungal priority pathogen list (FPPL). The aim of this systematic review was to evaluate the features and global impact of invasive infections caused by Pichia kudriavzevii (formerly known as Candida krusei). PubMed and Web of Science were used to identify studies published between 1 January 2011 and 18 February 2021 reporting on the criteria of mortality, morbidity (defined as hospitalisation and length of stay), drug resistance, preventability, yearly incidence, and distribution/emergence. Overall, 33 studies were evaluated. Mortality rates of up to 67% in adults were reported. Despite the intrinsic resistance of P. kudriavzevii to fluconazole with decreased susceptibility to amphotericin B, resistance (or non-wild-type rate) to other azoles and echinocandins was low, ranging between 0 and 5%. Risk factors for developing P. kudriavzevii infections included low birth weight, prior use of antibiotics/antifungals, and an underlying diagnosis of gastrointestinal disease or cancer. The incidence of infections caused by P. kudriavzevii is generally low (∼5% of all Candida-like blood isolates) and stable over the 10-year timeframe, although additional surveillance data are needed. Strategies targeting the identified risk factors for developing P. kudriavzevii infections should be developed and tested for effectiveness and feasibility of implementation. Studies presenting data on epidemiology and susceptibility of P. kudriavzevii were scarce, especially in low- and middle-income countries (LMICs). Thus, global surveillance systems are required to monitor the incidence, susceptibility, and morbidity of P. kudriavzevii invasive infections to inform diagnosis and treatment. Timely species-level identification and susceptibility testing should be conducted to reduce the high mortality and limit the spread of P. kudriavzevii in healthcare facilities.
Collapse
Affiliation(s)
- Thi Anh Nguyen
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| | - Sophie Stocker
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Thomas Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | - John Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - David W Denning
- Manchester Fungal Infection Group (MFIG), Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Marcio Nucci
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Cassini
- Cantonal Doctor Office, Public Health Department, Canton of Vaud, Lausanne, Switzerland
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Valeria Gigante
- AMR Division, World Health Organisation, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organisation, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, VIC, Australia
- Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
3
|
Ning Y, Xiao M, Perlin DS, Zhao Y, Lu M, Li Y, Luo Z, Dai R, Li S, Xu J, Liu L, He H, Liu Y, Li F, Guo Y, Chen Z, Xu Y, Sun T, Zhang L. Decreased echinocandin susceptibility in Candida parapsilosis causing candidemia and emergence of a pan-echinocandin resistant case in China. Emerg Microbes Infect 2023; 12:2153086. [PMID: 36440795 PMCID: PMC9793909 DOI: 10.1080/22221751.2022.2153086] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022]
Abstract
Candida parapsilosis is becoming a predominant non-albicans cause of invasive candidiasis (IC). Echinocandins are the preferred choice for IC treatment and prophylaxis. Resistance to echinocandins in C. parapsilosis has emerged in several countries, but little is known about the susceptibility profile in China or about mechanisms of resistance. Here, we investigated the echinocandin susceptibilities of 2523 C. parapsilosis isolates collected from China and further explored the resistance mechanism among echinocandin-resistant isolates. Anidulafungin exhibited the highest MICs (MIC50/90, 1 and 2 µg/mL; GM, 0.948 µg/mL), while caspofungin showed better activity (0.5 and 1 µg/mL; 0.498 µg/mL). Significantly higher echinocandin MICs were observed among blood-derived isolates compared to others, especially for caspofungin (GM, 1.348 µg/mL vs 0.478 µg/mL). Isolates from ICU and surgical wards also showed higher MICs. Twenty isolates showed intermediate phenotypes for at least one echinocandin. One was resistant to all three echinocandins, fluconazole and voriconazole, which caused breakthrough IC during long-term exposure to micafungin. WGS revealed this isolate carried a mutation S656P in hotspot1 region of Fks1. Bioinformatics analyses suggested that this mutation might lead to an altered protein conformation. CRISPR Cas9-mediated introduction of this mutation into a susceptible reference C. parapsilosis strain increased MICs of all echinocandins 64-fold, with similar results found in the subspecies, C. orthopsilosis and C. metapsilosis. This is the first report of a multi-azole resistant and pan-echinocandin resistant C. parapsilosis isolate, and the identification of a FKS1S656P conferring pan-echinocandin resistance. Our study underscores the necessity of rigorous management of antifungal use and of monitoring for antifungal susceptibility.
