1
|
Vinh DC. Human immunity to fungal infections. J Exp Med 2025; 222:e20241215. [PMID: 40232283 PMCID: PMC11998751 DOI: 10.1084/jem.20241215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/16/2025] Open
Abstract
Fungi increasingly threaten health globally. Mycoses range from life-threatening, often iatrogenic conditions, to enigmatic syndromes occurring without apparent immunosuppression. Despite some recent advances in antifungal drug development, complementary therapeutic strategies are essential for addressing these opportunistic pathogens. One promising avenue is leveraging host immunity to combat fungal infections; this necessitates deeper understanding of the molecular immunology of human fungal susceptibility to differentiate beneficial versus harmful immunopathological responses. Investigating human models of fungal diseases in natural settings, particularly through genetic immunodeficiencies and ethnographic-specific genetic vulnerabilities, reveals crucial immune pathways essential for fighting various yeasts and molds. This review highlights the diversity in intrinsic fungal susceptibility across individuals and populations, through genetic- and autoantibody-mediated processes, complementing previous principles learned from animal studies and iatrogenic contexts. Improved understanding of human immunity to fungal diseases will facilitate the development of host-directed immunotherapies and targeted public health interventions, paving the way for precision medicine in fungal disease management.
Collapse
Affiliation(s)
- Donald C. Vinh
- Department of Medicine (Division of Infectious Diseases), McGill University Health Center, Montreal, Canada
- Department of OptiLab (Division of Medical Microbiology, Division of Molecular Genetics-Immunology), McGill University Health Center, Montreal, Canada
- Department of Human Genetics, McGill University, Montreal, Canada
- Center of Reference for Genetic Research in Infection and Immunity, McGill University Health Center Research Institute, Montreal, Canada
| |
Collapse
|
2
|
Dong Q, Wu W, Zhang R. Mechanistic insights into granulocyte-macrophage colony-stimulating factor in combating fungal infections: Diverse fungal pathogens. Med Mycol 2025; 63:myaf044. [PMID: 40328463 DOI: 10.1093/mmy/myaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 03/15/2025] [Accepted: 05/03/2025] [Indexed: 05/08/2025] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been used for its immunomodulatory properties to enhance therapeutic outcomes and improve cure rates in fungal infections. However, the mechanisms of GM-CSF action in various fungal infections have not been systematically summarized in current literature, and the reliability and broad effectiveness of clinical data remain uncertain. This review provides a comprehensive analysis of how GM-CSF supports host defense against infections caused by specific fungal pathogens. These pathogens include yeasts (Candida spp., Cryptococcus spp.), filamentous fungi (Aspergillus spp., Mucorales, dematiaceous fungi), and thermally dimorphic fungi (Histoplasma capsulatum, Talaromyces marneffei, Paracoccidioides brasiliensis, and Blastomyces dermatitidis). These insights underscore the potential of GM-CSF as a promising adjunctive therapy in combating challenging fungal infections.
Collapse
Affiliation(s)
- Qi Dong
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Weiwei Wu
- Department of Dermatology, Affiliated Dermatology Hospital of Hainan Medical University, Haikou, Hainan, China
- Department of Dermatology, the Fifth People's Hospital of Hainan Province, Haikou, Hainan, China
| | - Ruijun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
3
|
Boisson-Dupuis S, Bastard P, Béziat V, Bustamante J, Cobat A, Jouanguy E, Puel A, Rosain J, Zhang Q, Zhang SY, Boisson B. The monogenic landscape of human infectious diseases. J Allergy Clin Immunol 2025; 155:768-783. [PMID: 39724971 PMCID: PMC11875930 DOI: 10.1016/j.jaci.2024.12.1078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
The spectrum of known monogenic inborn errors of immunity is growing, with certain disorders underlying a specific and narrow range of infectious diseases. These disorders reveal the core mechanisms by which these infections occur in various settings, including inherited and acquired immunodeficiencies, thereby delineating the essential mechanisms of protective immunity to the corresponding pathogens. These findings also have medical implications, facilitating diagnosis and improving the management of individuals at risk of disease.
