1
|
Downs AM, Kmiec G, Catavero CM, Wykoff LA, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. Neurobiol Dis 2025; 208:106883. [PMID: 40122182 DOI: 10.1016/j.nbd.2025.106883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/14/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025] Open
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in ex vivo slices, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Christina M Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Luke A Wykoff
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States of America.
| |
Collapse
|
2
|
Hary AT, Chadha S, Mercaldo N, Smith EMC, van der Kouwe AJW, Fischl B, Mount C, Kozanno L, Frosch MP, Augustinack JC. Locus coeruleus tau validates and informs high-resolution MRI in aging and at earliest Alzheimer's pathology stages. Acta Neuropathol Commun 2025; 13:44. [PMID: 40022196 PMCID: PMC11871710 DOI: 10.1186/s40478-025-01957-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/13/2025] [Indexed: 03/03/2025] Open
Abstract
The locus coeruleus (LC) has been identified as a site that develops phosphorylated tau pathology earlier than cerebral cortex. We present data using high-resolution postmortem MRI and validated tau histopathology in controls and the earliest Braak and Braak (BB) stages (BBI-BBII) in LC. The high-resolution ex vivo MRI provides a 3D volume (quantitative), while the histology reveals tau specificity and severity burden (semi-quantitative). We mapped our highly regionally specific LC data onto high-resolution 3D MRI reconstructions of the same samples used in histology (n = 11). We noted significant structural subatrophy between BB 0 and II (30.0% smaller volumes, p = 0.0381), a trend which primarily affected the rostral-most LC (49.2% smaller average volume, p = 0.0381). We show histopathology data on both the LC and neighboring dorsal raphe caudal (DRc), which were assessed at multiple rostrocaudal levels and mapped with highly sensitive tau severity spatial matrices. We observed significant LC tau accumulation between BB I and II (37.6% increase, p < 0.0001), which may reflect pathology change prior to presumptive cognitive impairment at BB III. Tau pathology was most severe in the middle portion of the LC (11.3% greater compared to rostral LC, p = 0.0289) when including BB III. We noted a significant rostrocaudal gradient of DRc tau severity (58.2% decrease between rostral and caudal DRc, p < 0.0001), suggesting selective regional vulnerabilities of both nuclei. Our study represents a rigorous approach to investigating LC and DRc pathology, having multiple histology sections per sublevel and high-resolution MRI to measure the whole LC, without missing slices in a histological only approach. Taken together, our findings provide novel validated data that demonstrate the tau pathology occurring in the LC and DRc during preclinical AD stages, and alongside spatial reconstructions that will serve as valuable references for in vivo LC imaging.
Collapse
Affiliation(s)
- Alexander T Hary
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - Smriti Chadha
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - Nathaniel Mercaldo
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Erin-Marie C Smith
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
| | - André J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Bruce Fischl
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA
- Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Christopher Mount
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Liana Kozanno
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Matthew P Frosch
- Harvard Medical School, Boston, MA, 02115, USA
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, 149 Thirteenth St, Suite 2301, Charlestown, MA, 02129, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
3
|
Moradi F, Mokhtari T. Role of NLRP3 Inflammasome in Chronic Pain and Alzheimer's Disease-A Review. J Biochem Mol Toxicol 2025; 39:e70071. [PMID: 39853846 PMCID: PMC11798427 DOI: 10.1002/jbt.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/17/2024] [Accepted: 11/11/2024] [Indexed: 01/26/2025]
Abstract
The coexistence of Alzheimer's disease (AD) and chronic pain (CP) in the elderly population has been extensively documented, and a growing body of evidence supports the potential interconnections between these two conditions. This comprehensive review explores the mechanisms by which CP may contribute to the development and progression of AD, with a particular focus on neuroinflammatory pathways and the role of microglia, as well as the activation of the NLR family pyrin domain containing 3 (NLRP3) inflammasome. The review proposes that prolonged pain processing in critical brain regions can dysregulate the activity of the NLRP3 inflammasome within microglia, leading to the overproduction of pro-inflammatory cytokines and excessive oxidative stress in these regions. This aberrant microglial response also results in localized neuroinflammation in brain areas crucial for cognitive function. Additionally, CP as a persistent physiological and psychological stressor may be associated with hypothalamic-pituitary-adrenal (HPA) axis dysfunction, systemic inflammation, disruption of the blood-brain barrier (BBB), and neuroinflammation. These pathophysiological changes can cause morphological and functional impairments in brain regions responsible for cognition, memory, and neurotransmitter production, potentially contributing to the development and progression of CP-associated AD. Resultant neuroinflammation can further promote amyloid-beta (Aβ) plaque deposition, a hallmark of AD pathology. Potential therapeutic interventions targeting these neuroinflammatory pathways, particularly through the regulation of microglial NLRP3 activation, hold promise for improving outcomes in individuals with comorbid CP and AD. However, further research is required to fully elucidate the complex interplay between these conditions and develop effective treatment strategies.
Collapse
Affiliation(s)
- Fatemeh Moradi
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, 42 East Laurel Road, Stratford, NJ 08084, USA
| | - Tahmineh Mokhtari
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Hubei University of Medicine, Shiyan, People’s Republic of China
- Department of Entomology and Nematology, UC Davis Comprehensive Cancer Center, University of California Davis, Davis, USA
| |
Collapse
|
4
|
Downs AM, Kmiec G, Catavero CM, McElligott ZA. Loss of excitatory inputs and decreased tonic and evoked activity of locus coeruleus neurons in aged P301S mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.17.633373. [PMID: 39868303 PMCID: PMC11761406 DOI: 10.1101/2025.01.17.633373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Tau pathology in the locus coeruleus (LC) is associated with several neurodegenerative conditions including Alzheimer's disease and frontotemporal dementia. Phosphorylated tau accumulates in the LC and results in inflammation, synaptic loss, and eventually cell death as the disease progresses. Loss of LC neurons and noradrenergic innervation is thought to contribute to the symptoms of cognitive decline later in disease. While loss and degeneration of LC neurons has been well studied, less is known about changes in LC physiology at advanced stages of tau pathology that precedes neurodegeneration. In this study, we investigated the ex vivo electrophysiological properties of LC neurons in male and female mice from the P301S mouse model of tauopathy at 9 months of age, a time-point when significant tau accumulation, cell death, and cognitive impairments are observed. We found a reduction in excitatory inputs and changes in excitatory post-synaptic current kinetics in male and female P301S. There was also a decrease in spontaneous discharge of LC neurons and an increase in AP threshold in P301S mice of both sexes. Finally, we observed a decrease in excitability and increase in rheobase current in P301S mice. Despite the decrease in LC activity in slice, we did not identify differences in total tissue norepinephrine (NE) or NE metabolites in prefrontal cortex or hippocampus. Together these findings demonstrate reductions in the activity and excitability of LC neurons at late stages of tau accumulation. However, compensatory mechanisms may maintain normal NE levels in LC projection regions in vivo.
Collapse
Affiliation(s)
- Anthony M. Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Gracianne Kmiec
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Christina M. Catavero
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zoé A. McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
5
|
Abu-Labdeh R, Omoluabi T, Yuan Q. Effects of Age and Atomoxetine on Olfactory Perception and Learning and Underlying Plasticity Mechanisms in Rats. Eur J Neurosci 2025; 61:e16649. [PMID: 39726209 DOI: 10.1111/ejn.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 11/20/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
The locus coeruleus (LC) plays a vital role in cognitive function through norepinephrine release. Impaired LC neuronal health and function is linked to cognitive decline during ageing and Alzheimer's disease. This study investigates age-related alterations in olfactory detection and discrimination learning, along with its reversal, in Long-Evans rats, and examines the effects of atomoxetine (ATM), a norepinephrine uptake inhibitor, on these processes. Adult (6-9 months) and aged (22-24 months) Long-Evans rats underwent odour detection threshold experiments with saline and two doses of ATM (0.3 and 1 mg/kg). Reward-based odour discrimination learning included simple, difficult and reversal learning tasks. LC neuron density, dopamine beta-hydroxylase and norepinephrine transporter expression in the piriform cortex (PC) and orbitofrontal cortex were measured. Reversal learning and olfactory threat extinction were used to measure behavioural flexibility. Immunohistochemistry and western blotting were used to analyse phosphorylated cAMP response element binding protein (pCREB) and cFos expression and ex vivo electrophysiology assessed long-term depression (LTD) in the PC. Whereas adult and aged cohorts showed similar odour detection and discrimination learning, fewer aged rats acquired reversal learning successfully. ATM improved reward-based odour discrimination in adults but hindered learning reversal. A delayed CREB phosphorylation in the posterior PC associated with atomoxetine administration possibly underlies learning enhancement. ATM resulted in less freezing behaviour in a threat conditioning and extinction paradigm at moderate, but not at higher doses. ATM administration ex vivo prevented PC LTD. These findings highlight the intricate effects of atomoxetine, influenced by target structures, and suggest potential interactions with other neurotransmitters. Our results contribute to understanding the impact of ageing and norepinephrine enhancers on cognitive processes.