Collapse
Affiliation(s)
- Yating Ning
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - David S. Perlin
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Yanan Zhao
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Minya Lu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Yi Li
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Zhengyu Luo
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Rongchen Dai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Shengjie Li
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People’s Republic of China
| | - Jiajun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingli Liu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hong He
- Department of Clinical Laboratory, the Affiliated Hospital of Qingdao University, Qingdao, People’s Republic of China
| | - Yun Liu
- Department of Laboratory Medicine, Changhai Hospital, Second Military Medical University, Shanghai, People’s Republic of China
| | - Fushun Li
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yuguang Guo
- Department of Laboratory Medicine, Liaoning Provincial People’s Hospital, Shenyang, People’s Republic of China
| | - Zhongju Chen
- Department of Laboratory Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| | - Tianshu Sun
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
- Medical Research Centre, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, People’s Republic of China
| | - Li Zhang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Cai W, Ruan Q, Li J, Lin L, Xi L, Sun J, Lu S. Fungal Spectrum and Susceptibility Against Nine Antifungal Agents in 525 Deep Fungal Infected Cases. Infect Drug Resist 2023; 16:4687-4696. [PMID: 37484904 PMCID: PMC10362860 DOI: 10.2147/idr.s403863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/30/2023] [Indexed: 07/25/2023] Open
Abstract
Background Deep fungal infection has become an important cause of infection and death in hospitalized patients, and this has worsened with increasing antifungal drug resistance. Objective A 3-year retrospective study was conducted to investigate the clinical characteristics, pathogen spectrum, and drug resistance of deep fungal infection in a regional hospital of Guangzhou, China. Methods Non-duplicate fungi isolates recovered from blood and other sterile body fluids of in-patients of the clinical department were identified using biochemical tests of pure culture with the API20C AUX and CHROMagar medium. Antifungal susceptibilities were determined by Sensititre YeastOne® panel trays. Results In this study, 525 patients (283 female, 242 male) with deep fungal infection were included, half of them were elderly patients (≥60 years) (54.67%, n=286). A total of 605 non-repetitive fungi were finally isolated from sterile samples, of which urine specimens accounted for 66.12% (n=400). Surgery, ICU, and internal medicine were the top three departments that fungi were frequently detected. The mainly isolated fungal species were Candida albicans (43.97%, n=266), Candida glabrata (20.00%, n=121), and Candida tropicalis (17.02%, n=103), which contributed to over 80% of fungal infection. The susceptibility of the Candida spp. to echinocandins, 5-fluorocytosine, and amphotericin B remained above 95%, while C. glabrata and C. tropicalis to itraconazole were about 95%, and the dose-dependent susceptibility of C. glabrata to fluconazole was more than 90%. The echinocandins had no antifungal activity against Trichosporon asahi in vitro (MIC90>8 μg/mL), but azole drugs were good, especially voriconazole and itraconazole (MIC90 = 0.25 μg/mL). Conclusion The main causative agents of fungal infection were still the genus of Candida. Echinocandins were the first choice for clinical therapy of Candida infection, followed with 5-fluorocytosine and amphotericin B. Azole antifungal agents should be used with caution in Candida glabrata and Candida tropicalis infections.
Collapse
Affiliation(s)
- Wenying Cai
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Qianqian Ruan
- Guangdong Provincial Institute of Public Health, Guangzhou, People’s Republic of China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People’s Republic of China
- School of Public Health, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jiahao Li
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Li Lin
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liyan Xi
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Dermatology Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangzhou, People’s Republic of China
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, People’s Republic of China
| | - Sha Lu
- Department of Dermatology and Venereology, Sun Yat-sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
5
|
Bezerra LP, Freitas CDT, Silva AFB, Amaral JL, Neto NAS, Silva RGG, Parra ALC, Goldman GH, Oliveira JTA, Mesquita FP, Souza PFN. Synergistic Antifungal Activity of Synthetic Peptides and Antifungal Drugs against Candida albicans and C. parapsilosis Biofilms. Antibiotics (Basel) 2022; 11:antibiotics11050553. [PMID: 35625197 PMCID: PMC9138075 DOI: 10.3390/antibiotics11050553] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
C. albicans and C. parapsilosis are biofilm-forming yeasts responsible for bloodstream infections that can cause death. Synthetic antimicrobial peptides (SAMPs) are considered to be new weapons to combat these infections, alone or combined with drugs. Here, two SAMPs, called Mo-CBP3-PepI and Mo-CBP3-PepIII, were tested alone or combined with nystatin (NYS) and itraconazole (ITR) against C. albicans and C. parapsilosis biofilms. Furthermore, the mechanism of antibiofilm activity was evaluated by fluorescence and scanning electron microscopies. When combined with SAMPs, the results revealed a 2- to 4-fold improvement of NYS and ITR antibiofilm activity. Microscopic analyses showed cell membrane and wall damage and ROS overproduction, which caused leakage of internal content and cell death. Taken together, these results suggest the potential of Mo-CBP3-PepI and Mo-CBP3-PepIII as new drugs and adjuvants to increase the activity of conventional drugs for the treatment of clinical infections caused by C. albicans and C. parapsilosis.