Collapse
Affiliation(s)
- Stéphanie Boisson-Dupuis
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jacinta Bustamante
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Aurélie Cobat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jérémie Rosain
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Qian Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Shen-Ying Zhang
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| |
Collapse
|
4
|
Tao Z, Pu Q, Shen Y, Zhang S, Wang C, Hu Z, Jin Y, Zhu X, Weng Y. Clinical characteristics and prognostic factors of pulmonary and extrapulmonary cryptococcosis. BMC Infect Dis 2024; 24:1018. [PMID: 39304813 DOI: 10.1186/s12879-024-09895-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Cryptococcosis is progressively acknowledged among people, irrespective of the human with or without immunodeficiency virus (HIV). This change in epidemiology has been recorded in recent years, prompting closer examination and a broader understanding of the disease manifestations and risk factors. METHODS The data of cryptococcal infections in China during 11 years were retrospectively analyzed. According to the position of infection, the patients were categorized into the pulmonary infection group and extrapulmonary infection group. The composition of the two groups was compared, and the potential risk factors of disseminated infection were analyzed. Logistic regression was used to analyze the prognostic risk factors of the disease. RESULTS A total of 165 patients were enrolled. 113 (68.5%) were male, and the age was 47.49 (18-82) years. 101 cases (61.2%) had a normal immune function and 64 cases (38.8%) had impaired immune function. 45 patients had extrapulmonary infection, involving the central nervous system, bone and joint, skin and bloodstream, and 120 patients had simple pulmonary infection. The mortality of the extrapulmonary infection group (48.9%) was significantly higher than that of the pulmonary infection group (0.8%). According to univariate logistic regression analysis, immune status (hazard ratio [HR], 4.476; 95% confidence interval [CI], 1.725-11.618; P = 0.002), infection position ([HR], 113.826; [CI], 14.607-886.967; P < 0.001), white blood cell count, ([HR],1.209;[CI], 1.054-1.386; P = 0.007), hemoglobin ([HR], 0.970; [CI], 0.955-0.986; P < 0.001), platelet count ([HR], 0.993; [CI], 0.987-0.999; P = 0.026), neutrophil percentage ([HR], 1.115; [CI], 1.065-1.168; P < 0.001), lymphocyte percentage ([HR], 0.875; [CI], 0.827-0.927; P < 0.001), neutrophil-to-lymphocyte Ratio (NLR) ([HR], 1.144; [CI], 1.072-1.221; P < 0.001), monocyte percentage ([HR], 0.752; [CI], 0.618-0.915; P = 0.004) were related to the prognosis. Multivariate logistic regression analysis showed that the infection position was remained related to the prognosis with statistical significance ([HR], 0.018; [CI], 0.001-0.384; P = 0.001). CONCLUSION Extrapulmonary infection of Cryptococcosis is an important risk factor for prognosis. High levels of neutrophils and NLR, and low levels of lymphocytes and monocytes may lead to disseminated infection of Cryptococcosis. Further studies are needed to reduce the occurrence rate of extrapulmonary infection and mortality.
Collapse
Affiliation(s)
- Ziwei Tao
- Department of Infectious Disease, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Qinqin Pu
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Yongli Shen
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Sicheng Zhang
- Department of Acute and Critical Care Medicine, Hefei First People's Hospital, Hefei, 230001, China
| | - Chuanyou Wang
- Department of Infectious Disease, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Zhe Hu
- Department of Infectious Disease, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China
| | - Yi Jin
- Department of Gastroenterology, Jiangsu Provincial Rongjun Hospital, Wuxi, 214000, China
| | - Xiaowu Zhu
- Department of Infectious Disease, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230000, China.
| | - Yali Weng
- Department of Infectious Disease, the First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
5
|
Lo YF, Wang SY, Wu YH, Ho MW, Yeh CF, Wu TY, Peng JJ, Lin YN, Ding JY, Shih HP, Lo CC, Chan YP, Rau CS, Kuo CY, Tu KH, Lei WT, Chen YC, Ku CL. The Pathogenic Role of Anti-Granulocyte-Macrophage Colony-Stimulating Factor Autoantibodies in the Nocardiosis with the Central Nervous System Involvement. J Clin Immunol 2024; 44:176. [PMID: 39133333 DOI: 10.1007/s10875-024-01775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/26/2024] [Indexed: 08/13/2024]
Abstract
PURPOSE Anti-granulocyte-macrophage colony-stimulating factor autoantibodies (anti-GM-CSF Abs) are implicated in the pathogenesis of Cryptococcus gattii (C. gattii) infection and pulmonary alveolar proteinosis (PAP). Their presence has also been noted in nocardiosis cases, particularly those with disseminated disease. This study delineates a case series characterizing clinical features and specificity of anti-GM-CSF Abs in nocardiosis patients. METHODS In this study, eight patients were recruited to determine the presence or absence of anti-GM-CSF Abs. In addition to the detailed description of the clinical course, we thoroughly investigated the autoantibodies regarding the characteristics, isotypes, subclasses, titers, and neutralizing capacities by utilizing the plasma samples from patients. RESULTS Of eight patients, five tested positive for anti-GM-CSF Abs, all with central nervous system (CNS) involvement; patients negative for these antibodies did not develop CNS nocardiosis. Distinct from previously documented cases, none of our patients with anti-GM-CSF Abs exhibited PAP symptoms. The titer and neutralizing activity of anti-GM-CSF Abs in our cohort did not significantly deviate from those found in C. gattii cryptococcosis and PAP patients. Uniquely, one individual (Patient 3) showed a minimal titer and neutralizing action of anti-GM-CSF Abs, with no relation to disease severity. Moreover, IgM autoantibodies were notably present in all CNS nocardiosis cases investigated. CONCLUSION The presence of anti-GM-CSF Abs suggests an intrinsic immunodeficiency predisposing individuals toward CNS nocardiosis. The presence of anti-GM-CSF Abs helps to elucidate vulnerability to CNS nocardiosis, even with low titer of autoantibodies. Consequently, systematic screening for anti-GM-CSF Abs should be considered a crucial diagnostic step for nocardiosis patients.
Collapse
Affiliation(s)
- Yu-Fang Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Shang-Yu Wang
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Division of General Surgery, Department of Surgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hui Wu
- Division of Infectious Diseases, Department of Internal Medicine, PingTung Christian Hospital and Future clinic, PingTung, Taiwan
| | - Mao-Wang Ho
- Division of Infectious Diseases, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Fu Yeh
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Linkou Medical Centre, Taoyuan, Taiwan
| | - Tsai-Yi Wu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Jhan-Jie Peng
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - You-Ning Lin
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Jing-Ya Ding
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Han-Po Shih
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Chia-Chi Lo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Pei Chan
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
| | - Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Chen-Yen Kuo
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Hua Tu
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Wei-Te Lei
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan
- Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Mackay Memorial Hospital, Hsinchu City, Taiwan
- Section of Immunology, Rheumatology, and Allergy Department of Pediatrics, Hsinchu Municipal Mackay Children's Hospital, Hsinchu City, Taiwan
| | - Yi-Chun Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist, Kaohsiung City, 833401, Taiwan.
| | - Cheng-Lung Ku
- Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist, Taoyuan City, 33302, Taiwan.