Collapse
Affiliation(s)
- Ruhuf Abu-Labdeh
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
6
|
Wen CH, Kang HY, Chan JY. Brain Amyloid-β Peptide Is Associated with Pain Intensity and Cognitive Dysfunction in Osteoarthritic Patients. Int J Mol Sci 2024; 25:12575. [PMID: 39684287 PMCID: PMC11641244 DOI: 10.3390/ijms252312575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Considerable studies have demonstrated that osteoarthritis (OA) is a risk factor for dementia. The precise mechanisms underlying the association between OA and increased risk for cognitive dysfunction, however, remain unclear. This study aimed at exploring the associations between pro-inflammatory cytokines/chemokines, biomarkers of Alzheimer's disease (AD), pain intensity, and cognitive decline in knee joint OA patients. A total of 50 patients (26 in OA group and 24 in non-OA control group) were enrolled in this prospective, observational study. The visual analogue scale (VAS) score for pain intensity and Cognitive Abilities Screening Instrument (CASI) score for cognitive functions were examined in both groups. The plasma and cerebrospinal fluid (CSF) levels of pro-inflammatory molecules (IL-1β, IL-6, TNF-α, fractalkine, BDNF, MCP-1, and TGF-β), as well as biomarkers of AD (Aβ40, Aβ42, total-tau, and phospho-tau), were measured by multiplex immunoassay. Correlations among plasma or CSF biomarkers and questionnaire scores were assessed using Pearson's correlation coefficient and simple linear regressions. There were more patients in the OA group whose CASI cutoff percentiles were
Collapse
Affiliation(s)
- Chun-Hsien Wen
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Department of Anesthesiology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
- Department of Nursing, Meiho University, Pingtung 912009, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hong-Yo Kang
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan 33302, Taiwan;
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Julie Y.H. Chan
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan
| |
Collapse
|
7
|
Wengler K, Trujillo P, Cassidy CM, Horga G. Neuromelanin-sensitive MRI for mechanistic research and biomarker development in psychiatry. Neuropsychopharmacology 2024; 50:137-152. [PMID: 39160355 PMCID: PMC11526017 DOI: 10.1038/s41386-024-01934-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024]
Abstract
Neuromelanin-sensitive MRI is a burgeoning non-invasive neuroimaging method with an increasing number of applications in psychiatric research. This MRI modality is sensitive to the concentration of neuromelanin, which is synthesized from intracellular catecholamines and accumulates in catecholaminergic nuclei including the dopaminergic substantia nigra and the noradrenergic locus coeruleus. Emerging data suggest the utility of neuromelanin-sensitive MRI as a proxy measure for variability in catecholamine metabolism and function, even in the absence of catecholaminergic cell loss. Given the importance of catecholamine function to several psychiatric disorders and their treatments, neuromelanin-sensitive MRI is ideally positioned as an informative and easy-to-acquire catecholaminergic index. In this review paper, we examine basic aspects of neuromelanin and neuromelanin-sensitive MRI and focus on its psychiatric applications in the contexts of mechanistic research and biomarker development. We discuss ongoing debates and state-of-the-art research into the mechanisms of the neuromelanin-sensitive MRI contrast, standardized protocols and optimized analytic approaches, and application of cutting-edge methods such as machine learning and artificial intelligence to enhance the feasibility and predictive power of neuromelanin-sensitive-MRI-based tools. We finally lay out important future directions to allow neuromelanin-sensitive-MRI to fulfill its potential as a key component of the research, and ultimately clinical, toolbox in psychiatry.
Collapse
Affiliation(s)
- Kenneth Wengler
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Vanderbilt, TN, USA
| | - Clifford M Cassidy
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Guillermo Horga
- New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University, New York, NY, USA.
| |
Collapse
|
8
|
Falgàs N, Peña‐González M, Val‐Guardiola A, Pérez‐Millan A, Guillén N, Sarto J, Esteller D, Bosch B, Fernández‐Villullas G, Tort‐Merino A, Mayà G, Augé JM, Iranzo A, Balasa M, Lladó A, Morales‐Ruiz M, Bargalló N, Muñoz‐Moreno E, Grinberg LT, Sánchez‐Valle R. Locus coeruleus integrity and neuropsychiatric symptoms in a cohort of early- and late-onset Alzheimer's disease. Alzheimers Dement 2024; 20:6351-6364. [PMID: 39051173 PMCID: PMC11497680 DOI: 10.1002/alz.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024]
Abstract
INTRODUCTION Early-onset Alzheimer's disease (EOAD) shows a higher burden of neuropsychiatric symptoms than late-onset Alzheimer's disease (LOAD). We aim to determine the differences in the severity of neuropsychiatric symptoms and locus coeruleus (LC) integrity between EOAD and LOAD accounting for disease stage. METHODS One hundred four subjects with AD diagnosis and 32 healthy controls were included. Participants underwent magnetic resonance imaging (MRI) to measure LC integrity, measures of noradrenaline levels in cerebrospinal fluid (CSF) and Neuropsychiatric Inventory (NPI). We analyzed LC-noradrenaline measurements and clinical and Alzheimer's disease (AD) biomarker associations. RESULTS EOAD showed higher NPI scores, lower LC integrity, and similar levels of CSF noradrenaline compared to LOAD. Notably, EOAD exhibited lower LC integrity independently of disease stage. LC integrity negatively correlated with neuropsychiatric symptoms. Noradrenaline levels were increased in AD correlating with AD biomarkers. DISCUSSION Decreased LC integrity negatively contributes to neuropsychiatric symptoms. The higher LC degeneration in EOAD compared to LOAD could explain the more severe neuropsychiatric symptoms in EOAD. HIGHLIGHTS LC degeneration is greater in early-onset AD (EOAD) compared to late-onset AD. Tau-derived LC degeneration drives a higher severity of neuropsychiatric symptoms. EOAD harbors a more profound selective vulnerability of the LC system. LC degeneration is associated with an increase of cerebrospinal fluid noradrenaline levels in AD.
Collapse
Affiliation(s)
- Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Marta Peña‐González
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Andrea Val‐Guardiola
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Agnès Pérez‐Millan
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Núria Guillén
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Diana Esteller
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Guadalupe Fernández‐Villullas
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Adrià Tort‐Merino
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Gerard Mayà
- Neurology ServiceHospital Clínic de BarcelonaIDIBAPSCIBERNEDUniversitat de BarcelonaBarcelonaSpain
| | - Josep Maria Augé
- Biochemistry and Molecular Genetics Department‐CDBHospital ClinicIDIBAPSCIBERehdBarcelonaSpain
| | - Alex Iranzo
- Neurology ServiceHospital Clínic de BarcelonaIDIBAPSCIBERNEDUniversitat de BarcelonaBarcelonaSpain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| | - Manuel Morales‐Ruiz
- Biochemistry and Molecular Genetics Department‐CDBHospital ClinicIDIBAPSCIBERehdBarcelonaSpain
| | - Núria Bargalló
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Emma Muñoz‐Moreno
- Magnetic Resonance Imaging Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaCataloniaSpain
| | - Lea T. Grinberg
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of NeurologyMemory & Aging CenterWeill Institute for NeurosciencesUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Department of PathologyUniversity of Sao Paulo Medical SchoolSao PauloBrazil
| | - Raquel Sánchez‐Valle
- Alzheimer's Disease and Other Cognitive Disorders UnitHospital Clínic de BarcelonaFundació de Recerca Clínic Barcelona‐IDIBAPSUniversitat de BarcelonaBarcelonaCataloniaSpain
| |
Collapse
|
9
|
Garcia Ratés S, García‐Ayllón M, Falgàs N, Brangman SA, Esiri MM, Coen CW, Greenfield SA. Evidence for a novel neuronal mechanism driving Alzheimer's disease, upstream of amyloid. Alzheimers Dement 2024; 20:5027-5034. [PMID: 38780014 PMCID: PMC11247685 DOI: 10.1002/alz.13869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/21/2024] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
This perspective offers an alternative to the amyloid hypothesis in the etiology of Alzheimer's disease (AD). We review evidence for a novel signaling mechanism based on a little-known peptide, T14. T14 could drive neurodegeneration as an aberrantly activated process of plasticity selective to interconnecting subcortical nuclei, the isodendritic core, where cell loss starts at the pre-symptomatic stages of the disease. Each of these cell groups has the capacity to form T14, which can stimulate production of p-Tau and β-amyloid, suggestive of an upstream driver of neurodegeneration. Moreover, results in an animal AD model show that antagonism of T14 with a cyclated variant, NBP14, prevents formation of β-amyloid, and restores cognitive function to that of wild-type counterparts. Any diagnostic and/or therapeutic strategy based on T14-NBP14 awaits validation in clinical trials. However, an understanding of this novel signaling system could bring much-needed fresh insights into the progression of cell loss underlying AD. HIGHLIGHTS: The possible primary mechanism of neurodegeneration upstream of amyloid. Primary involvement of selectively vulnerable subcortical nuclei, isodendritic core. Bioactive peptide T14 trophic in development but toxic in context of mature brain. Potential for early-stage biomarker to detect Alzheimer's disease. Effective therapeutic halting neurodegeneration, validated already in 5XFAD mice.
Collapse
Affiliation(s)
| | - María‐Salud García‐Ayllón
- Unidad de InvestigaciónHospital General Universitario de Elche, FISABIOElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d'AlacantSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
| | - Neus Falgàs
- Alzheimer's disease and other cognitive disorders UnitHospital Clínic de Barcelona. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - Sharon A. Brangman
- Department of GeriatricsUpstate Center of Excellence for Alzheimer's DiseaseSUNY Upstate Medical University 750 East Adams StreetSyracuseNew YorkUSA
| | - Margaret M Esiri
- Neuropathology DepartmentJohn Radcliffe Hospital, West WingOxford UniversityOxfordUK
| | - Clive W. Coen
- Faculty of Life Sciences & MedicineKing's College LondonLondonUK
| | | |
Collapse
|
10
|
Sárkány B, Dávid C, Hortobágyi T, Gombás P, Somogyi P, Acsády L, Viney TJ. Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. Acta Neuropathol 2024; 147:98. [PMID: 38861157 PMCID: PMC11166832 DOI: 10.1007/s00401-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.
