1
|
Ramos MLM, Barrinha A, Araújo GRDS, Alves V, Andrade IBD, Corrêa-Junior D, Motta MCM, Almeida-Paes R, Frases S. Photodynamic therapy reduces viability, enhances itraconazole activity, and impairs mitochondrial physiology of Sporothrix brasiliensis. Microbes Infect 2025; 27:105440. [PMID: 39557358 DOI: 10.1016/j.micinf.2024.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Sporothrix brasiliensis is the main agent of sporotrichosis in Brazil, with few therapeutic options. This study aimed to investigate the in vitro efficacy of photodynamic therapy using a diode laser (InGaAIP) in combination with the photosensitizer methylene blue against S. brasiliensis yeasts. Additionally, we evaluated the underexplored mitochondrial activity of S. brasiliensis and the impact of laser treatment on the fungal mitochondrial aspects post-treatment. Three strains of S. brasiliensis were used, including a non-wild-type strain to itraconazole. Yeast viability was determined by counting colony-forming units. For a comprehensive analysis of irradiated versus non-irradiated cells, we assessed combined therapy with itraconazole, scanning electron microscopy of cells, and mitochondrial activity. The latter included high-resolution respirometry, membrane potential analysis, and reactive oxygen species production. Methylene blue combined with photodynamic therapy inhibited the growth of the isolates, including the non-wild-type strain to itraconazole. Photodynamic therapy induced the production of reactive oxygen species, which negatively affected mitochondrial function, resulting in decreased membrane potential and cell death. Photodynamic therapy altered the ultrastructure and mitochondrial physiology of S. brasiliensis, suggesting a new therapeutic approach for sporotrichosis caused by this species.
Collapse
Affiliation(s)
- Mariana Lucy Mesquita Ramos
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Azuil Barrinha
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Glauber Ribeiro de Sousa Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Iara Bastos de Andrade
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Dario Corrêa-Junior
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Cristina Machado Motta
- Laboratório de Ultraestrutura Celular Hertha Meyer, Centro de Pesquisa em Medicina de Precisão, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Rede Micologia RJ - FAPERJ, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Rocha AR, Inada NM, da Silva AP, Bagnato VS, Buzzá HH. Photodynamic inactivation strategies for maximizing antifungal effect against Sporothrix spp. and Candida albicans in an in vitro investigation. PLoS Negl Trop Dis 2024; 18:e0012637. [PMID: 39531489 PMCID: PMC11594586 DOI: 10.1371/journal.pntd.0012637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/26/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sporotrichosis is a zoonotic disease caused by the dimorphic fungus Sporothrix spp., leading to skin lesions that can, in some cases, progress and result in the death of infected individuals. Candida albicans is another fungus involved in several skin, oral, and vaginal mucosal infections. Fungal diseases are concerning due to increasing incidence and the limited variety of antifungal classes available for treatment. Furthermore, antifungal medications can cause various side effects, exacerbated by their prolonged use during infection treatment. There is a need to explore alternatives to conventional drugs that are effective, fast, and safe in combating sporotrichosis. This study aimed to achieve in vitro elimination of the fungi Sporothrix brasiliensis and Sporothrix schenckii through Photodynamic Inactivation (PDI), using curcumin as a photosensitizer and in combination with antifungal agents used in the treatment of sporotrichosis. METHODOLOGY Yeasts of Candida albicans, Sporothrix brasiliensis, and Sporothrix schenckii were subjected to Photodynamic Inactivation (PDI) using light at a wavelength of 450 ± 10 nm, irradiance of 35 mW/cm2, delivering a fluence of 31.5 J/cm2, with curcumin as the photosensitizer at doses ranging from 0.75 to 150 μg/mL. After determining the Minimum Inhibitory Concentration (MIC) values of the antifungal drugs itraconazole, ketoconazole, and potassium iodide, sub-MIC doses of these antifungals were combined with sub-MIC doses of curcumin in a new PDI session. CONCLUSION Photodynamic inactivation is a promising technique in the treatment of sporotrichosis, as well as its combination with antifungals. The combination of curcumin in concentrations ranging from 0.75 g/mL a 7.5 g/mL with sub-MIC concentrations of itraconazole, ketoconazole, and potassium iodide was able to completely inactivate the fungi C. albicans, S. brasiliensis and S. schenckii, indicating that PDI may increase the effectiveness of antifungals. However, further studies are needed to establish protocols for future clinical applications.