Collapse
Affiliation(s)
- Leandro P. Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
- Correspondence: (C.D.T.F.); (P.F.N.S.)
| | - Ayrles F. B. Silva
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Jackson L. Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Nilton A. S. Neto
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Rafael G. G. Silva
- Department of Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil;
| | - Aura L. C. Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Gustavo H. Goldman
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo P.O. Box 05508-000, SP, Brazil;
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
| | - Felipe P. Mesquita
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel, Nunes de Melo 100, Caixa, Fortaleza 60430-275, CE, Brazil;
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza 60451, CE, Brazil; (L.P.B.); (A.F.B.S.); (J.L.A.); (N.A.S.N.); (A.L.C.P.); (J.T.A.O.)
- Drug Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel, Nunes de Melo 100, Caixa, Fortaleza 60430-275, CE, Brazil;
- Correspondence: (C.D.T.F.); (P.F.N.S.)
| |
Collapse
|
6
|
Reducing the off-target endocrinologic adverse effects of azole antifungals – can it be done? Int J Antimicrob Agents 2022; 59:106587. [DOI: 10.1016/j.ijantimicag.2022.106587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/08/2022] [Accepted: 04/03/2022] [Indexed: 11/18/2022]
|
7
|
Caspofungin Population Pharmacokinetic Analysis in Plasma and Peritoneal Fluid in Septic Patients with Intra-Abdominal Infections: A Prospective Cohort Study. Clin Pharmacokinet 2021; 61:673-686. [PMID: 34931282 DOI: 10.1007/s40262-021-01062-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The aim of this study was to report the pharmacokinetics (PK) of caspofungin in plasma and peritoneal fluid and to identify optimal dosing strategies in septic patients with intra-abdominal infections. METHODS Eleven patients with secondary peritonitis with septic shock received the standard dosing regimen of caspofungin. Total caspofungin plasma and peritoneal concentrations were subject to a population PK analysis using Pmetrics®. Monte Carlo simulations were performed considering the ratio of 24-h total drug exposure above the minimum inhibitory concentration (AUC24/MIC) in plasma and comparing simulated concentrations versus MIC in peritoneal fluid. RESULTS Fat-free mass (FFM) was retained in the final model of caspofungin, reporting a total clearance (standard deviation) of 0.78 (0.17) L/h and a central volume of distribution of 9.36 (2.61) L. The peritoneal fluid/plasma ratio of caspofungin was 33% on the first day of therapy (AUC24 73.92 (21.93) and 26.03 (9.88) mg*h/L for plasma and peritoneal data, respectively). Dosing simulations supported the use of standard dosing regimens for patients with an FFM < 50 kg for the most susceptible candida species (C. albicans and C. glabrata). For higher FFM, a loading dose of 70 or 100 mg, with a maintenance dose of 70 mg, reached AUC24/MIC ratios for these species. CONCLUSIONS There is moderate penetration of caspofungin into the peritoneal cavity (33%). For empirical treatment, a dose escalation of 100 mg loading dose on the first day is suggested for higher FFM to ensure adequate concentrations into the abdominal cavity for the most susceptible candida species.
Collapse
|
8
|
Antifungal Susceptibility Testing Identifies the Abdominal Cavity as a Source of Candida glabrata-Resistant Isolates. Antimicrob Agents Chemother 2021; 65:e0124921. [PMID: 34570649 DOI: 10.1128/aac.01249-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
To identify unrecognized niches of resistant Candida isolates and compartmentalization, we retrospectively studied the antifungal susceptibility of 1,103 Candida spp. isolates from blood cultures, nonblood sterile samples, and nonsterile samples. Antifungal susceptibility was assessed by EUCAST E.Def 7.3.2; sequencing and genotyping of the fks1-2 and erg11 genes were carried out for non-wild-type isolates. Resistance compartmentalization (presence of resistant and susceptible isogenic isolates in different anatomical sites of a given patient) was studied. Clinical charts of patients carrying non-wild-type isolates were reviewed. Most isolates (63%) were Candida albicans, regardless the clinical source; Candida glabrata (27%) was the second most frequently found species in abdominal cavity samples. Fluconazole and echinocandin resistance rates were 1.5 and 1.3%, respectively, and were highest in C. glabrata. We found 22 genotypes among non-wild-type isolates, none of them widespread across the hospital. Fluconazole/echinocandin resistance rates of isolates from the abdominal cavity (3.2%/3.2%) tended to be higher than those from blood cultures (0.7%/1.3%). Overall, 15 patients with different forms of candidiasis were infected by resistant isolates, 80% of whom had received antifungals before or at the time of isolate collection; resistance compartmentalization was found in six patients, mainly due to C. glabrata. The highest antifungal resistance rate was detected in isolates from the abdominal cavity, mostly C. glabrata. Resistance was not caused by the spread of resistant clones but because of antifungal treatment. Resistance compartmentalization illustrates how resistance might be overlooked if susceptibility testing is restricted to bloodstream isolates.