Collapse
Affiliation(s)
- Barbara Sárkány
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Csaba Dávid
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Gombás
- Department of Pathology, Szt. Borbála Hospital, Tatabánya, 2800, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - László Acsády
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
11
|
Alafuzoff I, Libard S. Ageing-Related Neurodegeneration and Cognitive Decline. Int J Mol Sci 2024; 25:4065. [PMID: 38612875 PMCID: PMC11012171 DOI: 10.3390/ijms25074065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Neuropathological assessment was conducted on 1630 subjects, representing 5% of all the deceased that had been sent to the morgue of Uppsala University Hospital during a 15-year-long period. Among the 1630 subjects, 1610 were ≥41 years of age (range 41 to 102 years). Overall, hyperphosphorylated (HP) τ was observed in the brains of 98% of the 1610 subjects, and amyloid β-protein (Aβ) in the brains of 64%. The most common alteration observed was Alzheimer disease neuropathologic change (ADNC) (56%), followed by primary age-related tauopathy (PART) in 26% of the subjects. In 16% of the subjects, HPτ was limited to the locus coeruleus. In 14 subjects (<1%), no altered proteins were observed. In 3 subjects, only Aβ was observed, and in 17, HPτ was observed in a distribution other than that seen in ADNC/PART. The transactive DNA-binding protein 43 (TDP43) associated with limbic-predominant age-related TDP encephalopathy (LATE) was observed in 565 (35%) subjects and α-synuclein (αS) pathology, i.e., Lewy body disease (LBD) or multi system atrophy (MSA) was observed in the brains of 21% of the subjects. A total of 39% of subjects with ADNC, 59% of subjects with PART, and 81% of subjects with HPτ limited to the locus coeruleus lacked concomitant pathologies, i.e., LATE-NC or LBD-NC. Of the 293 (18% of the 1610 subjects) subjects with dementia, 81% exhibited a high or intermediate level of ADNC. In 84% of all individuals with dementia, various degrees of concomitant alterations were observed; i.e., MIXED-NC was a common cause of dementia. A high or intermediate level of PART was observed in 10 subjects with dementia (3%), i.e., tangle-predominant dementia. No subjects exhibited only vascular NC (VNC), but in 17 subjects, severe VNC might have contributed to cognitive decline. Age-related tau astrogliopathy (ARTAG) was observed in 37% of the 1610 subjects and in 53% of those with dementia.
Collapse
Affiliation(s)
- Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| | - Sylwia Libard
- Department of Pathology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Department of Immunology, Genetics and Pathology, Uppsala University, 751 05 Uppsala, Sweden
| |
Collapse
|
12
|
Maturana-Quijada P, Chavarría-Elizondo P, Del Cerro I, Martínez-Zalacaín I, Juaneda-Seguí A, Guinea-Izquierdo A, Gascón-Bayarri J, Reñé R, Urretavizcaya M, Menchón JM, Ferrer I, Soria V, Soriano-Mas C. Effective connectivity of the locus coeruleus in patients with late-life Major Depressive Disorder or mild cognitive impairment. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00015-2. [PMID: 38453029 DOI: 10.1016/j.sjpmh.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
INTRODUCTION We compared effective connectivity from the locus coeruleus (LC) during the resting-state in patients with late-life Major Depressive Disorder (MDD), individuals with amnestic Mild Cognitive Impairment (aMCI), and Healthy Controls (HCs). PARTICIPANTS 23 patients with late-life MDD, 22 patients with aMCI, and 28 HCs. MATERIAL AND METHODS Participants were assessed in two time-points, 2 years apart. They underwent a resting-state functional magnetic resonance imaging and a high-resolution anatomical acquisition, as well as clinical assessments. Functional imaging data were analyzed with dynamic causal modeling, and parametric empirical Bayes model was used to map effective connectivity between 7 distinct nodes: 4 from the locus coeruleus and 3 regions displaying gray matter decreases during the two-year follow-up period. RESULTS Longitudinal analysis of structural data identified three clusters of larger over-time gray matter volume reduction in patients (MDD+aMCI vs. HCs): the right precuneus, and the visual association and parahippocampal cortices. aMCI patients showed decreased effective connectivity from the left rostral to caudal portions of the LC, while connectivity from the left rostral LC to the parahippocampal cortex increased. In MDD, there was a decline in effective connectivity across LC caudal seeds, and increased connectivity from the left rostral to the left caudal LC seed over time. Connectivity alterations with cortical regions involved cross-hemisphere increases and same-hemisphere decreases. CONCLUSIONS Our discoveries provide insight into the dynamic changes in effective connectivity in individuals with late-life MDD and aMCI, also shedding light on the mechanisms potentially contributing to the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
- Pablo Maturana-Quijada
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Pamela Chavarría-Elizondo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Inés Del Cerro
- Department of Psychology, Medical School, Catholic University of Murcia, Murcia, Spain
| | - Ignacio Martínez-Zalacaín
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Radiology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | - Asier Juaneda-Seguí
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jordi Gascón-Bayarri
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Ramón Reñé
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Mikel Urretavizcaya
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - José M Menchón
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - Virginia Soria
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Mental Health, Parc Taulí Hospital Universitari, Sabadell, Barcelona, Spain
| | - Carles Soriano-Mas
- Psychiatry and Mental Health Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Social Psychology and Quantitative Psychology, Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Trujillo P, Aumann MA, Claassen DO. Neuromelanin-sensitive MRI as a promising biomarker of catecholamine function. Brain 2024; 147:337-351. [PMID: 37669320 PMCID: PMC10834262 DOI: 10.1093/brain/awad300] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 09/07/2023] Open
Abstract
Disruptions to dopamine and noradrenergic neurotransmission are noted in several neurodegenerative and psychiatric disorders. Neuromelanin-sensitive (NM)-MRI offers a non-invasive approach to visualize and quantify the structural and functional integrity of the substantia nigra and locus coeruleus. This method may aid in the diagnosis and quantification of longitudinal changes of disease and could provide a stratification tool for predicting treatment success of pharmacological interventions targeting the dopaminergic and noradrenergic systems. Given the growing clinical interest in NM-MRI, understanding the contrast mechanisms that generate this signal is crucial for appropriate interpretation of NM-MRI outcomes and for the continued development of quantitative MRI biomarkers that assess disease severity and progression. To date, most studies associate NM-MRI measurements to the content of the neuromelanin pigment and/or density of neuromelanin-containing neurons, while recent studies suggest that the main source of the NM-MRI contrast is not the presence of neuromelanin but the high-water content in the dopaminergic and noradrenergic neurons. In this review, we consider the biological and physical basis for the NM-MRI contrast and discuss a wide range of interpretations of NM-MRI. We describe different acquisition and image processing approaches and discuss how these methods could be improved and standardized to facilitate large-scale multisite studies and translation into clinical use. We review the potential clinical applications in neurological and psychiatric disorders and the promise of NM-MRI as a biomarker of disease, and finally, we discuss the current limitations of NM-MRI that need to be addressed before this technique can be utilized as a biomarker and translated into clinical practice and offer suggestions for future research.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Megan A Aumann
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN 37212, USA
| |
Collapse
|
14
|
Weber LM, Divecha HR, Tran MN, Kwon SH, Spangler A, Montgomery KD, Tippani M, Bharadwaj R, Kleinman JE, Page SC, Hyde TM, Collado-Torres L, Maynard KR, Martinowich K, Hicks SC. The gene expression landscape of the human locus coeruleus revealed by single-nucleus and spatially-resolved transcriptomics. eLife 2024; 12:RP84628. [PMID: 38266073 PMCID: PMC10945708 DOI: 10.7554/elife.84628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024] Open
Abstract
Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.
Collapse
Affiliation(s)
- Lukas M Weber
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Matthew N Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Sang Ho Kwon
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Abby Spangler
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Kelsey D Montgomery
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Rahul Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Neurology, Johns Hopkins School of MedicineBaltimoreUnited States
| | | | - Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
- Department of Neuroscience, Johns Hopkins School of MedicineBaltimoreUnited States
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of MedicineBaltimoreUnited States
- The Kavli Neuroscience Discovery Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
15
|
Saternos H, Hamlett ED, Guzman S, Head E, Granholm AC, Ledreux A. Unique Pathology in the Locus Coeruleus of Individuals with Down Syndrome. J Alzheimers Dis 2024; 101:541-561. [PMID: 39213062 DOI: 10.3233/jad-240043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Background Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-β (Aβ), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aβ immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions While inflammation, pTau, and Aβ are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.
Collapse
Affiliation(s)
- Hannah Saternos
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Samuel Guzman
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California at Irvine, Irvine, CA, USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aurélie Ledreux
- Department of Neurosurgery, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
16
|
Matt RA, Martin RS, Evans AK, Gever JR, Vargas GA, Shamloo M, Ford AP. Locus Coeruleus and Noradrenergic Pharmacology in Neurodegenerative Disease. Handb Exp Pharmacol 2024; 285:555-616. [PMID: 37495851 DOI: 10.1007/164_2023_677] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adrenoceptors (ARs) throughout the brain are stimulated by noradrenaline originating mostly from neurons of the locus coeruleus, a brainstem nucleus that is ostensibly the earliest to show detectable pathology in neurodegenerative diseases such as Alzheimer's and Parkinson's diseases. The α1-AR, α2-AR, and β-AR subtypes expressed in target brain regions and on a range of cell populations define the physiological responses to noradrenaline, which includes activation of cognitive function in addition to modulation of neurometabolism, cerebral blood flow, and neuroinflammation. As these heterocellular functions are critical for maintaining brain homeostasis and neuronal health, combating the loss of noradrenergic tone from locus coeruleus degeneration may therefore be an effective treatment for both cognitive symptoms and disease modification in neurodegenerative indications. Two pharmacologic approaches are receiving attention in recent clinical studies: preserving noradrenaline levels (e.g., via reuptake inhibition) and direct activation of target adrenoceptors. Here, we review the expression and role of adrenoceptors in the brain, the preclinical studies which demonstrate that adrenergic stimulation can support cognitive function and cerebral health by reversing the effects of noradrenaline depletion, and the human data provided by pharmacoepidemiologic analyses and clinical trials which together identify adrenoceptors as promising targets for the treatment of neurodegenerative disease.