- Center for Molecular and Clinical and Immunology, Chang Gung University, Taoyuan, Taiwan.
- Division of Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Nephrology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
| |
Collapse
|
6
|
Chang CC, Harrison TS, Bicanic TA, Chayakulkeeree M, Sorrell TC, Warris A, Hagen F, Spec A, Oladele R, Govender NP, Chen SC, Mody CH, Groll AH, Chen YC, Lionakis MS, Alanio A, Castañeda E, Lizarazo J, Vidal JE, Takazono T, Hoenigl M, Alffenaar JW, Gangneux JP, Soman R, Zhu LP, Bonifaz A, Jarvis JN, Day JN, Klimko N, Salmanton-García J, Jouvion G, Meya DB, Lawrence D, Rahn S, Bongomin F, McMullan BJ, Sprute R, Nyazika TK, Beardsley J, Carlesse F, Heath CH, Ayanlowo OO, Mashedi OM, Queiroz-Telles Filho F, Hosseinipour MC, Patel AK, Temfack E, Singh N, Cornely OA, Boulware DR, Lortholary O, Pappas PG, Perfect JR. Global guideline for the diagnosis and management of cryptococcosis: an initiative of the ECMM and ISHAM in cooperation with the ASM. THE LANCET. INFECTIOUS DISEASES 2024; 24:e495-e512. [PMID: 38346436 PMCID: PMC11526416 DOI: 10.1016/s1473-3099(23)00731-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/02/2023] [Accepted: 11/13/2023] [Indexed: 03/21/2024]
Abstract
Cryptococcosis is a major worldwide disseminated invasive fungal infection. Cryptococcosis, particularly in its most lethal manifestation of cryptococcal meningitis, accounts for substantial mortality and morbidity. The breadth of the clinical cryptococcosis syndromes, the different patient types at-risk and affected, and the vastly disparate resource settings where clinicians practice pose a complex array of challenges. Expert contributors from diverse regions of the world have collated data, reviewed the evidence, and provided insightful guideline recommendations for health practitioners across the globe. This guideline offers updated practical guidance and implementable recommendations on the clinical approaches, screening, diagnosis, management, and follow-up care of a patient with cryptococcosis and serves as a comprehensive synthesis of current evidence on cryptococcosis. This Review seeks to facilitate optimal clinical decision making on cryptococcosis and addresses the myriad of clinical complications by incorporating data from historical and contemporary clinical trials. This guideline is grounded on a set of core management principles, while acknowledging the practical challenges of antifungal access and resource limitations faced by many clinicians and patients. More than 70 societies internationally have endorsed the content, structure, evidence, recommendation, and pragmatic wisdom of this global cryptococcosis guideline to inform clinicians about the past, present, and future of care for a patient with cryptococcosis.
Collapse
Affiliation(s)
- Christina C Chang
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia; Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, Australia; Centre for the AIDS Programme of Research in South Africa, Durban, South Africa.
| | - Thomas S Harrison
- Institute of Infection and Immunity, St George's University London, London, UK; Clinical Academic Group in Infection and Immunity, St George's University Hospitals NHS Foundation Trust, London, UK; Medical Research Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Tihana A Bicanic
- Institute of Infection and Immunity, St George's University London, London, UK; Clinical Academic Group in Infection and Immunity, St George's University Hospitals NHS Foundation Trust, London, UK; Medical Research Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Methee Chayakulkeeree
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Tania C Sorrell
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia; Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia
| | - Adilia Warris
- Medical Research Centre for Medical Mycology, University of Exeter, Exeter, UK; Department of Infectious Diseases, Great Ormond Street Hospital, London, UK
| | - Ferry Hagen
- Faculty of Science, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands; Department of Medical Mycology, Westerdijk Fungal Biodiversity Institute, Utrecht, Netherlands; Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Andrej Spec
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St Louis, MO, USA
| | - Rita Oladele
- College of Medicine, University of Lagos, Lagos, Nigeria
| | - Nelesh P Govender
- Institute of Infection and Immunity, St George's University London, London, UK; Medical Research Centre for Medical Mycology, University of Exeter, Exeter, UK; Department of Clinical Microbiology and Infectious Diseases, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sharon C Chen
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia; Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, Institute for Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead, NSW, Australia
| | - Christopher H Mody
- Department of Microbiology, Immunology and Infectious Diseases, Department of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Andreas H Groll
- Infectious Disease Research Program, and Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany; Center for Bone Marrow Transplantation, and Department of Pediatric Hematology/Oncology, University Children's Hospital, Münster, Germany
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy & Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alexandre Alanio
- Institut Pasteur, Centre National de Référence Mycoses Invasives et Antifongiques, Groupe de recherche Mycologie Translationnelle, Département de Mycologie, Université Paris Cité, Paris, France; Laboratoire de parasitologie-mycologie, AP-HP, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | | | - Jairo Lizarazo
- Department of Internal Medicine, Hospital Universitario Erasmo Meoz, Faculty of Health, Univesidad de Pamplona, Cúcuta, Colombia
| | - José E Vidal
- Departmento de Neurologia, Instituto de Infectologia Emílio Ribas, São Paulo, Brazil; Departamento de Moléstias Infecciosas e Parasitárias, Hospital das Clinicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Instituto de Medicina Tropical, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Takahiro Takazono
- Department of Infectious Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan; Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Martin Hoenigl
- Division of Infectious Diseases, Translational Medical Mycology Research Unit, European Confederation of Medical Mycology Excellence Center for Medical Mycology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria
| | - Jan-Willem Alffenaar
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia; Department of Pharmacy, Westmead Hospital, Westmead, NSW, Australia; School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jean-Pierre Gangneux
- Institute for Health, Environment and Work Research-Irset, Inserm UMR_S 1085, University of Rennes, Rennes, France; Laboratory for Parasitology and Mycology, Centre National de Référence Mycoses Invasives et Antifongiques LA Asp-C, University Hospital of Rennes, Rennes, France
| | - Rajeev Soman
- Jupiter Hospital, Pune, India; Deenanath Mangeshkar Hospital, Pune, India; Hinduja Hospital, Mumbai, India
| | - Li-Ping Zhu
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Fudan University, Shanghai China
| | - Alexandro Bonifaz
- Hospital General de México, Dermatology Service, Mycology section, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Joseph N Jarvis
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Jeremy N Day
- Department of Clinical Microbiology and Infection, Royal Devon and Exeter University Hospital NHS Trust, Exeter, UK
| | - Nikolai Klimko
- Department of Clinical Mycology, Allergy and Immunology, I Mechnikov North Western State Medical University, Staint Petersburg, Russia
| | - Jon Salmanton-García
- Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Partner Site Bonn-Cologne, German Centre for Infection Research, Cologne, Germany
| | - Grégory Jouvion
- Histology and Pathology Unit, Ecole nationale vétérinaire d'Alfort, Maisons-Alfort, France; Dynamyc Team, Université Paris Est Créteil and Ecole nationale vétérinaire d'Alfort, Créteil, France
| | - David B Meya
- Infectious Diseases Institute, School of Medicine, College of Heath Sciences, Makerere University, Kampala, Uganda
| | - David Lawrence
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK; Botswana Harvard AIDS Institute Partnership, Gaborone, Botswana
| | - Sebastian Rahn
- Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Partner Site Bonn-Cologne, German Centre for Infection Research, Cologne, Germany
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Gulu University, Gulu, Uganda
| | - Brendan J McMullan
- Discipline of Paediatrics, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia; Department of Infectious Diseases, Sydney Children's Hospital, Randwick, Sydney, NSW, Australia
| | - Rosanne Sprute
- Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Partner Site Bonn-Cologne, German Centre for Infection Research, Cologne, Germany
| | - Tinashe K Nyazika
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW, Australia; Department of Infectious Diseases, Westmead Hospital, Westmead, NSW, Australia
| | - Fabianne Carlesse
- Pediatric Department, Federal University of São Paulo, São Paulo, Brazil; Oncology Pediatric Institute-IOP-GRAACC, Federal Univeristy of São Paulo, São Paulo, Brazil
| | - Christopher H Heath
- Department of Microbiology, Fiona Stanley Hospital Network, PathWest Laboratory Medicine, Perth, WA, Australia; Department of Infectious Diseases, Fiona Stanley Hospital, Perth, WA, Australia; UWA Medical School, Internal Medicine, The University of Western Australia, Perth, WA, Australia
| | - Olusola O Ayanlowo
- Dermatology Unit, Department of Medicine, Lagos University Teaching Hospital, University of Lagos, Lagos, Nigeria
| | - Olga M Mashedi
- Centre for Respiratory Diseases Research, Kenya Medical Research Institute, Nairobi, Kenya
| | | | - Mina C Hosseinipour
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA; UNC Project Malawi, Lilongwe, Malawi
| | - Atul K Patel
- Department of Infectious Diseases, Sterling Hospitals, Ahmedabad, India
| | - Elvis Temfack
- Africa Centers for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Nina Singh
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Oliver A Cornely
- Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf and Excellence Center for Medical Mycology, Department I of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Partner Site Bonn-Cologne, German Centre for Infection Research, Cologne, Germany; Clinical Trials Centre Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - David R Boulware
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Olivier Lortholary
- Université de Paris Cité, APHP, Service des Maladies Infectieuses et Tropicales, Hôpital Necker-Enfants Malades, Centre d'Infectiologie Necker-Pasteur, Institut Imagine, Paris, France; Institut Pasteur, CNRS, Unité de Mycologie Moléculaire, Centre National de Référence Mycoses Invasives et Antifongiques, UMR 2000, Paris, France
| | - Peter G Pappas
- Mycoses Study Group Central Unit, Division of Infectious Diseases, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - John R Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University Medical Center, Durham, NC, USA; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
7
|
Casanova JL, Peel J, Donadieu J, Neehus AL, Puel A, Bastard P. The ouroboros of autoimmunity. Nat Immunol 2024; 25:743-754. [PMID: 38698239 DOI: 10.1038/s41590-024-01815-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/13/2024] [Indexed: 05/05/2024]
Abstract
Human autoimmunity against elements conferring protective immunity can be symbolized by the 'ouroboros', a snake eating its own tail. Underlying infection is autoimmunity against three immunological targets: neutrophils, complement and cytokines. Autoantibodies against neutrophils can cause peripheral neutropenia underlying mild pyogenic bacterial infections. The pathogenic contribution of autoantibodies against molecules of the complement system is often unclear, but autoantibodies specific for C3 convertase can enhance its activity, lowering complement levels and underlying severe bacterial infections. Autoantibodies neutralizing granulocyte-macrophage colony-stimulating factor impair alveolar macrophages, thereby underlying pulmonary proteinosis and airborne infections, type I interferon viral diseases, type II interferon intra-macrophagic infections, interleukin-6 pyogenic bacterial diseases and interleukin-17A/F mucocutaneous candidiasis. Each of these five cytokine autoantibodies underlies a specific range of infectious diseases, phenocopying infections that occur in patients with the corresponding inborn errors. In this Review, we analyze this ouroboros of immunity against immunity and posit that it should be considered as a factor in patients with unexplained infection.