Collapse
|
9
|
Mareković I, Pleško S, Rezo Vranješ V, Herljević Z, Kuliš T, Jandrlić M. Epidemiology of Candidemia: Three-Year Results from a Croatian Tertiary Care Hospital. J Fungi (Basel) 2021; 7:267. [PMID: 33807486 PMCID: PMC8065499 DOI: 10.3390/jof7040267] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive candidosis is the most common invasive fungal infection in hospitalized patients and is associated with a high mortality rate. This is the first study from a Croatian tertiary care hospital describing epidemiology, risk factors and species distribution in patients with candidemia. A three-year retrospective observational study, from 2018 to 2020, was performed at the University Hospital Centre Zagreb, Zagreb, Croatia. A total of 160 patients with candidemia (n = 170 isolates) were enrolled. Candidemia incidence increased from 0.47 to 0.69 per 1000 admissions in 2018 and 2020, respectively. Ninety-five patients (58.38%) were in the intensive care unit. The main risk factors for candidemia were central venous catheter (CVC) (84.38%), previous surgical procedure (56.88%) and invasive mechanical ventilation (42.50%). Candida albicans was identified in 43.53% of isolates, followed by C. parapsilosis (31.76%) and C. glabrata (12.36%), C. krusei (5.29%), C. tropicalis (2.35%) and C. lusitaniae (2.35%). The study discovered a shift to non-albicansCandida species, particularly C. parapsilosis, and made it possible to determine the main tasks we should focus on to prevent candidemia in the hospital, these being mainly infection control measures directed towards prevention of catheter-related bloodstream infections, specifically comprising hand hygiene and CVC bundles of care. The potential benefit of fluconazole prophylaxis in certain populations of surgical patients could also be considered.
Collapse
Affiliation(s)
- Ivana Mareković
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (S.P.); (V.R.V.); (Z.H.); (M.J.)
| | - Sanja Pleško
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (S.P.); (V.R.V.); (Z.H.); (M.J.)
| | - Violeta Rezo Vranješ
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (S.P.); (V.R.V.); (Z.H.); (M.J.)
| | - Zoran Herljević
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (S.P.); (V.R.V.); (Z.H.); (M.J.)
| | - Tomislav Kuliš
- Department of Urology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia;
| | - Marija Jandrlić
- Department of Clinical and Molecular Microbiology, University Hospital Centre Zagreb, School of Medicine University of Zagreb, 10000 Zagreb, Croatia; (S.P.); (V.R.V.); (Z.H.); (M.J.)
| |
Collapse
|
10
|
Mohammadi R, Ranjbar-Mobarake M, Nowroozi J, Badiee P, Mostafavi S. Cross-Sectional Study of Candidemia from Isfahan, Iran: Etiologic Agents, Predisposing Factors, and Antifungal Susceptibility Testing. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2021; 26:107. [PMID: 35126570 PMCID: PMC8765515 DOI: 10.4103/jrms.jrms_156_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/07/2021] [Accepted: 06/25/2021] [Indexed: 11/04/2022]
|
11
|
Schroeder M, Weber T, Denker T, Winterland S, Wichmann D, Rohde H, Ozga AK, Fischer M, Kluge S. Epidemiology, clinical characteristics, and outcome of candidemia in critically ill patients in Germany: a single-center retrospective 10-year analysis. Ann Intensive Care 2020; 10:142. [PMID: 33064220 PMCID: PMC7567770 DOI: 10.1186/s13613-020-00755-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/03/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite advances in the management of bloodstream infections (BSI) caused by Candida spp., the mortality still remains high in critically ill patients. The worldwide epidemiology of yeast-related BSI is subject to changing species distribution and resistance patterns, challenging antifungal treatment strategies. The aim of this single-center study was to identify predictors of mortality after 28 and 180 days in a cohort of mixed surgical and medical critically ill patients with candidemia. Methods Patients, who had been treated for laboratory-confirmed BSI caused by Candida spp. in one of 12 intensive care units (ICU) at a University hospital between 2008 and 2017, were retrospectively identified. We retrieved data including clinical characteristics, Candida species distribution, and antifungal management from electronic health records to identify risk factors for mortality at 28 and 180 days using a Cox regression model. Results A total of 391 patients had blood cultures positive for Candida spp. (incidence 4.8/1000 ICU admissions). The mortality rate after 28 days was 47% (n = 185) and increased to 60% (n = 234) after 180 days. Age (HR 1.02 [95% CI 1.01–1.03]), a history of liver cirrhosis (HR 1.54 [95% CI 1.07–2.20]), septic shock (HR 2.41 [95% CI 1.73–3.37]), the Sepsis-related Organ Failure Assessment score (HR 1.12 [95% CI 1.07–1.17]), Candida score (HR 1.25 [95% CI 1.11–1.40]), and the length of ICU stay at culture positivity (HR 1.01 [95% CI 1.00–1.01]) were significant risk factors for death at 180 days. Patients, who had abdominal surgery (HR 0.66 [95% CI 0.48–0.91]) and patients, who received adequate (HR 0.36 [95% CI 0.24–0.52]) or non-adequate (HR 0.31 [95% CI 0.16–0.62]) antifungal treatment, had a reduced mortality risk compared to medical admission and no antifungal treatment, respectively. Conclusions The mortality of critically ill patients with Candida BSI is high and is mainly determined by disease severity, multiorgan dysfunction, and antifungal management rather than species distribution and susceptibility. Our results underline the importance of timely treatment of candidemia. However, controversies remain on the optimal definition of adequate antifungal management.