Collapse
Affiliation(s)
| | | | - Andrew K Evans
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA, USA
| | | |
Collapse
|
17
|
Markova TZ, Ciampa CJ, Parent JH, LaPoint MR, D'Esposito M, Jagust WJ, Berry AS. Poorer aging trajectories are associated with elevated serotonin synthesis capacity. Mol Psychiatry 2023; 28:4390-4398. [PMID: 37460847 PMCID: PMC10792105 DOI: 10.1038/s41380-023-02177-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 01/18/2024]
Abstract
The dorsal raphe nucleus (DRN) is one of the earliest targets of Alzheimer's disease-related tau pathology and is a major source of brain serotonin. We used [18F]Fluoro-m-tyrosine ([18F]FMT) PET imaging to measure serotonin synthesis capacity in the DRN in 111 healthy adults (18-85 years-old). Similar to reports in catecholamine systems, we found elevated serotonin synthesis capacity in older adults relative to young. To establish the structural and functional context within which serotonin synthesis capacity is elevated in aging, we examined relationships among DRN [18F]FMT net tracer influx (Ki) and longitudinal changes in cortical thickness using magnetic resonance imaging, longitudinal changes in self-reported depression symptoms, and AD-related tau and β-amyloid (Aβ) pathology using cross-sectional [18F]Flortaucipir and [11C]Pittsburgh compound-B PET respectively. Together, our findings point to elevated DRN [18F]FMT Ki as a marker of poorer aging trajectories. Older adults with highest serotonin synthesis capacity showed greatest temporal lobe cortical atrophy. Cortical atrophy was associated with increasing depression symptoms over time, and these effects appeared to be strongest in individuals with highest serotonin synthesis capacity. We did not find direct relationships between serotonin synthesis capacity and AD-related pathology. Exploratory analyses revealed nuanced effects of sex within the older adult group. Older adult females showed the highest DRN synthesis capacity and exhibited the strongest relationships between entorhinal cortex tau pathology and increasing depression symptoms. Together these findings reveal PET measurement of the serotonin system to be a promising marker of aging trajectories relevant to both AD and affective changes in older age.
Collapse
Affiliation(s)
| | | | | | - Molly R LaPoint
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
| | - William J Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | | |
Collapse
|
18
|
Chen HY, Parent JH, Ciampa CJ, Dahl MJ, Hämmerer D, Maass A, Winer JR, Yakupov R, Inglis B, Betts MJ, Berry AS. Interactive effects of locus coeruleus structure and catecholamine synthesis capacity on cognitive function. Front Aging Neurosci 2023; 15:1236335. [PMID: 37744395 PMCID: PMC10516288 DOI: 10.3389/fnagi.2023.1236335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
Background The locus coeruleus (LC) produces catecholamines (norepinephrine and dopamine) and is implicated in a broad range of cognitive functions including attention and executive function. Recent advancements in magnetic resonance imaging (MRI) approaches allow for the visualization and quantification of LC structure. Human research focused on the LC has since exploded given the LC's role in cognition and relevance to current models of psychopathology and neurodegenerative disease. However, it is unclear to what extent LC structure reflects underlying catecholamine function, and how LC structure and neurochemical function are collectively associated with cognitive performance. Methods A partial least squares correlation (PLSC) analysis was applied to 19 participants' LC structural MRI measures and catecholamine synthesis capacity measures assessed using [18F]Fluoro-m-tyrosine ([18F]FMT) positron emission tomography (PET). Results We found no direct association between LC-MRI and LC-[18F]FMT measures for rostral, middle, or caudal portions of the LC. We found significant associations between LC neuroimaging measures and neuropsychological performance that were driven by rostral and middle portions of the LC, which is in line with LC cortical projection patterns. Specifically, associations with executive function and processing speed arose from contributions of both LC structure and interactions between LC structure and catecholamine synthesis capacity. Conclusion These findings leave open the possibility that LC MRI and PET measures contribute unique information and suggest that their conjoint use may increase sensitivity to brain-behavior associations in small samples.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Department of Psychology, Brandeis University, Waltham, MA, United States
| | - Jourdan H. Parent
- Department of Psychology, Brandeis University, Waltham, MA, United States
| | - Claire J. Ciampa
- Department of Psychology, Brandeis University, Waltham, MA, United States
| | - Martin J. Dahl
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States
| | - Dorothea Hämmerer
- Psychological Institute, University of Innsbruck, Innsbruck, Austria
| | - Anne Maass
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | - Joseph R. Winer
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Renat Yakupov
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
| | - Ben Inglis
- Henry H. Wheeler Jr. Brain Imaging Center, University of California, Berkeley, Berkeley, CA, United States
| | - Matthew J. Betts
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne S. Berry
- Department of Psychology, Brandeis University, Waltham, MA, United States
- Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
19
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
20
|
Ehrenberg AJ, Kelberman MA, Liu KY, Dahl MJ, Weinshenker D, Falgàs N, Dutt S, Mather M, Ludwig M, Betts MJ, Winer JR, Teipel S, Weigand AJ, Eschenko O, Hämmerer D, Leiman M, Counts SE, Shine JM, Robertson IH, Levey AI, Lancini E, Son G, Schneider C, Egroo MV, Liguori C, Wang Q, Vazey EM, Rodriguez-Porcel F, Haag L, Bondi MW, Vanneste S, Freeze WM, Yi YJ, Maldinov M, Gatchel J, Satpati A, Babiloni C, Kremen WS, Howard R, Jacobs HIL, Grinberg LT. Priorities for research on neuromodulatory subcortical systems in Alzheimer's disease: Position paper from the NSS PIA of ISTAART. Alzheimers Dement 2023; 19:2182-2196. [PMID: 36642985 PMCID: PMC10182252 DOI: 10.1002/alz.12937] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/08/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023]
Abstract
The neuromodulatory subcortical system (NSS) nuclei are critical hubs for survival, hedonic tone, and homeostasis. Tau-associated NSS degeneration occurs early in Alzheimer's disease (AD) pathogenesis, long before the emergence of pathognomonic memory dysfunction and cortical lesions. Accumulating evidence supports the role of NSS dysfunction and degeneration in the behavioral and neuropsychiatric manifestations featured early in AD. Experimental studies even suggest that AD-associated NSS degeneration drives brain neuroinflammatory status and contributes to disease progression, including the exacerbation of cortical lesions. Given the important pathophysiologic and etiologic roles that involve the NSS in early AD stages, there is an urgent need to expand our understanding of the mechanisms underlying NSS vulnerability and more precisely detail the clinical progression of NSS changes in AD. Here, the NSS Professional Interest Area of the International Society to Advance Alzheimer's Research and Treatment highlights knowledge gaps about NSS within AD and provides recommendations for priorities specific to clinical research, biomarker development, modeling, and intervention. HIGHLIGHTS: Neuromodulatory nuclei degenerate in early Alzheimer's disease pathological stages. Alzheimer's pathophysiology is exacerbated by neuromodulatory nuclei degeneration. Neuromodulatory nuclei degeneration drives neuropsychiatric symptoms in dementia. Biomarkers of neuromodulatory integrity would be value-creating for dementia care. Neuromodulatory nuclei present strategic prospects for disease-modifying therapies.
Collapse
Affiliation(s)
- Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, California, USA
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Martin J Dahl
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
| | - Shubir Dutt
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
| | - Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA
- Department of Psychology, University of Southern California, Los Angeles, California, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Mareike Ludwig
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Matthew J Betts
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Joseph R Winer
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California, USA
| | - Stefan Teipel
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Rostock/Greifswald, Rostock, Germany
- Department of Psychosomatic Medicine, University Medicine Rostock, Rostock, Germany
| | - Alexandra J Weigand
- San Diego State University/University of California San Diego Joint Doctoral Program in Clinical Psychology, San Diego, California, USA
| | - Oxana Eschenko
- Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tuebingen, Germany
| | - Dorothea Hämmerer
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Marina Leiman
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Scott E Counts
- Department of Translational Neuroscience, Michigan State University, Grand Rapids, Michigan, USA
- Department of Family Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Michigan Alzheimer's Disease Research Center, Ann Arbor, Michigan, USA
| | - James M Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| | - Ian H Robertson
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Goizueta Institute, Emory University, Atlanta, Georgia, USA
| | - Elisa Lancini
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Gowoon Son
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Christoph Schneider
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Maxime Van Egroo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Claudio Liguori
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Neurology Unit, University Hospital of Rome Tor Vergata, Rome, Italy
| | - Qin Wang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Agusta University, Agusta, Georgia, USA
| | - Elena M Vazey
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| | | | - Lena Haag
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Mark W Bondi
- Department of Psychiatry, University of California, San Diego, La Jolla, California, USA
- Psychology Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Whitney M Freeze
- Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neuropsychology and Psychiatry, Maastricht University, Maastricht, the Netherlands
| | - Yeo-Jin Yi
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Magdeburg, Germany
| | - Mihovil Maldinov
- Department of Psychiatry and Psychotherapy, University of Rostock, Rostock, Germany
| | - Jennifer Gatchel
- Division of Geriatric Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Abhijit Satpati
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
| | - Claudio Babiloni
- Department of Physiology and Pharmacology "V. Erspamer,", Sapienza University of Rome, Rome, Italy
- Hospital San Raffaele Cassino, Cassino, Italy
| | - William S Kremen
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, California, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK
| | - Heidi I L Jacobs
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Faculty of Health, Medicine, and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, the Netherlands
| | - Lea T Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, California, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of California, San Francisco, San Francisco, California, USA
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
21
|
Nakagawa Y, Yamada S. The Relationships Among Metal Homeostasis, Mitochondria, and Locus Coeruleus in Psychiatric and Neurodegenerative Disorders: Potential Pathogenetic Mechanism and Therapeutic Implications. Cell Mol Neurobiol 2023; 43:963-989. [PMID: 35635600 PMCID: PMC11414457 DOI: 10.1007/s10571-022-01234-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022]
Abstract
While alterations in the locus coeruleus-noradrenergic system are present during early stages of neuropsychiatric disorders, it is unclear what causes these changes and how they contribute to other pathologies in these conditions. Data suggest that the onset of major depressive disorder and schizophrenia is associated with metal dyshomeostasis that causes glial cell mitochondrial dysfunction and hyperactivation in the locus coeruleus. The effect of the overactive locus coeruleus on the hippocampus, amygdala, thalamus, and prefrontal cortex can be responsible for some of the psychiatric symptoms. Although locus coeruleus overactivation may diminish over time, neuroinflammation-induced alterations are presumably ongoing due to continued metal dyshomeostasis and mitochondrial dysfunction. In early Alzheimer's and Parkinson's diseases, metal dyshomeostasis and mitochondrial dysfunction likely induce locus coeruleus hyperactivation, pathological tau or α-synuclein formation, and neurodegeneration, while reduction of glymphatic and cerebrospinal fluid flow might be responsible for β-amyloid aggregation in the olfactory regions before the onset of dementia. It is possible that the overactive noradrenergic system stimulates the apoptosis signaling pathway and pathogenic protein formation, leading to further pathological changes which can occur in the presence or absence of locus coeruleus hypoactivation. Data are presented in this review indicating that although locus coeruleus hyperactivation is involved in pathological changes at prodromal and early stages of these neuropsychiatric disorders, metal dyshomeostasis and mitochondrial dysfunction are critical factors in maintaining ongoing neuropathology throughout the course of these conditions. The proposed mechanistic model includes multiple pharmacological sites that may be targeted for the treatment of neuropsychiatric disorders commonly.