Collapse
Affiliation(s)
- Amanda Regina Rocha
- PPG Biotec, Federal University of São Carlos, São Carlos, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | | | - Ana Paula da Silva
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
| | - Vanderlei Salvador Bagnato
- PPG Biotec, Federal University of São Carlos, São Carlos, Brazil
- São Carlos Institute of Physics, University of São Paulo, São Carlos, Brazil
- Department of Biomedical Engineering, Texas A&M University, College Station, United States of America
| | - Hilde Harb Buzzá
- Institute of Physics, Pontificia Universidad Catolica de Chile, Santiago, Chile
| |
Collapse
|
3
|
Li Q, Liu Y, Zheng J, Chen Y, Liu Z, Xie Q, Li D, Xi L, Zheng J, Liu H. Potassium iodide enhances the killing effect of methylene blue mediated photodynamic therapy against F. monophora. Photodiagnosis Photodyn Ther 2024; 48:104255. [PMID: 38901715 DOI: 10.1016/j.pdpdt.2024.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Chromoblastomycosis (CMB) is a chronic granulomatous fungal infection that affect the skin and subcutaneous tissues. It is clinically problematic due to limited treatment options, low cure rates, and high rates of relapse. This underscores the necessity for innovative treatment approaches. In this study, potassium iodide (KI) combined with Methylene Blue (MB) mediated antimicrobial photodynamic therapy (PDT) were assessed in the treatment of Fonsecaea monophora (F. monophora) both in vitro and in vivo. And the underlying mechanism that contributes to the efficacy of this treatment approach was investigated. METHODS In vitro experiments were conducted using different combinations and concentrations of MB, KI, and 660 nm light (60 mW/cm2) to inhibit F. monophora. The study was carried out using colony-forming unit (CFU) counts and scanning electron microscopy (SEM). The production of singlet oxygen (1O2), free iodine (I2), hydrogen peroxide (H2O2), and superoxide anion during the KI combined MB-mediated antimicrobial PDT process was also detected. In vivo experiments were developed using a Balb/c mouse paw infection model with F. monophora and treated with PBS, 10 mM KI, 2 mM MB +100 J/cm² and 10 mM KI+2 mM MB +100 J/cm² respectively. Inflammatory swelling, fungal load and histopathological analyses of the mouse footpads were assessed. RESULTS KI enhanced the killing effect of MB-mediated antimicrobial PDT on the conidial spores of F. monophora at the cell and infected animal model level. During the process, the main antimicrobial agents in KI combined with MB- mediated antimicrobial PDT could produce stronger toxic active species including free I2 and H2O2. CONCLUSION: KI combined with MB-mediated antimicrobial PDT could be an effective adjunct therapy for treating CBM.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Clinical College of Dermatology, Anhui Medical University, Hefei, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yinghui Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jinjin Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yangxia Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Zeyu Liu
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Qiulin Xie
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Dongmei Li
- Department of Microbiology/Immunology, Georgetown University Medical Center, Washington, D.C., USA
| | - Liyan Xi
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China; Department of Dermatology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Judun Zheng
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| | - Hongfang Liu
- Guangdong Clinical College of Dermatology, Anhui Medical University, Hefei, China; Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
4
|
Legabão BC, Galinari CB, Santos RSD, Bruschi ML, Gremião IDF, Boechat JS, Pereira SA, Malacarne LC, Caetano W, Bonfim-Mendonça PS, Svidzinski TIE. In vitro antifungal activity of curcumin mediated by photodynamic therapy on Sporothrix brasiliensis. Photodiagnosis Photodyn Ther 2023; 43:103659. [PMID: 37336466 DOI: 10.1016/j.pdpdt.2023.103659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