Collapse
Affiliation(s)
- Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA.
- Howard Hughes Medical Institute, New York, NY, USA.
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France.
- Paris Cité University, Imagine Institute, Paris, France.
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| | - Jessica Peel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
| | - Jean Donadieu
- Trousseau Hospital for Sick Children, Centre de référence des neutropénies chroniques, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Anna-Lena Neehus
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
| | - Paul Bastard
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Paris Cité University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
8
|
Cheng A, Holland SM. Anti-cytokine autoantibodies: mechanistic insights and disease associations. Nat Rev Immunol 2024; 24:161-177. [PMID: 37726402 DOI: 10.1038/s41577-023-00933-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/21/2023]
Abstract
Anti-cytokine autoantibodies (ACAAs) are increasingly recognized as modulating disease severity in infection, inflammation and autoimmunity. By reducing or augmenting cytokine signalling pathways or by altering the half-life of cytokines in the circulation, ACAAs can be either pathogenic or disease ameliorating. The origins of ACAAs remain unclear. Here, we focus on the most common ACAAs in the context of disease groups with similar characteristics. We review the emerging genetic and environmental factors that are thought to drive their production. We also describe how the profiling of ACAAs should be considered for the early diagnosis, active monitoring, treatment or sub-phenotyping of diseases. Finally, we discuss how understanding the biology of naturally occurring ACAAs can guide therapeutic strategies.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
9
|
Vinh DC. From Mendel to mycoses: Immuno-genomic warfare at the human-fungus interface. Immunol Rev 2024; 322:28-52. [PMID: 38069482 DOI: 10.1111/imr.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/06/2023] [Accepted: 11/14/2023] [Indexed: 03/20/2024]
Abstract
Fungi are opportunists: They particularly require a defect of immunity to cause severe or disseminated disease. While often secondary to an apparent iatrogenic cause, fungal diseases do occur in the absence of one, albeit infrequently. These rare cases may be due to an underlying genetic immunodeficiency that can present variably in age of onset, severity, or other infections, and in the absence of a family history of disease. They may also be due to anti-cytokine autoantibodies. This review provides a background on how human genetics or autoantibodies underlie cases of susceptibility to severe or disseminated fungal disease. Subsequently, the lessons learned from these inborn errors of immunity marked by fungal disease (IEI-FD) provide a framework to begin to mechanistically decipher fungal syndromes, potentially paving the way for precision therapy of the mycoses.
Collapse
Affiliation(s)
- Donald C Vinh
- Infectious Diseases - Hematology/Oncology/Transplant Clinical Program, Department of Medicine, McGill University Health Centre, Montreal, Quebec, Canada
- Centre of Excellence for Genetic Research in Infection and Immunity, Research Institute - McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
10
|
Bastard P, Gervais A, Le Voyer T, Philippot Q, Cobat A, Rosain J, Jouanguy E, Abel L, Zhang SY, Zhang Q, Puel A, Casanova JL. Human autoantibodies neutralizing type I IFNs: From 1981 to 2023. Immunol Rev 2024; 322:98-112. [PMID: 38193358 PMCID: PMC10950543 DOI: 10.1111/imr.13304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Human autoantibodies (auto-Abs) neutralizing type I IFNs were first discovered in a woman with disseminated shingles and were described by Ion Gresser from 1981 to 1984. They have since been found in patients with diverse conditions and are even used as a diagnostic criterion in patients with autoimmune polyendocrinopathy syndrome type 1 (APS-1). However, their apparent lack of association with viral diseases, including shingles, led to wide acceptance of the conclusion that they had no pathological consequences. This perception began to change in 2020, when they were found to underlie about 15% of cases of critical COVID-19 pneumonia. They have since been shown to underlie other severe viral diseases, including 5%, 20%, and 40% of cases of critical influenza pneumonia, critical MERS pneumonia, and West Nile virus encephalitis, respectively. They also seem to be associated with shingles in various settings. These auto-Abs are present in all age groups of the general population, but their frequency increases with age to reach at least 5% in the elderly. We estimate that at least 100 million people worldwide carry auto-Abs neutralizing type I IFNs. Here, we briefly review the history of the study of these auto-Abs, focusing particularly on their known causes and consequences.