Collapse
Affiliation(s)
- Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Theresa Weber
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Timme Denker
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Sarah Winterland
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Holger Rohde
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kathrin Ozga
- Center for Experimental Medicine, Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany
| |
Collapse
|
12
|
Cárdenas Parra LY, Perez Cárdenas JE. Mecanismos de resistencia a fluconazol expresados por Candida glabrata: una situación para considerar en la terapéutica. INVESTIGACIÓN EN ENFERMERÍA: IMAGEN Y DESARROLLO 2020. [DOI: 10.11144/javeriana.ie22.mrfe] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Introducción: Los esfuerzos terapéuticos orientados a atender las micosis por Candida spp. se han enfocado en el empleo de azoles; sin embargo, en la literatura científica se discute su beneficio, por los amplios y descritos mecanismos de resistencia. Objetivo: Describir los mecanismos de resistencia al fluconazol expresados por la especie Candida glabrata, con la intención de que sean considerados dentro de las variables de elegibilidad para la intervención. Método: Se realizó una revisión integrativa utilizando la pregunta orientadora: ¿cuáles son los mecanismos de resistencia al fluconazol expresados por la especie Candida glabrata? Veintinueve estudios obtenidos de la base de datos PubMed cumplieron los criterios del análisis crítico propuesto por el instrumento PRISMA, utilizado para la selección de los artículos incluidos para su revisión en este manuscrito. Las categorías bajo las cuales se organizaron los elementos de análisis fueron: sobrexpresión de bombas de eflujo y modificaciones en la enzima lanosterol 14-alfa-desmetilasa. Resultados: Los mecanismos de resistencia al fluconazol expresados por Candida glabrata están determinados principalmente por la regulación a la alza de bombas de adenosina-trifosfato Binding Cassette (ABC) y por la modificación del punto de unión con su blanco farmacológico: la enzima lanosterol 14-alfa-desmetilasa. Conclusión: Los mecanismos de resistencia expresados por Candida glabrata se asocian con la modificación estructural de la diana farmacológica y la sobreexpresión de bombas de eflujo de manera diferencial a otras especies. Se sugiere que Candida glabrata es intrínsecamente menos susceptible al fluconazol.
Collapse
|
13
|
Oliveira JSD, Pereira VS, Castelo-Branco DDSCM, Cordeiro RDA, Sidrim JJC, Brilhante RSN, Rocha MFG. The yeast, the antifungal, and the wardrobe: a journey into antifungal resistance mechanisms of Candida tropicalis. Can J Microbiol 2020; 66:377-388. [PMID: 32319304 DOI: 10.1139/cjm-2019-0531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Candida tropicalis is a prominent non-Candida albicans Candida species involved in cases of candidemia, mainly causing infections in patients in intensive care units and (or) those presenting neutropenia. In recent years, several studies have reported an increase in the recovery rates of azole-resistant C. tropicalis isolates. Understanding C. tropicalis resistance is of great importance, since resistant strains are implicated in persistent or recurrent and breakthrough infections. In this review, we address the main mechanisms underlying C. tropicalis resistance to the major antifungal classes used to treat candidiasis. The main genetic basis involved in C. tropicalis antifungal resistance is discussed. A better understanding of the epidemiology of resistant strains and the mechanisms involved in C. tropicalis resistance can help improve diagnosis and assessment of the antifungal susceptibility of this Candida species to improve clinical management.