BACKGROUND Sporothrix brasiliensis is a pathogenic dimorphic fungus that affects humans and animals causing sporotrichosis. The treatment of this disease with conventional antifungals commonly results in therapeutic failures and resistance. Therefore, this study aimed to evaluate the in vitro effect of curcumin (CUR) mediated by photodynamic therapy (PDT) in its pure state and incorporated into pharmaceutical formulation in gel form, on the filamentous and yeast forms of S. brasiliensis. METHODS Cells from both forms of the fungus were treated with pure curcumin (PDT-CUR). For this, CUR concentrations ranging from 0.09 to 50 μM were incubated for 15 min and then irradiated with blue LED at 15 J/cm². Similarly, it was performed with PDT-CUR-gel, at lower concentration with fungistatic action. After, a qualitative and quantitative (colony forming units (CFU)) analysis of the results was performed. Additionally, reactive oxygen species (ROS) were detected by flow cytometry. Results PDT with 0.78 μM of CUR caused a significant reduction (p < 0.05) in cells of the filamentous and yeast form, 1.38 log10 and 1.18 log10, respectively, in comparison with the control. From the concentration of 1.56 μM of CUR, there was a total reduction in the number of CFU (≥ 3 log10). The PDT-CUR-gel, in relation to its base without CUR, presented a significant reduction (p < 0.05) of 0.83 log10 for the filamentous form and for the yeast form, 0.72 log10. ROS release was detected after the PDT-CUR assay, showing that this may be an important pathway of death caused by photoinactivation. Conclusion PDT-CUR has an important in vitro antifungal action against S. brasiliensis strains in both morphologies.
Collapse
Affiliation(s)
- Bárbara Cipulo Legabão
- Graduate Student (Master's), Biosciences and Pathophysiology Program, State University of Maringá, Maringá, Brazil
| | - Camila Barros Galinari
- Postgraduate student (PhD), Biosciences and Pathophysiology Program, State University of Maringá, Maringá, Brazil
| | - Rafaela Said Dos Santos
- Postgraduate student (PhD), R & D Laboratory of Drug Distribution Systems, Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | - Marcos Luciano Bruschi
- Professor, Drug Distribution Systems R&D Laboratory, Department of Pharmacy, State University of Maringá, Maringá, Brazil
| | - Isabella Dib Ferreira Gremião
- Laboratory of clinical Research Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation. Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Jéssica Sepúlveda Boechat
- Laboratory of clinical Research Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation. Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | - Sandro Antônio Pereira
- Laboratory of clinical Research Dermatozoonoses in Domestic Animals, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation. Av. Brasil, 4365 - Manguinhos, Rio de Janeiro 21040-900, Brazil
| | | | - Wilker Caetano
- Professor, Department of Chemistry, State University of Maringá, Maringá, Brazil
| | - Patrícia S Bonfim-Mendonça
- Professor, Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo 5790, block T20 room 203, Maringá CEP: 87020-900, Brazil
| | - Terezinha I E Svidzinski
- Professor, Department of Clinical Analysis and Biomedicine, State University of Maringá, Av. Colombo 5790, block T20 room 203, Maringá CEP: 87020-900, Brazil.
| |
Collapse
|
5
|
Guan M, Yao L, Zhen Y, Song Y, Liu X, Liu Y, Chen R, Cui Y, Li S. Sporothrix globosa melanin regulates autophagy via the TLR2 signaling pathway in THP-1 macrophages. PLoS Negl Trop Dis 2023; 17:e0011281. [PMID: 37141335 DOI: 10.1371/journal.pntd.0011281] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/19/2023] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Melanin, an important virulence factor of pathogenic fungi, has been shown to suppress host immune responses in multiple ways. Autophagy is a vital cellular mechanism underlying the host's innate immunity against microbial infections. However, the potential influence of melanin on autophagy has not been explored. We investigated the effect of melanin on autophagy in macrophages, which play a key role in controlling Sporothrix spp. infection, as well as the mechanism of melanin interaction with Toll-like receptor (TLR)-induced pathways. Sporothrix globosa conidia (wild-type and melanin-deficient mutant strains) or yeast cells were co-cultured with THP-1 macrophages to demonstrate that, although S. globosa infection led to the activation of autophagy-related proteins and increased autophagic flux, S. globosa melanin suppressed macrophage autophagy. Incubation with S. globosa conidia also increased the expression levels of reactive oxygen species and multiple proinflammatory cytokines (interleukin-6, tumor necrosis factor-α, interleukin-1β and interferon-γ) in macrophages. These effects were attenuated as melanin presented. Furthermore, while S. globosa conidia significantly increased the expression of both TLR2 and TLR4 in macrophages, the knockdown of TLR2, but not TLR4, with small interfering RNA suppressed autophagy. Overall, this study revealed the novel immune defense ability of S. globosa melanin to inhibit macrophage functionality by resisting macrophage autophagy through the regulation of TLR2 expression.