Collapse
Affiliation(s)
- Yutaka Nakagawa
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| | - Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Division of Pharmaceutical Sciences, Graduate School of Integrative Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| |
Collapse
|
22
|
Downs AM, Catavero CM, Kasten MR, McElligott ZA. Tauopathy and alcohol consumption interact to alter locus coeruleus excitatory transmission and excitability in male and female mice. Alcohol 2023; 107:97-107. [PMID: 36150608 DOI: 10.1016/j.alcohol.2022.08.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/22/2022] [Accepted: 08/29/2022] [Indexed: 12/23/2022]
Abstract
Alcohol use disorder is a major public health concern in the United States. Recent work has suggested a link between chronic alcohol consumption and the development of tauopathy disorders, such as Alzheimer's disease and frontotemporal dementia. However, relatively little work has investigated changes in neural circuitry involved in both tauopathy disorders and alcohol use disorder. The locus coeruleus (LC) is the major noradrenergic nucleus in the brain and is one of the earliest sites to be affected by tau lesions. The LC is also implicated in the rewarding effects of ethanol and alcohol withdrawal. In this study we assessed effects of long-term ethanol consumption and tauopathy on the physiology of LC neurons. Male and female P301S mice, a humanized transgenic mouse model of tauopathy, underwent 16 weeks of intermittent access to 20% ethanol from 3 to 7 months of age. We observed higher total alcohol consumption in female mice regardless of genotype. Male P301S mice consumed more ethanol and had a greater preference for ethanol than wild-type (WT) males. At the end of the drinking study, LC function was assessed using ex vivo whole cell electrophysiology. We found significant changes in excitatory inputs to the LC due to both ethanol and genotype. We found significantly increased excitability of the LC due to ethanol with greater effects in female P301S mice than in female WT mice. Our study identifies significant changes in the LC due to interactions between tauopathy and long-term ethanol use. These findings could have important implications regarding LC activity and changes in behavior due to both ethanol- and tauopathy-related dementia.
Collapse
Affiliation(s)
- Anthony M Downs
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Christina M Catavero
- Graduate Program in Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Michael R Kasten
- Department of Otolaryngology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Zoé A McElligott
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
23
|
Benarroch E. What Are Current Concepts on the Functional Organization of the Locus Coeruleus and Its Role in Cognition and Neurodegeneration? Neurology 2023; 100:132-137. [PMID: 36646470 DOI: 10.1212/wnl.0000000000206736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/09/2022] [Indexed: 01/18/2023] Open
|
24
|
Ferrer I. Hypothesis review: Alzheimer's overture guidelines. Brain Pathol 2023; 33:e13122. [PMID: 36223647 PMCID: PMC9836379 DOI: 10.1111/bpa.13122] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/19/2022] [Indexed: 01/21/2023] Open
Abstract
National Institute on Aging-Alzheimer's Association definition and classification of sporadic Alzheimer's disease (sAD) is based on the assumption that β-amyloid drives the pathogenesis of sAD, and therefore, β-amyloid pathology is the sine-qua-non condition for the diagnosis of sAD. The neuropathological diagnosis is based on the concurrence of senile plaques (SPs) and neurofibrillary tangles (NFTs) designated as Alzheimer's disease neuropathological changes. However, NFTs develop in the brain decades before the appearance of SPs, and their distribution does not parallel the distribution of SPs. Moreover, NFTs are found in about 85% of individuals at age 65 and around 97% at age 80. SPs occur in 30% at age 65 and 50%-60% at age 80. More than 70 genetic risk factors have been identified in sAD; the encoded proteins modulate cell membranes, synapses, lipid metabolism, and neuroinflammation. Alzheimer's disease (AD) overture provides a new concept and definition of brain aging and sAD for further discussion. AD overture proposes that sAD is: (i) a multifactorial and progressive neurodegenerative biological process, (ii) characterized by the early appearance of 3R + 4Rtau NFTs, (iii) later deposition of β-amyloid and SPs, (iv) with particular non-overlapped regional distribution of NFTs and SPs, (v) preceded by or occurring in parallel with molecular changes affecting cell membranes, cytoskeleton, synapses, lipid and protein metabolism, energy metabolism, neuroinflammation, cell cycle, astrocytes, microglia, and blood vessels; (vi) accompanied by progressive neuron loss and brain atrophy, (vii) prevalent in human brain aging, and (viii) manifested as pre-clinical AD, and progressing not universally to mild cognitive impairment due to AD, and mild, moderate, and severe AD dementia.
Collapse
Affiliation(s)
- Isidro Ferrer
- Department of Pathology and Experimental TherapeuticsUniversity of Barcelona (UB)BarcelonaSpain
- Neuropathology groupInstitute of Biomedical Research of Bellvitge (IDIBELL)BarcelonaSpain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos IIIBarcelonaSpain
| |
Collapse
|
25
|
Minné D, Marnewick JL, Engel-Hills P. Early Chronic Stress Induced Changes within the Locus Coeruleus in Sporadic Alzheimer's Disease. Curr Alzheimer Res 2023; 20:301-317. [PMID: 37872793 DOI: 10.2174/1567205020666230811092956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 10/25/2023]
Abstract
Chronic exposure to stress throughout the lifespan has been the focus of many studies on Alzheimer's disease (AD) because of the similarities between the biological mechanisms involved in chronic stress and the pathophysiology of AD. In fact, the earliest abnormality associated with the disease is the presence of phosphorylated tau protein in locus coeruleus neurons, a brain structure highly responsive to stress and perceived threat. Here, we introduce allostatic load as a useful concept for understanding many of the complex, interacting neuropathological changes involved in the AD degenerative process. In response to chronic stress, aberrant tau proteins that begin to accumulate within the locus coeruleus decades prior to symptom onset appear to represent a primary pathological event in the AD cascade, triggering a wide range of interacting brain changes involving neuronal excitotoxicity, endocrine alterations, inflammation, oxidative stress, and amyloid plaque exacerbation. While it is acknowledged that stress will not necessarily be the major precipitating factor in all cases, early tau-induced changes within the locus coeruleus-norepinephrine pathway suggests that a therapeutic window might exist for preventative measures aimed at managing stress and restoring balance within the HPA axis.
Collapse
Affiliation(s)
- Donné Minné
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Jeanine L Marnewick
- Applied Microbial & Health Biotechnology Institute, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7535, South Africa
| |
Collapse
|
26
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
27
|
Delbono O, Wang Z, Messi ML. Brainstem noradrenergic neurons: Identifying a hub at the intersection of cognition, motility, and skeletal muscle regulation. Acta Physiol (Oxf) 2022; 236:e13887. [PMID: 36073023 PMCID: PMC9588743 DOI: 10.1111/apha.13887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
Brainstem noradrenergic neuron clusters form a node integrating efferents projecting to distinct areas such as those regulating cognition and skeletal muscle structure and function, and receive dissimilar afferents through established circuits to coordinate organismal responses to internal and environmental challenges. Genetic lineage tracing shows the remarkable heterogeneity of brainstem noradrenergic neurons, which may explain their varied functions. They project to the locus coeruleus, the primary source of noradrenaline in the brain, which supports learning and cognition. They also project to pre-ganglionic neurons, which lie within the spinal cord and form synapses onto post-ganglionic neurons. The synapse between descending brainstem noradrenergic neurons and pre-ganglionic spinal neurons, and these in turn with post-ganglionic noradrenergic neurons located at the paravertebral sympathetic ganglia, support an anatomical hierarchy that regulates skeletal muscle innervation, neuromuscular transmission, and muscle trophism. Whether any noradrenergic neuron subpopulation is more susceptible to damaged protein deposit and death with ageing and neurodegeneration is a relevant question that answer will help us to detect neurodegeneration at an early stage, establish prognosis, and anticipate disease progression. Loss of muscle mass and strength with ageing, termed sarcopenia, may predict impaired cognition with ageing and neurodegeneration and establish an early time to start interventions aimed at reducing central noradrenergic neurons hyperactivity. Complex multidisciplinary approaches, including genetic tracing, specific circuit labelling, optogenetics and chemogenetics, electrophysiology, and single-cell transcriptomics and proteomics, are required to test this hypothesis pre-clinical.
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Zhong‐Min Wang
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - María Laura Messi
- Department of Internal MedicineSection on Gerontology and Geriatric Medicine. Wake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
28
|
Cerebrospinal fluid catecholamines in Alzheimer's disease patients with and without biological disease. Transl Psychiatry 2022; 12:151. [PMID: 35397615 PMCID: PMC8994756 DOI: 10.1038/s41398-022-01901-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 11/08/2022] Open
Abstract
Noradrenergic and dopaminergic neurons are involved in cognitive functions, relate to behavioral and psychological symptoms in dementia and are affected in Alzheimer's disease (AD). Amyloid plaques (A), neurofibrillary tangles (T) and neurodegeneration (N) hallmarks the AD neuropathology. Today, the AT(N) pathophysiology can be assessed through biomarkers. Previous studies report cerebrospinal fluid (CSF) catecholamine concentrations in AD patients without biomarker refinement. We explored if CSF catecholamines relate to AD clinical presentation or neuropathology as reflected by CSF biomarkers. CSF catecholamines were analyzed in AD patients at the mild cognitive impairment (MCI; n = 54) or dementia stage (n = 240) and in cognitively unimpaired (n = 113). CSF biomarkers determined AT status and indicated synaptic damage (neurogranin). The AD patients (n = 294) had higher CSF noradrenaline and adrenaline concentrations, but lower dopamine concentrations compared to the cognitively unimpaired (n = 113). AD patients in the MCI and dementia stage of the disease had similar CSF catecholamine concentrations. In the CSF neurogranin positively associated with noradrenaline and adrenaline but not with dopamine. Adjusted regression analyses including AT status, CSF neurogranin, age, gender, and APOEε4 status verified the findings. In restricted analyses comparing A+T+ patients to A-T- cognitively unimpaired, the findings for CSF adrenaline remained significant (p < 0.001) but not for CSF noradrenaline (p = 0.07) and CSF dopamine (p = 0.33). There were no differences between A+T+ and A-T- cognitively unimpaired. Thus, we find alterations in CSF catecholamines in symptomatic AD and the CSF adrenergic transmitters to increase simultaneously with synaptic damage as indexed by CSF neurogranin.