Collapse
Affiliation(s)
- Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Pediatric Hematology-Immunology and Rheumatology Unit, Necker Hospital for Sick Children, Assistante Publique-Hôpitaux de Paris (AP-HP), Paris, France, EU
| | - Adrian Gervais
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Tom Le Voyer
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Shen-Ying Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Qian Zhang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France, EU
- Paris Cité University, Imagine Institute, Paris, France, EU
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children, APHP, Paris, France, EU
| |
Collapse
|
11
|
Arts RJW, Janssen NAF, van de Veerdonk FL. Anticytokine Autoantibodies in Infectious Diseases: A Practical Overview. Int J Mol Sci 2023; 25:515. [PMID: 38203686 PMCID: PMC10778971 DOI: 10.3390/ijms25010515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Anticytokine autoantibodies (ACAAs) are a fascinating group of antibodies that have gained more and more attention in the field of autoimmunity and secondary immunodeficiencies over the years. Some of these antibodies are characterized by their ability to target and neutralize specific cytokines. ACAAs can play a role in the susceptibility to several infectious diseases, and their infectious manifestations depending on which specific immunological pathway is affected. In this review, we will give an outline per infection in which ACAAs might play a role and whether additional immunomodulatory treatment next to antimicrobial treatment can be considered. Finally, we describe the areas for future research on ACAAs.
Collapse
Affiliation(s)
- Rob J. W. Arts
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
| | - Nico A. F. Janssen
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
- Center of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
- Department of Infectious Diseases, The National Aspergillosis Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester M23 9LT, UK
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| | - Frank L. van de Veerdonk
- Department of Internal Medicine, Radboud Institute of Molecular Life Sciences (RIMLS), Radboudumc Center for Infectious Diseases (RCI), Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.A.F.J.); (F.L.v.d.V.)
- Center of Expertise in Mycology Radboudumc, Canisius-Wilhelmina Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| |
Collapse
|
12
|
Davis MJ, Martin RE, Pinheiro GM, Hoke ES, Moyer S, Mayer-Barber KD, Chang YC, Kwon-Chung KJ. MDA5 signaling induces type 1 IFN- and IL-1-dependent lung vascular permeability which protects mice from opportunistic fungal infection. Front Immunol 2022; 13:931194. [PMID: 35967332 PMCID: PMC9368195 DOI: 10.3389/fimmu.2022.931194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Lungs balance threat from primary viral infection, secondary infection, and inflammatory damage. Severe pulmonary inflammation induces vascular permeability, edema, and organ dysfunction. We previously demonstrated that poly(I:C) (pICLC) induced type 1 interferon (t1IFN) protected mice from Cryptococcus gattii (Cg) via local iron restriction. Here we show pICLC increased serum protein and intravenously injected FITC-dextran in the lung airspace suggesting pICLC induces vascular permeability. Interestingly, pICLC induced a pro-inflammatory signature with significant expression of IL-1 and IL-6 which depended on MDA5 and t1IFN. Vascular permeability depended on MDA5, t1IFN, IL-1, and IL-6. T1IFN also induced MDA5 and other MDA5 signaling components suggesting that positive feedback contributes to t1IFN dependent expression of the pro-inflammatory signature. Vascular permeability, induced by pICLC or another compound, inhibited Cg by limiting iron. These data suggest that pICLC induces t1IFN which potentiates pICLC-MDA5 signaling increasing IL-1 and IL-6 resulting in leakage of antimicrobial serum factors into lung airspace. Thus, induced vascular permeability may act as an innate defense mechanism against opportunistic fungal infection, such as cryptococcosis, and may be exploited as a host-directed therapeutic target.
Collapse
Affiliation(s)
- Michael J. Davis
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Rachel E. Martin
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Giovana M. Pinheiro
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Elizabeth S. Hoke
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shannon Moyer
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Katrin D. Mayer-Barber
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
- *Correspondence: Kyung J. Kwon-Chung,
| |
Collapse
|
13
|
An Immunogenic and Slow-Growing Cryptococcal Strain Induces a Chronic Granulomatous Infection in Murine Lungs. Infect Immun 2022; 90:e0058021. [PMID: 35587201 PMCID: PMC9202370 DOI: 10.1128/iai.00580-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many successful pathogens cause latent infections, remaining dormant within the host for years but retaining the ability to reactivate to cause symptomatic disease. The human opportunistic fungal pathogen Cryptococcus neoformans establishes latent pulmonary infections in immunocompetent individuals upon inhalation from the environment. These latent infections are frequently characterized by granulomas, or foci of chronic inflammation, that contain dormant and persistent cryptococcal cells. Immunosuppression can cause these granulomas to break down and release fungal cells that proliferate, disseminate, and eventually cause lethal cryptococcosis. This course of fungal latency and reactivation is understudied due to limited models, as chronic pulmonary granulomas do not typically form in mouse cryptococcal infections. A loss-of-function mutation in the Cryptococcus-specific MAR1 gene was previously described to alter cell surface remodeling in response to host signals. Here, we demonstrate that the mar1Δ mutant strain persists long term in a murine inhalation model of cryptococcosis, inducing a chronic pulmonary granulomatous response. We find that murine infections with the mar1Δ mutant strain are characterized by reduced fungal burden, likely due to the low growth rate of the mar1Δ mutant strain at physiological temperature, and an altered host immune response, likely due to inability of the mar1Δ mutant strain to properly employ virulence factors. We propose that this combination of features in the mar1Δ mutant strain collectively promotes the induction of a more chronic inflammatory response and enables long-term fungal persistence within these granulomatous regions.