Collapse
Affiliation(s)
- Mengqi Guan
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Lei Yao
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yu Zhen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Yang Song
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Xiaobo Liu
- Laboratory of Cancer Precision Medicine, First Hospital of Jilin University, Changchun, China
| | - Yuanyuan Liu
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Ruili Chen
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
- Department of Dermatology and Venereology, Zhuhai People's Hospital, Zhuhai, China
| | - Yan Cui
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| | - Shanshan Li
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Chen T, Yang D, Lei S, Liu J, Song Y, Zhao H, Zeng X, Dan H, Chen Q. Photodynamic therapy-a promising treatment of oral mucosal infections. Photodiagnosis Photodyn Ther 2022; 39:103010. [PMID: 35820633 DOI: 10.1016/j.pdpdt.2022.103010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/05/2023]
Abstract
The treatment of oral mucosal infections is increasingly challenging owing to antibiotic resistance. Therefore, alternative antimicrobial strategies are urgently required. Photodynamic therapy (PDT) has attracted attention for the treatment of oral mucosal infections because of its ability to effectively inactivate drug-resistant bacteria, completely heal clinical infectious lesions and usually offers only mild adverse reactions. This review briefly summarizes relevant scientific data and published papers and discusses the potential mechanism and application of PDT in the treatment of oral mucosal infections.
Collapse
Affiliation(s)
- Ting Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Dan Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Shangxue Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiaxin Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yansong Song
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Hongxia Dan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| |
Collapse
|
7
|
Yang Z, Liu C, Xiong H, Shi D. Photodynamic therapy, a promising treatment approach for cutaneous infectious granulomas. Photodiagnosis Photodyn Ther 2022; 39:102952. [PMID: 35691563 DOI: 10.1016/j.pdpdt.2022.102952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Cutaneous infectious granulomas are mainly caused by fungi and bacteria. Antibiotics are the primary therapeutic choices for the diseases, but the drug-resistant pathogens become increasingly prevalent. Thus, there is an urgent need to explore novel approaches to treating cutaneous infectious granulomas. Photodynamic therapy (PDT) is widely used as an alternative treatment for various kinds of skin diseases, and evidence has been accumulating that PDT is also effective for the treatment of cutaneous infectious granulomas. In this narrative review, we sought to summarize the recent literature concerning the applications and mechanisms of PDT in the treatment of cutaneous infectious granulomas. Clinical and basic research has demonstrated that PDT is an effective approach in treating fungal infections such as sporotrichosis and chromoblastomycosis. In addition, PDT is also used to treat atypical mycobacterial infections such as Mycobacterium marinum. PDT can significantly shorten the duration of antibiotics treatment, resulting in diminishment of adverse effects. The potential mechanisms of PDT are to kill the pathogens directly or elicit modulatory effects on the immune microenvironments. We conclude that PDT is a promising therapeutic choice for the treatment of cutaneous infectious granulomas.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining 272067, Shandong, China.