Collapse
|
29
|
Solders SK, Galinsky VL, Clark AL, Sorg SF, Weigand AJ, Bondi MW, Frank LR. Diffusion MRI tractography of the locus coeruleus-transentorhinal cortex connections using GO-ESP. Magn Reson Med 2022; 87:1816-1831. [PMID: 34792198 PMCID: PMC8810611 DOI: 10.1002/mrm.29088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 01/11/2023]
Abstract
PURPOSE The locus coeruleus (LC) is implicated as an early site of protein pathogenesis in Alzheimer's disease (AD). Tau pathology is hypothesized to propagate in a prion-like manner along the LC-transentorhinal cortex (TEC) white matter (WM) pathway, leading to atrophy of the entorhinal cortex and adjacent cortical regions in a progressive and stereotypical manner. However, WM damage along the LC-TEC pathway may be an earlier observable change that can improve detection of preclinical AD. THEORY AND METHODS Diffusion-weighted MRI (dMRI) allows reconstruction of WM pathways in vivo, offering promising potential to examine this pathway and enhance our understanding of neural mechanisms underlying the preclinical phase of AD. However, standard dMRI analysis tools have generally been unable to reliably reconstruct this pathway. We apply a novel method, geometric-optics based entropy spectrum pathways (GO-ESP) and produce a new measure of connectivity: the equilibrium probability (EP). RESULTS We demonstrated reliable reconstruction of LC-TEC pathways in 50 cognitively normal older adults and showed a negative association between LC-TEC EP and cerebrospinal fluid tau. Using Human Connectome Project data, we demonstrated replicability of the method across acquisition schemes and scanners. Finally, we compared our findings with the only other existing LC-TEC tractography template, and replicated their pathway as well as investigated the source of these discrepant findings. CONCLUSIONS AD-related tau pathology may be detectable within GO-ESP-identified LC-TEC pathways. Furthermore, there may be multiple possible routes from LC to TEC, raising important questions for future research on the LC-TEC connectome and its role in AD pathogenesis.
Collapse
Affiliation(s)
- Seraphina K. Solders
- Neuroscience Graduate ProgramUniversity of California at San DiegoLa JollaCaliforniaUSA
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | - Vitaly L. Galinsky
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
| | | | - Scott F. Sorg
- Department of PsychiatrySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Research and Psychology ServicesVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Alexandra J. Weigand
- San Diego State University/University of California at San Diego Joint Doctoral Program in Clinical PsychologySan DiegoCaliforniaUSA
| | - Mark W. Bondi
- Department of PsychiatrySchool of MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Research and Psychology ServicesVA San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Lawrence R. Frank
- Center for Scientific Computation in ImagingUniversity of California at San DiegoLa JollaCaliforniaUSA
- Department of RadiologyUniversity of California at San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
30
|
Carving the senescent phenotype by the chemical reactivity of catecholamines: An integrative review. Ageing Res Rev 2022; 75:101570. [PMID: 35051644 DOI: 10.1016/j.arr.2022.101570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 01/15/2022] [Indexed: 11/21/2022]
Abstract
Macromolecules damaged by covalent modifications produced by chemically reactive metabolites accumulate in the slowly renewable components of living bodies and compromise their functions. Among such metabolites, catecholamines (CA) are unique, compared with the ubiquitous oxygen, ROS, glucose and methylglyoxal, in that their high chemical reactivity is confined to a limited set of cell types, including the dopaminergic and noradrenergic neurons and their direct targets, which suffer from CA propensities for autoxidation yielding toxic quinones, and for Pictet-Spengler reactions with carbonyl-containing compounds, which yield mitochondrial toxins. The functions progressively compromised because of that include motor performance, cognition, reward-driven behaviors, emotional tuning, and the neuroendocrine control of reproduction. The phenotypic manifestations of the resulting disorders culminate in such conditions as Parkinson's and Alzheimer's diseases, hypertension, sarcopenia, and menopause. The reasons to suspect that CA play some special role in aging accumulated since early 1970-ies. Published reviews address the role of CA hazardousness in the development of specific aging-associated diseases. The present integrative review explores how the bizarre discrepancy between CA hazardousness and biological importance could have emerged in evolution, how much does the chemical reactivity of CA contribute to the senescent phenotype in mammals, and what can be done with it.
Collapse
|
31
|
Gilvesy A, Husen E, Magloczky Z, Mihaly O, Hortobágyi T, Kanatani S, Heinsen H, Renier N, Hökfelt T, Mulder J, Uhlen M, Kovacs GG, Adori C. Spatiotemporal characterization of cellular tau pathology in the human locus coeruleus-pericoerulear complex by three-dimensional imaging. Acta Neuropathol 2022; 144:651-676. [PMID: 36040521 PMCID: PMC9468059 DOI: 10.1007/s00401-022-02477-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/28/2023]
Abstract
Tau pathology of the noradrenergic locus coeruleus (LC) is a hallmark of several age-related neurodegenerative disorders, including Alzheimer's disease. However, a comprehensive neuropathological examination of the LC is difficult due to its small size and rod-like shape. To investigate the LC cytoarchitecture and tau cytoskeletal pathology in relation to possible propagation patterns of disease-associated tau in an unprecedented large-scale three-dimensional view, we utilized volume immunostaining and optical clearing technology combined with light sheet fluorescence microscopy. We examined AT8+ pathological tau in the LC/pericoerulear region of 20 brains from Braak neurofibrillary tangle (NFT) stage 0-6. We demonstrate an intriguing morphological complexity and heterogeneity of AT8+ cellular structures in the LC, representing various intracellular stages of NFT maturation and their diverse transition forms. We describe novel morphologies of neuronal tau pathology such as AT8+ cells with fine filamentous somatic protrusions or with disintegrating soma. We show that gradual dendritic atrophy is the first morphological sign of the degeneration of tangle-bearing neurons, even preceding axonal lesions. Interestingly, irrespective of the Braak NFT stage, tau pathology is more advanced in the dorsal LC that preferentially projects to vulnerable forebrain regions in Alzheimer's disease, like the hippocampus or neocortical areas, compared to the ventral LC projecting to the cerebellum and medulla. Moreover, already in the precortical Braak 0 stage, 3D analysis reveals clustering tendency and dendro-dendritic close appositions of AT8+ LC neurons, AT8+ long axons of NFT-bearing cells that join the ascending dorsal noradrenergic bundle after leaving the LC, as well as AT8+ processes of NFT-bearing LC neurons that target the 4th ventricle wall. Our study suggests that the unique cytoarchitecture, comprised of a densely packed and dendritically extensively interconnected neuronal network with long projections, makes the human LC to be an ideal anatomical template for early accumulation and trans-neuronal spreading of hyperphosphorylated tau.
Collapse
Affiliation(s)
- Abris Gilvesy
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- McGill University, Montreal, QC, H3A 0G4, Canada
| | - Evelina Husen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Zsofia Magloczky
- Human Brain Research Laboratory, Institute of Experimental Medicine, ELKH, Budapest, Hungary
| | - Orsolya Mihaly
- Department of Pathology, St. Borbála Hospital, Tatabánya, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Department of Old Age Psychiatry, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
- Centre for Age-Related Medicine, SESAM, Stavanger University Hospital, Stavanger, Norway
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Shigeaki Kanatani
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Helmut Heinsen
- Clinic of Psychiatry and Institute of Forensic Pathology, University of Würzburg, 97080, Würzburg, Germany
- LIM-44, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute-ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, 75013, Paris, France
| | - Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Jan Mulder
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
| | - Mathias Uhlen
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden
- Science for Life Laboratory, Royal Institute of Technology, 10691, Stockholm, Sweden
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| | - Csaba Adori
- Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17177, Stockholm, Sweden.
| |
Collapse
|
32
|
Levey AI, Qiu D, Zhao L, Hu WT, Duong DM, Higginbotham L, Dammer EB, Seyfried NT, Wingo TS, Hales CM, Gámez Tansey M, Goldstein DS, Abrol A, Calhoun VD, Goldstein FC, Hajjar I, Fagan AM, Galasko D, Edland SD, Hanfelt J, Lah JJ, Weinshenker D. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 2021; 145:1924-1938. [PMID: 34919634 DOI: 10.1093/brain/awab452] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
The locus coeruleus (LC) is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. LC dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine (NE) transmission. To test NE augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved NE transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-center, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment (MCI) and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of NE and metabolites. Prespecified primary outcomes were CSF levels of IL1α and Thymus-Expressed Chemokine. Secondary/exploratory outcomes included clinical measures, CSF analyses of Aβ42, Tau, and pTau181, mass spectrometry proteomics, and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and FDG-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF NE levels. IL-1α and Thymus-Expressed Chemokine were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in Aβ42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism, and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK, and OPG proteins. Treatment was also associated with significantly increased BDNF and reduced triglycerides in plasma. Resting state fMRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. FDG-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus, and fusiform gyrus, with carry-over effects six months after treatment. In summary, atomoxetine treatment was safe, well tolerated, and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism, and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.