Collapse
Affiliation(s)
- Jonathas Sales de Oliveira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Vandbergue Santos Pereira
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Débora de Souza Collares Maia Castelo-Branco
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Rossana de Aguiar Cordeiro
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - José Júlio Costa Sidrim
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Raimunda Sâmia Nogueira Brilhante
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil
| | - Marcos Fábio Gadelha Rocha
- Department of Pathology and Legal Medicine, School of Medicine, Specialized Medical Mycology Center, Graduate Program in Medical Microbiology, Federal University of Ceará, Fortaleza-CE, Brazil.,School of Veterinary, Postgraduate Program in Veterinary Sciences, State University of Ceará, 1315 Coronel Nunes de Melo Street, Rodolfo Teófilo, CEP 60420-270, Fortaleza-CE, Brazil
| |
Collapse
|
14
|
Seyoum E, Bitew A, Mihret A. Distribution of Candida albicans and non-albicans Candida species isolated in different clinical samples and their in vitro antifungal suscetibity profile in Ethiopia. BMC Infect Dis 2020; 20:231. [PMID: 32188422 PMCID: PMC7081544 DOI: 10.1186/s12879-020-4883-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background The spectrum of yeasts and their antifungal susceptibility profile are poorly known and treatment of fungal disease has remained empirical. The aim of this study is to determine the spectrum and antifungal susceptibility profile of yeasts particularly of Candida species. Methods A descriptive study on the composition of Candida species and antifungal susceptibility profile were conducted from January 2018 to September 2018. Clinical samples collected from different sites were cultured on Sabouraud dextrose agar and incubated for an appropriate time. Identification of yeast isolates and their antifungal susceptibility profile were determined by the VITEK 2 compact system. Descriptive statistics such as frequency and percentage of Candida species were calculated using SPSS version 20. Results Of 209 yeasts recovered, 104(49.8%), 90 (43.1%), 15(7.2%) were C. albicans, non albicans Candida species, and other yeasts, respectively. Among non albicans Candida species, Candida krusei was the commonest isolate. Of other yeast groups, 66.7% was represented by Cryptococcus laurentii. Regardless of Candida species identified, 85.6, 3.9, and 10.5% of the isolates were susceptible, intermediate, and resistant to fluconazole, respectively. C krusei was 100% resistant to the drug. Voriconazole demonstrated the greatest antifungal activity against Candida isolates in which 99.4% of Candida isolates were susceptible. The susceptibility and the resistance rate of Candida isolate to both caspofungin and micafungin were the same being 96 and 4% respectively. However, micafungin was more potent than caspofungin. The susceptibility, resistant, and intermediate rates of yeasts against flucytosine were, 86.2, 6.6, and 7.2%, respectively. Conclusions The present study demonstrated the distribution of Candida species in different clinical specimens where the isolation rate of non-albicans Candida species was comparable to Candida albicans. The high resistance rate of C. krusei to fluconazole and flucytosine may demonstrate that the treatment of candidiasis empirically is questionable.
Collapse
Affiliation(s)
- Elias Seyoum
- Ethiopian Public Health Institute, Clinical Bacteriology and Mycology Research Case Team, Addis Ababa, Ethiopia.
| | - Adane Bitew
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Amete Mihret
- Ethiopian Public Health Institute, Clinical Bacteriology and Mycology Research Case Team, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Rautemaa-Richardson R, Rautemaa V, Al-Wathiqi F, Moore CB, Craig L, Felton TW, Muldoon EG. Impact of a diagnostics-driven antifungal stewardship programme in a UK tertiary referral teaching hospital. J Antimicrob Chemother 2019; 73:3488-3495. [PMID: 30252053 DOI: 10.1093/jac/dky360] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/13/2018] [Indexed: 12/17/2022] Open
Abstract
Objectives A concise invasive candidosis guideline (based on the ESCMID candidaemia guideline) utilizing an informative biomarker [serum β-1-3-d-glucan (BDG)] was developed in 2013 by an antifungal stewardship (AFS) team and implemented with the help of an AFS champion in 2014. The main aims of the AFS programme were to reduce inappropriate use of antifungals and improve patient outcomes. The aim of this project was to evaluate the compliance of the ICU teams with the invasive candidosis guideline and the impact of the AFS programme on mortality and antifungal consumption on the ICUs (total of 71 beds). Methods All patients who were prescribed micafungin for suspected or proven invasive candidosis during 4 month audit periods in 2014 and 2016 were included. Prescriptions and patient records were reviewed against the guideline. Antifungal consumption and mortality data were analysed. Results The number of patients treated for invasive candidosis decreased from 39 in 2014 to 29 in 2016. This was mainly due to the reduction in patients initiated on antifungal therapy inappropriately: 18 in 2014 and 2 in 2016. Antifungal therapy was stopped following negative biomarker results in 12 patients in 2014 and 10 patients in 2016. Crude mortality due to proven or probable invasive candidosis decreased to 19% from 45% over the period 2003-07. Antifungal consumption reduced by 49% from 2014 to 2016. Conclusions The AFS programme was successful in reducing the number of inappropriate initiations of antifungals by 90%. Concurrently, mortality due to invasive candidosis was reduced by 58%. BDG testing can guide safe cessation of antifungals in ICU patients at risk of invasive candidosis.