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining 272000, Shandong, China; Department of Dermatology, Jining No.1 People's Hospital, Jining 272001, Shandong, China.
| |
Collapse
|
8
|
Inactivation of Bacillus subtilis by Curcumin-Mediated Photodynamic Technology through Inducing Oxidative Stress Response. Microorganisms 2022; 10:microorganisms10040802. [PMID: 35456852 PMCID: PMC9026882 DOI: 10.3390/microorganisms10040802] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 02/05/2023] Open
Abstract
Photodynamic sterilization technology (PDT) is widely used in disease therapy, but its application in the food industry is still at the research stage because of the limitations of food-grade photosensitizers. Curcumin exhibits photosensitivity and is widely used as a food additive for its natural color. This study aimed to determine the effect of curcumin-mediated photodynamic technology (Cur-PDT) on Bacillus subtilis and to elucidate the anti-bacterial mechanism involved. First, the effects of curcumin concentration, duration of light irradiation, light intensity, and incubation time on the inactivation of B. subtilis were analyzed. It was found that Cur-PDT inactivated 100% planktonic cells with 50 μmol/L curcumin in 15 min (120 W). Then, the cell morphology, oxidation state and the expression of membrane structure- and DNA damage-related genes of B. subtilis vegetative cells were investigated under different treatment conditions. The membrane permeability of cells was enhanced and the cell membrane structure was damaged upon treatment with Cur-PDT, which were exacerbated with increases of treatment time and curcumin concentration. Meanwhile, the production of reactive oxygen species increased and the activities of the antioxidant enzymes SOD, GPX, and CAT decreased inside the cells. Furthermore, the Cur-PDT treatment significantly downregulated the mRNA of the membrane protein TasA and upregulated the DNA damage recognition protein UvrA and repair protein RecA of B. subtilis. These results suggested that curcumin-mediated PDT could effectively inactivate B. subtilis by inducing cell redox state imbalance, damaging DNA, and disrupting membrane structures.
Collapse
|
9
|
Tiburcio MA, Rocha AR, Romano RA, Inada NM, Bagnato VS, Carlos RM, Buzzá HH. In vitro evaluation of the cis-[Ru(phen) 2(pPDIp)] 2+⁎⁎ complex for antimicrobial photodynamic therapy against Sporothrix brasiliensis and Candida albicans. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 229:112414. [PMID: 35276578 DOI: 10.1016/j.jphotobiol.2022.112414] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/10/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) activates a photosensitizer by visible light to generate cytotoxic oxygen species that lead to cell death. With proper illumination, PDT is often used in applications on superficial and sub-surface lesions. Sporotrichosis infection occurs by Sporothrix fungi which causes a skin wound, worsened by Candida albicans infections. This study investigated the photosensitizing efficiency of the Ru(phen)2(pPDIp)(PF6)2 complex, RupPDIp, against S. brasiliensis and C. albicans. MATERIAL AND METHODS RupPDIp efficiency against these fungi was tested using 450 nm (blue light and 36 J/cm2) and 525 nm (green light, 25.2 J/cm2) at 0.05-20 μM concentrations. To ensure PDT effectiveness, control groups were tested in the absence and in the presence of RupPDIp under light irradiation and in the dark. RESULTS RupPDIp eliminated both fungi at ≤5.0 μM. Green light showed the best results, eliminating S. brasiliensis and C. albicans colonies at RupPDIp 0.5 μM and 0.05 μM, respectively. CONCLUSION RupPDIp is a promising photosensitizer in aPDT, eliminating 106 CFU/mL of both fungi at 450 nm and 525 nm, with lower light doses and concentrations when treated with the green light compared to the blue light.
Collapse
Affiliation(s)
- M A Tiburcio
- Chemistry Department, Federal University of São Carlos, Brazil.