Collapse
|
14
|
Abstract
Invasive fungal diseases are rare in individuals with intact immunity. This, together with the fact that there are only a few species that account for most mycotic diseases, implies a remarkable natural resistance to pathogenic fungi. Mammalian immunity to fungi rests on two pillars, powerful immune mechanisms and elevated temperatures that create a thermal restriction zone for most fungal species. Conditions associated with increased susceptibility generally reflect major disturbances of immune function involving both the cellular and humoral innate and adaptive arms, which implies considerable redundancy in host defense mechanisms against fungi. In general, tissue fungal invasion is controlled through either neutrophil or granulomatous inflammation, depending on the fungal species. Neutrophils are critical against Candida spp. and Aspergillus spp. while macrophages are essential for controlling mycoses due to Cryptococcus spp., Histoplasma spp., and other fungi. The increasing number of immunocompromised patients together with climate change could significantly increase the prevalence of fungal diseases.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA;
| |
Collapse
|
15
|
Lee E, Miller C, Ataya A, Wang T. Opportunistic Infection Associated with Elevated GM-CSF Autoantibodies: A Case Series and Review of the Literature. Open Forum Infect Dis 2022; 9:ofac146. [PMID: 35531378 PMCID: PMC9070348 DOI: 10.1093/ofid/ofac146] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/17/2022] [Indexed: 11/22/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to play a key role in enhancing multiple immune functions that affect response to infectious pathogens including antigen presentation, complement- and antibody-mediated phagocytosis, microbicidal activity, and neutrophil chemotaxis. Reduced GM-CSF activity and immune response provides a mechanism for increased infection risk associated with autoimmune pulmonary alveolar proteinosis (aPAP) and other disorders involving the presence of GM-CSF autoantibodies. We present a case series of five patients with persistent or unusual pulmonary and central nervous system opportunistic infections (Cryptococcus gattii, Flavobacterium, Nocardia) and elevated GM-CSF autoantibody levels, as well as 27 cases identified on systematic review of the literature.
Collapse
Affiliation(s)
- Elinor Lee
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Christopher Miller
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, USA
| | - Tisha Wang
- UCLA Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
16
|
Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med 2022; 219:e20211387. [PMID: 35319722 PMCID: PMC8952682 DOI: 10.1084/jem.20211387] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
The vast interindividual clinical variability observed in any microbial infection-ranging from silent infection to lethal disease-is increasingly being explained by human genetic and immunological determinants. Autoantibodies neutralizing specific cytokines underlie the same infectious diseases as inborn errors of the corresponding cytokine or response pathway. Autoantibodies against type I IFNs underlie COVID-19 pneumonia and adverse reactions to the live attenuated yellow fever virus vaccine. Autoantibodies against type II IFN underlie severe disease caused by environmental or tuberculous mycobacteria, and other intra-macrophagic microbes. Autoantibodies against IL-17A/F and IL-6 are less common and underlie mucocutaneous candidiasis and staphylococcal diseases, respectively. Inborn errors of and autoantibodies against GM-CSF underlie pulmonary alveolar proteinosis; associated infections are less well characterized. In individual patients, autoantibodies against cytokines preexist infection with the pathogen concerned and underlie the infectious disease. Human antibody-driven autoimmunity can interfere with cytokines that are essential for protective immunity to specific infectious agents but that are otherwise redundant, thereby underlying specific infectious diseases.
Collapse
Affiliation(s)
- Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Paul Bastard
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique – Hôpitaux de Paris, Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut national de la santé et de la recherche médicale, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, Paris, France
| |
Collapse
|
17
|
Wang Y, Pawar S, Dutta O, Wang K, Rivera A, Xue C. Macrophage Mediated Immunomodulation During Cryptococcus Pulmonary Infection. Front Cell Infect Microbiol 2022; 12:859049. [PMID: 35402316 PMCID: PMC8987709 DOI: 10.3389/fcimb.2022.859049] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022] Open
Abstract
Macrophages are key cellular components of innate immunity, acting as the first line of defense against pathogens to modulate homeostatic and inflammatory responses. They help clear pathogens and shape the T-cell response through the production of cytokines and chemokines. The facultative intracellular fungal pathogen Cryptococcus neoformans has developed a unique ability to interact with and manipulate host macrophages. These interactions dictate how Cryptococcus infection can remain latent or how dissemination within the host is achieved. In addition, differences in the activities of macrophages have been correlated with differential susceptibilities of hosts to Cryptococcus infection, highlighting the importance of macrophages in determining disease outcomes. There is now abundant information on the interaction between Cryptococcus and macrophages. In this review we discuss recent advances regarding macrophage origin, polarization, activation, and effector functions during Cryptococcus infection. The importance of these strategies in pathogenesis and the potential of immunotherapy for cryptococcosis treatment is also discussed.
Collapse
Affiliation(s)
- Yan Wang
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
- Department of Microbiology and Immunology , Guangdong Medical University, Dongguan, China
| | - Siddhi Pawar
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Orchi Dutta
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| | - Chaoyang Xue
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, NJ, United States
| |
Collapse
|
18
|
Cheng A, Holland SM. Anticytokine autoantibodies: Autoimmunity trespassing on antimicrobial immunity. J Allergy Clin Immunol 2022; 149:24-28. [PMID: 34998474 PMCID: PMC9034745 DOI: 10.1016/j.jaci.2021.11.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 01/03/2023]
Abstract
Anticytokine autoantibodies can cause immunodeficiency or dysregulate immune responses. They may phenocopy genetically defined primary immunodeficiencies. We review current anti-type 1 and anti-type 2 interferon; anti-IL-12/23, anti-IL-17, and anti-GM-CSF autoantibodies; HLA associations; disease associations; and mechanistically based treatment options. Suspecting the presence of these autoantibodies in patients and identifying them at the onset of symptoms should ameliorate disease and improve outcomes.