Collapse
Affiliation(s)
- Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Deqiang Qiu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, USA
| | - Liping Zhao
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - William T Hu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Lenora Higginbotham
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | - Chadwick M Hales
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Malú Gámez Tansey
- Department of Physiology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Felicia C Goldstein
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Ihab Hajjar
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Anne M Fagan
- Department of Neurology and Knight ADRC, Washington University, St. Louis, MO, 630130, USA
| | - Doug Galasko
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - Steven D Edland
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - John Hanfelt
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
33
|
Ludwig M, Wienke C, Betts MJ, Zaehle T, Hämmerer D. Current challenges in reliably targeting the noradrenergic locus coeruleus using transcutaneous auricular vagus nerve stimulation (taVNS). Auton Neurosci 2021; 236:102900. [PMID: 34781120 DOI: 10.1016/j.autneu.2021.102900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), as a non-invasive brain stimulation technique may influence the locus coeruleus-norepinephrine system (LC-NE system) via modulation of the Vagus Nerve (VN) which projects to the LC. Few human studies exist examining the effects of taVNS on the LC-NE system and studies to date assessing the ability of taVNS to target the LC yield heterogeneous results. The aim of this review is to present an overview of the current challenges in assessing effects of taVNS on LC function and how translational approaches spanning animal and human research can help in this regard. A particular emphasis of the review discusses how the effects of taVNS may be influenced by changes in structure and function of the LC-NE system across the human lifespan and in disease.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Matthew J Betts
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London, UK; Department of Psychology, University of Innsbruck; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
34
|
Sakakibara Y, Hirota Y, Ibaraki K, Takei K, Chikamatsu S, Tsubokawa Y, Saito T, Saido TC, Sekiya M, Iijima KM. Widespread Reduced Density of Noradrenergic Locus Coeruleus Axons in the App Knock-In Mouse Model of Amyloid-β Amyloidosis. J Alzheimers Dis 2021; 82:1513-1530. [PMID: 34180416 PMCID: PMC8461671 DOI: 10.3233/jad-210385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND The locus coeruleus (LC), a brainstem nucleus comprising noradrenergic neurons, is one of the earliest regions affected by Alzheimer's disease (AD). Amyloid-β (Aβ) pathology in the cortex in AD is thought to exacerbate the age-related loss of LC neurons, which may lead to cortical tau pathology. However, mechanisms underlying LC neurodegeneration remain elusive. OBJECTIVE Here, we aimed to examine how noradrenergic neurons are affected by cortical Aβ pathology in AppNL-G-F/NL-G-F knock-in mice. METHODS The density of noradrenergic axons in LC-innervated regions and the LC neuron number were analyzed by an immunohistochemical method. To explore the potential mechanisms for LC degeneration, we also examined the occurrence of tau pathology in LC neurons, the association of reactive gliosis with LC neurons, and impaired trophic support in the brains of AppNL-G-F/NL-G-F mice. RESULTS We observed a significant reduction in the density of noradrenergic axons from the LC in aged AppNL-G-F/NL-G-F mice without neuron loss or tau pathology, which was not limited to areas near Aβ plaques. However, none of the factors known to be related to the maintenance of LC neurons (i.e., somatostatin/somatostatin receptor 2, brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3) were significantly reduced in AppNL-G-F/NL-G-F mice. CONCLUSION This study demonstrates that cortical Aβ pathology induces noradrenergic neurodegeneration, and further elucidation of the underlying mechanisms will reveal effective therapeutics to halt AD progression.
Collapse
Affiliation(s)
- Yasufumi Sakakibara
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yu Hirota
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kyoko Ibaraki
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Kimi Takei
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Sachie Chikamatsu
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yoko Tsubokawa
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Michiko Sekiya
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Koichi M Iijima
- Department of Neurogenetics, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Experimental Gerontology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
35
|
Plini ERG, O’Hanlon E, Boyle R, Sibilia F, Rikhye G, Kenney J, Whelan R, Melnychuk MC, Robertson IH, Dockree PM. Examining the Role of the Noradrenergic Locus Coeruleus for Predicting Attention and Brain Maintenance in Healthy Old Age and Disease: An MRI Structural Study for the Alzheimer's Disease Neuroimaging Initiative. Cells 2021; 10:1829. [PMID: 34359997 PMCID: PMC8306442 DOI: 10.3390/cells10071829] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022] Open
Abstract
The noradrenergic theory of Cognitive Reserve (Robertson, 2013-2014) postulates that the upregulation of the locus coeruleus-noradrenergic system (LC-NA) originating in the brainstem might facilitate cortical networks involved in attention, and protracted activation of this system throughout the lifespan may enhance cognitive stimulation contributing to reserve. To test the above-mentioned theory, a study was conducted on a sample of 686 participants (395 controls, 156 mild cognitive impairment, 135 Alzheimer's disease) investigating the relationship between LC volume, attentional performance and a biological index of brain maintenance (BrainPAD-an objective measure, which compares an individual's structural brain health, reflected by their voxel-wise grey matter density, to the state typically expected at that individual's age). Further analyses were carried out on reserve indices including education and occupational attainment. Volumetric variation across groups was also explored along with gender differences. Control analyses on the serotoninergic (5-HT), dopaminergic (DA) and cholinergic (Ach) systems were contrasted with the noradrenergic (NA) hypothesis. The antithetic relationships were also tested across the neuromodulatory subcortical systems. Results supported by Bayesian modelling showed that LC volume disproportionately predicted higher attentional performance as well as biological brain maintenance across the three groups. These findings lend support to the role of the noradrenergic system as a key mediator underpinning the neuropsychology of reserve, and they suggest that early prevention strategies focused on the noradrenergic system (e.g., cognitive-attentive training, physical exercise, pharmacological and dietary interventions) may yield important clinical benefits to mitigate cognitive impairment with age and disease.
Collapse
Affiliation(s)
- Emanuele R. G. Plini
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Erik O’Hanlon
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychiatry, Royal College of Surgeons in Ireland, Hospital Rd, Beaumont, 9QRH+4F Dublin, Ireland
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Rory Boyle
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Francesca Sibilia
- Department of Psychiatry, School of Medicine Dublin, Trinity College Dublin, 152-160 Pearse St, 8QV3+99 Dublin, Ireland;
| | - Gaia Rikhye
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Joanne Kenney
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Robert Whelan
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Michael C. Melnychuk
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| | - Ian H. Robertson
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
- Department of Psychology, Global Brain Health Institute, Trinity College Dublin, Lloyd Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland;
| | - Paul M. Dockree
- Department of Psychology, Trinity College Institute of Neuroscience, Trinity College Dublin, Llyod Building, 42A Pearse St, 8PVX+GJ Dublin, Ireland; (E.O.); (R.B.); (G.R.); (J.K.); (M.C.M.); (I.H.R.); (P.M.D.)
| |
Collapse
|
36
|
Goodman AM, Langner BM, Jackson N, Alex C, McMahon LL. Heightened Hippocampal β-Adrenergic Receptor Function Drives Synaptic Potentiation and Supports Learning and Memory in the TgF344-AD Rat Model during Prodromal Alzheimer's Disease. J Neurosci 2021; 41:5747-5761. [PMID: 33952633 PMCID: PMC8244969 DOI: 10.1523/jneurosci.0119-21.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 01/27/2023] Open
Abstract
The central noradrenergic (NA) system is critical for the maintenance of attention, behavioral flexibility, spatial navigation, and learning and memory, those cognitive functions lost first in early Alzheimer's disease (AD). In fact, the locus coeruleus (LC), the sole source of norepinephrine (NE) for >90% of the brain, is the first site of pathologic tau accumulation in human AD with axon loss throughout forebrain, including hippocampus. The dentate gyrus is heavily innervated by LC-NA axons, where released NE acts on β-adrenergic receptors (ARs) at excitatory synapses from entorhinal cortex to facilitate long-term synaptic plasticity and memory formation. These synapses experience dysfunction in early AD before cognitive impairment. In the TgF344-AD rat model of AD, degeneration of LC-NA axons in hippocampus recapitulates human AD, providing a preclinical model to investigate synaptic and behavioral consequences. Using immunohistochemistry, Western blot analysis, and brain slice electrophysiology in 6- to 9-month-old wild-type and TgF344-AD rats, we discovered that the loss of LC-NA axons coincides with the heightened β-AR function at medial perforant path-dentate granule cell synapses that is responsible for the increase in LTP magnitude at these synapses. Furthermore, novel object recognition is facilitated in TgF344-AD rats that requires β-ARs, and pharmacological blockade of β-ARs unmasks a deficit in extinction learning only in TgF344-AD rats, indicating a greater reliance on β-ARs in both behaviors. Thus, a compensatory increase in β-AR function during prodromal AD in TgF344-AD rats heightens synaptic plasticity and preserves some forms of learning and memory.SIGNIFICANCE STATEMENT The locus coeruleus (LC), a brain region located in the brainstem which is responsible for attention and arousal, is damaged first by Alzheimer's disease (AD) pathology. The LC sends axons to hippocampus where released norepinephrine (NE) modulates synaptic function required for learning and memory. How degeneration of LC axons and loss of NE in hippocampus in early AD impacts synaptic function and learning and memory is not well understood despite the importance of LC in cognitive function. We used a transgenic AD rat model with LC axon degeneration mimicking human AD and found that heightened function of β-adrenergic receptors in the dentate gyrus increased synaptic plasticity and preserved learning and memory in early stages of the disease.
Collapse
Affiliation(s)
- Anthoni M Goodman
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Bethany M Langner
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Nateka Jackson
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Capri Alex
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294-0006
| |
Collapse
|
37
|
Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: Monoamines and their derivatives in biological fluids. Exp Gerontol 2021; 152:111452. [PMID: 34182050 DOI: 10.1016/j.exger.2021.111452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage. Accumulating evidence support the hypothesis that initial degeneration of profound monoaminergic nuclei may trigger a transneuronal spread of AD pathology towards hippocampus and cortex. These studies aroused great interest on monoamines, i.e. noradrenaline (NA), dopamine (D) ad serotonin (5-HT), as early hallmarks of AD pathology. The present work reviews current literature on the potential role of monoamines and related metabolites as biomarkers of AD. First, morphological changes in the monoaminergic systems during AD are briefly described. Second, we focus on concentration changes of these molecules and their derivatives in biological fluids, including cerebrospinal fluid, obtained by lumbar puncture, and blood or urine, sampled via less invasive procedures. Starting from initial observations, we then discuss recent insights on metabolomics-based analysis, highlighting the promising clinical utility of monoamines for the identification of a molecular AD signature, aimed at improving early diagnosis and discrimination from other dementia.