| | - A R Rocha
- São Carlos Institute of Physics, University of Sao Paulo, Brazil; PPG Biotec, Federal University of São Carlos, Brazil
| | - R A Romano
- São Carlos Institute of Physics, University of Sao Paulo, Brazil
| | - N M Inada
- São Carlos Institute of Physics, University of Sao Paulo, Brazil
| | - V S Bagnato
- São Carlos Institute of Physics, University of Sao Paulo, Brazil; Hagler Fellow, Texas A&M University, College Station, TX, USA
| | - R M Carlos
- Chemistry Department, Federal University of São Carlos, Brazil
| | - H H Buzzá
- São Carlos Institute of Physics, University of Sao Paulo, Brazil; Institute of Physics, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Legabão BC, Fernandes JA, de Oliveira Barbosa GF, Bonfim-Mendonça PS, Svidzinski TIE. The zoonosis sporotrichosis can be successfully treated by photodynamic therapy: A scoping review. Acta Trop 2022; 228:106341. [PMID: 35131203 DOI: 10.1016/j.actatropica.2022.106341] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022]
Abstract
Sporotrichosis is a worldwide zoonosis, prevalent in tropical and subtropical regions. In recent years, there has been a substantial increase in human and feline cases reported in Brazil. Despite this, the antifungal treatment for sporotrichosis is still limited, and thus, research into new therapeutic modalities must be encouraged. Recently, photodynamic therapy has been introduced as a treatment for sporotrichosis. This work presents an overview of both in vitro and in vivo studies that have used photodynamic therapy in the context of photoinactivation of Sporothrix species. Until now, as far as the authors are aware, this is the first scope review specifically on photodynamic therapy for the treatment of sporotrichosis. A systematic electronic search was conducted in two databases: Web of Science and PubMed. Seven original articles published from 2010 to July 2021 were selected, six of which met the proposed inclusion and exclusion criteria and were considered in this scoping review. Concerning the photoinactivation of Sporothrix spp. the results have been promising as studies, in both animals and humans, have reported significant clinical and mycological effects. The most used photosensitizers were methylene blue and its derivatives, and aminolevulinic acid and its methyl derivative, methyl aminolevulinic acid. In conclusion, photodynamic therapy has great potential in treatment of sporotrichosis, as its fungicidal effect both in vitro and in vivo has clearly been demonstrated. Photodynamic therapy could be used in conjunction with classic antifungal agents to optimize treatment outcomes.
Collapse
Affiliation(s)
- Barbara Cipulo Legabão
- Post-Graduation Program in Biosciences and Physiopathology, Terezinha Inez Estivalet Svidzinski, State University of Maringá, Avenida Colombo, 5790, Bloco T20, Sala 203, Maringá, Paraná 87020-900, Brazil
| | - Juliana Aparecida Fernandes
- Post-Graduation Program in Biosciences and Physiopathology, Terezinha Inez Estivalet Svidzinski, State University of Maringá, Avenida Colombo, 5790, Bloco T20, Sala 203, Maringá, Paraná 87020-900, Brazil
| | - Gabriela Franco de Oliveira Barbosa
- Post-Graduation Program in Biosciences and Physiopathology, Terezinha Inez Estivalet Svidzinski, State University of Maringá, Avenida Colombo, 5790, Bloco T20, Sala 203, Maringá, Paraná 87020-900, Brazil
| | - Patrícia S Bonfim-Mendonça
- Post-Graduation Program in Biosciences and Physiopathology, Terezinha Inez Estivalet Svidzinski, State University of Maringá, Avenida Colombo, 5790, Bloco T20, Sala 203, Maringá, Paraná 87020-900, Brazil
| | - Terezinha I E Svidzinski
- Post-Graduation Program in Biosciences and Physiopathology, Terezinha Inez Estivalet Svidzinski, State University of Maringá, Avenida Colombo, 5790, Bloco T20, Sala 203, Maringá, Paraná 87020-900, Brazil.