Collapse
Affiliation(s)
- R Rautemaa-Richardson
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.,Department of Infectious Diseases, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, UK.,Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, UK
| | - V Rautemaa
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - F Al-Wathiqi
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK
| | - C B Moore
- Mycology Reference Centre Manchester, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, UK
| | - L Craig
- The Department of Pharmacy, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, UK
| | - T W Felton
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.,Intensive Care Unit, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, UK
| | - E G Muldoon
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, UK.,Infectious Diseases Department, The Mater Misericordiae University Hospital, Eccles Street, Dublin, Ireland
| |
Collapse
|
16
|
Morbidity and mortality of candidaemia in Europe: an epidemiologic meta-analysis. Clin Microbiol Infect 2019; 25:1200-1212. [DOI: 10.1016/j.cmi.2019.04.024] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 01/30/2023]
|
17
|
Lindberg E, Hammarström H, Ataollahy N, Kondori N. Species distribution and antifungal drug susceptibilities of yeasts isolated from the blood samples of patients with candidemia. Sci Rep 2019; 9:3838. [PMID: 30846717 PMCID: PMC6405987 DOI: 10.1038/s41598-019-40280-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 02/12/2019] [Indexed: 01/16/2023] Open
Abstract
Candida albicans is the most frequently isolated fungal species in hospital settings worldwide. However, non-albicans Candida species with decreased susceptibility to antifungals have emerged as an important cause of fungemia. The aims of this study were to determine the species distribution of fungi isolated from the blood samples of patients at a Swedish University Hospital and to define the in vitro susceptibilities of these isolates to nine antifungal agents. In total, 233 yeast isolates from 143 patients were included in this study. Antifungal susceptibility testing was performed using broth dilution Sensititre YeastOne panels, which comprised amphotericin B, 5-flucytosine, fluconazole, itraconazole, voriconazole, posaconazole, anidulafungin, micafungin, and caspofungin. The most common species in all age groups was C. albicans (n = 93, 65%), followed by C. glabrata (n = 27, 19%) and C. parapsilosis (n = 15, 10%). C. glabrata was mostly found in elderly individuals, while C. parapsilosis was found mainly in young children (p = 0.008). Antifungal resistance was low in the Candida species, except for reduced susceptibility to fluconazole among C. glabrata strains. C. albicans is the most frequent colonizer of Swedish patients. In general antifungal resistance is uncommon in Candida species. Nevertheless, reduced susceptibilities to fluconazole and echinocandins were found in C. glabrata and C. parapsilosis, respectively.
Collapse
Affiliation(s)
- Erika Lindberg
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Helena Hammarström
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nasser Ataollahy
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Nahid Kondori
- Department of Infectious Diseases, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
18
|
|
19
|
Papp C, Kocsis K, Tóth R, Bodai L, Willis JR, Ksiezopolska E, Lozoya-Pérez NE, Vágvölgyi C, Mora Montes H, Gabaldón T, Nosanchuk JD, Gácser A. Echinocandin-Induced Microevolution of Candida parapsilosis Influences Virulence and Abiotic Stress Tolerance. mSphere 2018; 3:e00547-18. [PMID: 30429225 PMCID: PMC6236803 DOI: 10.1128/msphere.00547-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 10/30/2018] [Indexed: 01/27/2023] Open
Abstract
Candida species are a major cause of life-threatening bloodstream infections worldwide. Although Candida albicans is responsible for the vast majority of infections, the clinical relevance of other Candida species has also emerged over the last twenty years. This shift might be due in part to changes in clinical guidelines, as echinocandins became the first line of therapeutics for the treatment. Candida parapsilosis is an emerging non-albicans Candida species that exhibits lower susceptibility levels to these drugs. Candida species frequently display resistance to echinocandins, and the mechanism for this is well-known in C. albicans and Candida glabrata, where it is mediated by amino acid substitutions at defined locations of the β-1,3-glucan synthase, Fks1p. In C. parapsilosis isolates, Fks1p harbors an intrinsic amino acid change at position 660 of the hot spot 1 (HS1) region, which is thought to be responsible for the high MIC values. Less is known about acquired substitutions in this species. In this study, we used directed evolution experiments to generate C. parapsilosis strains with acquired resistance to caspofungin, anidulafungin, and micafungin. We showed that cross-resistance was dependent on the type of echinocandin used to generate the evolved strains. During their characterization, all mutant strains showed attenuated virulence in vivo and also displayed alterations in the exposure of inner cell wall components. The evolved strains harbored 251 amino acid changes, including three in the HS1, HS2, and HS3 regions of Fks1p. Altogether, our results demonstrate a direct connection between acquired antifungal resistance and virulence of C. parapsilosisIMPORTANCECandida parapsilosis is an opportunistic fungal pathogen with the ability to cause infections in immunocompromised patients. Echinocandins are the currently recommended first line of treatment for all Candida species. Resistance of Candida albicans to this drug type is well characterized. C. parapsilosis strains have the lowest in vitro susceptibility to echinocandins; however, patients with such infections typically respond well to echinocandin therapy. There is little knowledge of acquired resistance in C. parapsilosis and its consequences on other characteristics such as virulence properties. In this study, we aimed to dissect how acquired echinocandin resistance influences the pathogenicity of C. parapsilosis and to develop explanations for why echinocandins are clinically effective in the setting of acquired resistance.