Collapse
Affiliation(s)
- Aristine Cheng
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA,Division of Infectious Diseases, Department of Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Steven M. Holland
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
19
|
von Stemann JH, Gjærde LK, Haastrup EK, Minculescu L, Brooks PT, Sengeløv H, Hansen MB, Ostrowski SR. Cytokine autoantibodies are stable throughout the haematopoietic stem cell transplantation course and are associated with distinct biomarker and blood cell profiles. Sci Rep 2021; 11:23971. [PMID: 34907183 PMCID: PMC8671426 DOI: 10.1038/s41598-021-01952-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/19/2021] [Indexed: 01/15/2023] Open
Abstract
Cytokine-specific autoantibodies (c-aAbs) represent an emerging field in endogenous immunodeficiencies, and the immunomodulatory potential of c-aAbs is now well documented. Here, we investigated the hypothesis that c-aAbs affects inflammatory, immunoregulatory and injury-related processes and hence the clinical outcome of haematopoietic stem cell transplantation (HSCT). C-aAbs against IL-1α, IL-6, IL-10, IFNα, IFNγ and GM-CSF were measured in 131 HSCT recipients before and after (days + 7, + 14, + 28) HSCT and tested for associations with 33 different plasma biomarkers, leukocyte subsets, platelets and clinical outcomes, including engraftment, GvHD and infections. We found that c-aAb levels were stable over the course of HSCT, including at high titres, with few individuals seeming to acquire high-titre levels of c-aAbs. Both patients with stable and those with acquired high-titre c-aAb levels displayed significant differences in biomarker concentrations and blood cell counts pre-HSCT and at day 28, and the trajectories of these variables varied over the course of HSCT. No clinical outcomes were associated with high-titre c-aAbs. In this first study of c-aAbs in HSCT patients, we demonstrated that high-titre levels of c-aAb may both persist and emerge in patients over the course of HSCT and may be associated with altered immune biomarkers and cell profiles.
Collapse
Affiliation(s)
- Jakob Hjorth von Stemann
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.
| | - Lars Klingen Gjærde
- Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Eva Kannik Haastrup
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lia Minculescu
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Patrick Terrence Brooks
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Sengeløv
- Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Sisse Rye Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Kuo PH, Wu UI, Pan YH, Wang JT, Wang YC, Sun HY, Sheng WH, Chen YC, Chang SC. Neutralizing anti-GM-CSF autoantibodies in patients with CNS and localized cryptococcosis: a longitudinal follow-up and literature review. Clin Infect Dis 2021; 75:278-287. [PMID: 34718451 DOI: 10.1093/cid/ciab920] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Neutralizing anti-GM-CSF autoantibodies (AAbs) have been increasingly recognized to predispose healthy individuals to disseminated cryptococcosis. However, studies have only considered patients with central nervous system (CNS) infection. No longitudinal study has captured the disease spectrum and clinical course. METHODS We prospectively enrolled adults without human immunodeficiency virus infection who had disseminated or unusual cryptococcosis. We compared the demographics, clinical features, kinetics of serum cryptococcal antigen (CrAg) titers, anti-GM-CSF AAb concentrations, and treatment outcomes between patients with (case patients) and without (control patients) anti-GM-CSF AAbs. Additional reports from the literature were also reviewed. RESULTS Twenty-three patients were enrolled, of whom 6 tested positive for anti-GM-CSF AAbs. All case patients with positive fungal cultures (5/5, 100%) were infected with Cryptococcus gattii VGII. Among them, 3 had exclusively pulmonary involvement, and 1 had only musculoskeletal lesions. Patients with CNS cryptococcosis exhibited a higher serum concentration of anti-GM-CSF AAb than those with extraneural cryptococcosis. Case patients had higher initial and peak levels of serum CrAg and longer duration of antigenemia compared with the control patients. All case patients who had completed antifungal therapy had favorable outcomes without recurrence. CONCLUSIONS Testing for anti-GM-CSF AAbs should be considered for not only previously healthy patients with disseminated cryptococcosis but also those with unexplained, localized cryptococcosis. Recurrence after completion of antifungal therapy was rare despite the persistence of anti-GM-CSF AAbs.
Collapse
Affiliation(s)
- Po-Hsien Kuo
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Un-In Wu
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yi-Hua Pan
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jann-Tay Wang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Chen Wang
- Department of Medical Imaging, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsin-Yun Sun
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wang-Huei Sheng
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shan-Chwen Chang
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
21
|
Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. J Fungi (Basel) 2021; 7:jof7040260. [PMID: 33808500 PMCID: PMC8067209 DOI: 10.3390/jof7040260] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The genus Cryptococcus contains two primary species complexes that are significant opportunistic human fungal pathogens: C. neoformans and C. gattii. In humans, cryptococcosis can manifest in many ways, but most often results in either pulmonary or central nervous system disease. Patients with cryptococcosis can display a variety of symptoms on a spectrum of severity because of the interaction between yeast and host. The bulk of our knowledge regarding Cryptococcus and the mechanisms of disease stem from in vitro experiments and in vivo animal models that make a fair attempt, but do not recapitulate the conditions inside the human host. To better understand the dynamics of initiation and progression in cryptococcal disease, it is important to study the genetic and phenotypic differences in the context of human infection to identify the human and fungal risk factors that contribute to pathogenesis and poor clinical outcomes. In this review, we summarize the current understanding of the different clinical presentations and health outcomes that are associated with pathogenicity and virulence of cryptococcal strains with respect to specific genotypes and phenotypes.
Collapse
|