| |
Collapse
|
11
|
Melanin of Sporothrix globosa affects the function of THP-1 macrophages and modulates the expression of TLR2 and TLR4. Microb Pathog 2021; 159:105158. [PMID: 34454025 DOI: 10.1016/j.micpath.2021.105158] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/06/2021] [Accepted: 08/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Melanin is an important virulence factor for Sporothrix globosa, the causative agent of sporotrichosis, a subcutaneous mycosis that occurs worldwide. Although previous research suggests that melanin is involved in the pathogenesis of sporotrichosis, little is known about its influence on the macrophages that represent the frontline components of innate immunity. OBJECTIVES To evaluate the effects of melanin on phagocytic activity and the expression of Toll-like receptor (TLR)2 and TLR4 during S. globosa infection of macrophages in vitro. METHODS To compare phagocytic activity and survival rates, THP-1 macrophages and primary mouse peritoneal macrophages were co-cultured with a wild-type S. globosa strain (Mel+), an albino mutant strain (Mel-), a tricyclazole-treated Mel + strain (TCZ-Mel+), or melanin ghosts extracted from S. globosa conidia. Reactive oxygen species (ROS), nitric oxide (NO) generation, tumor necrosis factor (TNF)-α and interleukin (IL)-6 were assayed in THP-1 cells infected with S. globosa conidia. Quantitative PCR and western blotting were used to observe the effect of melanin on TLR2 and TLR4 expression. Knockdown of TLR2/4 expression with small interfering RNA was performed to further verify the role of these receptors during infection. RESULTS Macrophages infected with Mel + conidia showed a lower phagocytosis index and a higher survival rate than TCZ-Mel+ and Mel- in vitro. After incubation with S. globosa, the release of ROS, NO, TNF-α and IL-6 by THP-1 were decreased in the presence of melanin. Increased mRNA and protein expression of TLR2 and TLR4 occurred upon S. globosa infection in THP-1, whereas the presence of melanin suppressed TLR2 and TLR4. Moreover, TLR2 or TLR4 knockdown showed a trend toward reducing the pernicious effect of S. globosa conidia on THP-1 cells in vitro. CONCLUSIONS Collectively, our results indicated that melanin inhibits the phagocytosis of S. globosa and guards against macrophage attack by providing protection from oxygen- and nitrogen-derived radicals, as well as suppressing the host pro-inflammatory cytokine response (TNF-α and IL-6). Melanin was also involved in modulating TLR2 and TLR4 receptor expression, weakening the killing efficiency of S. globosa.
Collapse
|
12
|
Marcolino LMC, Pereira AHC, Pinto JG, Mamone LA, Strixino JF. CELLULAR AND METABOLIC CHANGES AFTER PHOTODYNAMIC THERAPY IN LEISHMANIA PROMASTIGOTES. Photodiagnosis Photodyn Ther 2021; 35:102403. [PMID: 34161856 DOI: 10.1016/j.pdpdt.2021.102403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/20/2021] [Accepted: 06/11/2021] [Indexed: 01/21/2023]
Abstract
Leishmaniasis is a zoonotic disease, regarded by WHO as a public health problem that has presented a significant increase in the recent years. Conventional treatment is toxic and leads to serious side effects. Photodynamic therapy has been studied as a treatment to cutaneous leishmaniasis. This study aimed to evaluate the cell viability, morphological changes, type of cell death, production of reactive oxygen species, and changes in the mitochondrial membrane and DNA fragmentation in Leishmania braziliensis and Leishmania major promastigotes. Confocal microscopy was used to quantify the fluorescence emitted by JC-1, Annexin V, and propidium iodide reagents. The trypan blue exclusion test was used to evaluate the viability of the cells, the mitochondrial activity was verified with MTT, and the morphological changes were analyzed for SEM and DNA damage using the comet assay. PDT using curcumin at 500, 125, and 31,25 μg/mL decreased the viability of the parasites and induced changes in the mitochondrial membrane potential. The production of reactive oxygen species was dose-dependent and was observed only in the groups submitted to PDT. DNA damage was also observed in the parasite cells. The morphology of the cells was affected mainly at the highest curcumin concentration, resulting in rounded cells with a shortened flagellum. When the type of cell death was analyzed, the prevalence of apoptosis was noted. The results support the use of curcumin as photosensitizer in PDT against Leishmania promastigotes in the treatment for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Luciana Maria Cortez Marcolino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| | - André Henrique Correia Pereira
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Juliana Guerra Pinto
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil
| | - Leandro Ariel Mamone
- Centro de Investigaciones sobre Porfirinas y Porfirias (CIPYP), CONICET and Hospital de Clínicas José de San Martín, Universidad de Buenos Aires. Córdoba 2351 1er subsuelo, Ciudad de Buenos Aires CP1120AAF, Argentina
| | - Juliana Ferreira Strixino
- Photobiology Applied to Health - Universidade do Vale do Paraíba. Av. Shishima Hifumi, 2911, Urbanova, São José dos Campos, S.P, Brazil.
| |
Collapse
|