Collapse
Affiliation(s)
- Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Katica Kocsis
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Renáta Tóth
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Jesse R Willis
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nancy E Lozoya-Pérez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Hector Mora Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| | - Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Joshua D Nosanchuk
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Attila Gácser
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- MTA-SZTE Lendület Mycobiome Research Group, University of Szeged, Szeged, Hungary
| |
Collapse
|
20
|
Belmadani A, Semlali A, Rouabhia M. Dermaseptin-S1 decreasesCandida albicansgrowth, biofilm formation and the expression of hyphal wall protein 1 and aspartic protease genes. J Appl Microbiol 2018; 125:72-83. [DOI: 10.1111/jam.13745] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/19/2018] [Accepted: 02/19/2018] [Indexed: 11/29/2022]
Affiliation(s)
- A. Belmadani
- Oral Ecology Research Group; Faculty of Dentistry; Laval University; Quebec QC Canada
| | - A. Semlali
- Department of Biochemistry; College of Science; King Saud University; Riyadh Saudi Arabia
| | - M. Rouabhia
- Oral Ecology Research Group; Faculty of Dentistry; Laval University; Quebec QC Canada
| |
Collapse
|
21
|
Vasilyeva NV, Raush ER, Rudneva MV, Bogomolova TS, Taraskina AE, Fang Y, Zhang F, Klimko NN. Etiology of invasive candidosis agents in Russia: a multicenter epidemiological survey. Front Med 2018; 12:84-91. [PMID: 29335835 DOI: 10.1007/s11684-017-0612-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/10/2017] [Indexed: 12/13/2022]
Abstract
A multicenter prospective epidemiological survey on the etiologic agents of invasive candidosis was conducted in Russia in the period of 2012-2014. Samples were collected from 284 patients with invasive candidosis and Candida species isolated by culture. The species were identified by DNA sequencing and MALDI-TOF massspectrometry. A total of 322 isolates were recovered, in which 96% of Сandida species belonged to six major species, namely, C. albicans (43.2%), C. parapsilosis (20.2%), C. glabrata (11.5%), C. tropicalis (9.6%), C. krusei (6.2%), and C. guilliermondii (5.3%). Most Candida species were isolated from blood samples (83.23%). Notably, the prevalence rate of C. albicans reduced from 52.38% to 32.79% (2012 vs. 2014) (P = 0.01) whereas that of non-C. albicans increased from 47.62% (2012) to 67.21% (2014) (P < 0.01). Species distribution differed among geographical regions; specifically, the prevalence rate of C. albicans as an etiologic agent of invasive candidosis in Siberian Federal region was significantly higher than that in other Federal regions. Results indicated a shift from C. albicans to non-C. albicans. Therefore, a detailed investigation on the contributing factors and appropriate treatment of invasive candidosis is needed.
Collapse
Affiliation(s)
- N V Vasilyeva
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia. .,Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia. .,Sino-Russia Institute of Infection and Immunity, Department of Microbiology, Harbin Medical University, Harbin, 150086, China.
| | - E R Raush
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia
| | - M V Rudneva
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia
| | - T S Bogomolova
- Department of Medical Microbiology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia.,Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia
| | - A E Taraskina
- Kashkin Research Institute of Medical Mycology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia
| | - Yong Fang
- Sino-Russia Institute of Infection and Immunity, Department of Microbiology, Harbin Medical University, Harbin, 150086, China
| | - Fengmin Zhang
- Sino-Russia Institute of Infection and Immunity, Department of Microbiology, Harbin Medical University, Harbin, 150086, China
| | - N N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North-Western State Medical University named after I.I. Mechnikov, St. Petersburg, 194291, Russia
| |
Collapse
|