Collapse
|
38
|
Patthy Á, Murai J, Hanics J, Pintér A, Zahola P, Hökfelt TGM, Harkany T, Alpár A. Neuropathology of the Brainstem to Mechanistically Understand and to Treat Alzheimer's Disease. J Clin Med 2021; 10:jcm10081555. [PMID: 33917176 PMCID: PMC8067882 DOI: 10.3390/jcm10081555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 12/18/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder as yet without effective therapy. Symptoms of this disorder typically reflect cortical malfunction with local neurohistopathology, which biased investigators to search for focal triggers and molecular mechanisms. Cortex, however, receives massive afferents from caudal brain structures, which do not only convey specific information but powerfully tune ensemble activity. Moreover, there is evidence that the start of AD is subcortical. The brainstem harbors monoamine systems, which establish a dense innervation in both allo- and neocortex. Monoaminergic synapses can co-release neuropeptides either by precisely terminating on cortical neurons or, when being “en passant”, can instigate local volume transmission. Especially due to its early damage, malfunction of the ascending monoaminergic system emerges as an early sign and possible trigger of AD. This review summarizes the involvement and cascaded impairment of brainstem monoaminergic neurons in AD and discusses cellular mechanisms that lead to their dysfunction. We highlight the significance and therapeutic challenges of transmitter co-release in ascending activating system, describe the role and changes of local connections and distant afferents of brainstem nuclei in AD, and summon the rapidly increasing diagnostic window during the last few years.
Collapse
Affiliation(s)
- Ágoston Patthy
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Murai
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - János Hanics
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | - Anna Pintér
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Péter Zahola
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
| | - Tomas G. M. Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
| | - Tibor Harkany
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, 17165 Stockholm, Sweden; (T.G.M.H.); (T.H.)
- Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, 1090 Vienna, Austria
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, H-1094 Budapest, Hungary; (Á.P.); (J.M.); (J.H.); (A.P.); (P.Z.)
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, H-1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
39
|
The 'a, b, c's of pretangle tau and their relation to aging and the risk of Alzheimer's Disease. Semin Cell Dev Biol 2021; 116:125-134. [PMID: 33674223 DOI: 10.1016/j.semcdb.2020.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Braak has described the beginnings of Alzheimer's Disease as occurring in the locus coeruleus. Here we review these pretangle stages and relate their expression to recently described normal features of tau biology. We suggest pretangle tau depends on characteristics of locus coeruleus operation that promote tau condensates. We examine the timeline of pretangle and tangle appearance in locus coeruleus. We find catastrophic loss of locus coeruleus neurons is a late event. The strong relationship between locus coeruleus neuron number and human cognition underscores the utility of a focus on locus coeruleus. Promoting locus coeruleus health will benefit normal aging as well as aid in the prevention of dementia. Two animal models offering experimental approaches to understanding the functional change initiated by pretangles in locus coeruleus neurons are discussed.
Collapse
|
40
|
Guinea-Izquierdo A, Giménez M, Martínez-Zalacaín I, Del Cerro I, Canal-Noguer P, Blasco G, Gascón J, Reñé R, Rico I, Camins A, Aguilera C, Urretavizcaya M, Ferrer I, Menchón JM, Soria V, Soriano-Mas C. Lower Locus Coeruleus MRI intensity in patients with late-life major depression. PeerJ 2021; 9:e10828. [PMID: 33628639 PMCID: PMC7894108 DOI: 10.7717/peerj.10828] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 01/04/2021] [Indexed: 11/24/2022] Open
Abstract
Background The locus coeruleus (LC) is the major noradrenergic source in the central nervous system. Structural alterations in the LC contribute to the pathophysiology of different neuropsychiatric disorders, which may increase to a variable extent the likelihood of developing neurodegenerative conditions. The characterization of such alterations may therefore help to predict progression to neurodegenerative disorders. Despite the LC cannot be visualized with conventional magnetic resonance imaging (MRI), specific MRI sequences have been developed to infer its structural integrity. Methods We quantified LC signal Contrast Ratios (LCCRs) in late-life major depressive disorder (MDD) (n = 37, 9 with comorbid aMCI), amnestic Mild Cognitive Impairment (aMCI) (n = 21, without comorbid MDD), and healthy controls (HCs) (n = 31), and also assessed the putative modulatory effects of comorbidities and other clinical variables. Results LCCRs were lower in MDD compared to aMCI and HCs. While no effects of aMCI comorbidity were observed, lower LCCRs were specifically observed in patients taking serotonin/norepinephrine reuptake inhibitors (SNRIs). Conclusion Our results do not support the hypothesis that lower LCCRs characterize the different clinical groups that may eventually develop a neurodegenerative disorder. Conversely, our results were specifically observed in patients with late-life MDD taking SNRIs. Further research with larger samples is warranted to ascertain whether medication or particular clinical features of patients taking SNRIs are associated with changes in LC neurons.
Collapse
Affiliation(s)
- Andrés Guinea-Izquierdo
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain
| | - Mónica Giménez
- Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain
| | - Ignacio Martínez-Zalacaín
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain
| | - Inés Del Cerro
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Pol Canal-Noguer
- B2SLab/Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial, Universitat Politècnica de Catalunya, Barcelona, Spain.,Networking Biomedical Research Centre in the subject area of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Esplugues de Llobregat (Barcelona), Spain
| | - Gerard Blasco
- Imaging Diagnostic Institute (IDI), Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Jordi Gascón
- Dementia Diagnostic and Treatment Unit/Department of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Ramon Reñé
- Dementia Diagnostic and Treatment Unit/Department of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Inmaculada Rico
- Dementia Diagnostic and Treatment Unit/Department of Neurology, Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Angels Camins
- Imaging Diagnostic Institute (IDI), Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Carlos Aguilera
- Imaging Diagnostic Institute (IDI), Bellvitge University Hospital, Hospitalet de Llobregat (Barcelona), Spain
| | - Mikel Urretavizcaya
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics/Institute of Neurosciences, University of Barcelona, Hospitalet de Llobregat (Barcelona), Spain.,Department of Pathologic Anatomy/Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Neurodegenerative diseases (CIBERNED), Madrid, Spain
| | - José Manuel Menchón
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Virginia Soria
- Department of Clinical Sciences/School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry/Bellvitge University Hospital, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat (Barcelona), Spain.,Network Center for Biomedical Research on Mental Health (CIBERSAM), Madrid, Spain.,Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| |
Collapse
|
41
|
Valle-León M, Callado LF, Aso E, Cajiao-Manrique MM, Sahlholm K, López-Cano M, Soler C, Altafaj X, Watanabe M, Ferré S, Fernández-Dueñas V, Menchón JM, Ciruela F. Decreased striatal adenosine A 2A-dopamine D 2 receptor heteromerization in schizophrenia. Neuropsychopharmacology 2021; 46:665-672. [PMID: 33010795 PMCID: PMC8027896 DOI: 10.1038/s41386-020-00872-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 02/04/2023]
Abstract
According to the adenosine hypothesis of schizophrenia, the classically associated hyperdopaminergic state may be secondary to a loss of function of the adenosinergic system. Such a hypoadenosinergic state might either be due to a reduction of the extracellular levels of adenosine or alterations in the density of adenosine A2A receptors (A2ARs) or their degree of functional heteromerization with dopamine D2 receptors (D2R). In the present study, we provide preclinical and clinical evidences for this latter mechanism. Two animal models for the study of schizophrenia endophenotypes, namely the phencyclidine (PCP) mouse model and the A2AR knockout mice, were used to establish correlations between behavioural and molecular studies. In addition, a new AlphaLISA-based method was implemented to detect native A2AR-D2R heteromers in mouse and human brain. First, we observed a reduction of prepulse inhibition in A2AR knockout mice, similar to that observed in the PCP animal model of sensory gating impairment of schizophrenia, as well as a significant upregulation of striatal D2R without changes in A2AR expression in PCP-treated animals. In addition, PCP-treated animals showed a significant reduction of striatal A2AR-D2R heteromers, as demonstrated by the AlphaLISA-based method. A significant and pronounced reduction of A2AR-D2R heteromers was next demonstrated in postmortem caudate nucleus from schizophrenic subjects, even though both D2R and A2AR were upregulated. Finally, in PCP-treated animals, sub-chronic administration of haloperidol or clozapine counteracted the reduction of striatal A2AR-D2R heteromers. The degree of A2AR-D2R heteromer formation in schizophrenia might constitute a hallmark of the illness, which indeed should be further studied to establish possible correlations with chronic antipsychotic treatments.
Collapse
Affiliation(s)
- Marta Valle-León
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Luis F. Callado
- grid.11480.3c0000000121671098Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Spain ,grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto Salud Carlos III, Madrid, Spain ,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Ester Aso
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - María M. Cajiao-Manrique
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.412041.20000 0001 2106 639XBordeaux International Neuroscience Master, University of Bordeaux, Bordeaux, France
| | - Kristoffer Sahlholm
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.4714.60000 0004 1937 0626Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Marc López-Cano
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Concepció Soler
- grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Immunology Unit, Faculty of Medicine and Health Sciences, Department of Pathology and Experimental Therapeutics, University of Barcelona, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Xavier Altafaj
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Masahiko Watanabe
- grid.39158.360000 0001 2173 7691Department of Anatomy, Hokkaido University School of Medicine, Sapporo, 060-0818 Japan
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA.
| | - Víctor Fernández-Dueñas
- grid.5841.80000 0004 1937 0247Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Neuropharmacology and Pain Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain
| | - José M. Menchón
- grid.413448.e0000 0000 9314 1427Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Instituto Salud Carlos III, Madrid, Spain ,grid.411129.e0000 0000 8836 0780Department of Psychiatry, University Hospital of Bellvitge, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.418284.30000 0004 0427 2257Psychiatry and Mental Health Group, Neuroscience Program, Institut d’Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Clinical Sciences, School of Medicine, University of Barcelona, UB, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, UB, L'Hospitalet de Llobregat, Barcelona, Spain. .,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
42
|
Early β adrenoceptor dependent time window for fear memory persistence in APPswe/PS1dE9 mice. Sci Rep 2021; 11:870. [PMID: 33441593 PMCID: PMC7807071 DOI: 10.1038/s41598-020-79487-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/08/2020] [Indexed: 01/29/2023] Open
Abstract
In this study we demonstrate that 2 month old APPswe/PS1dE9 mice, a transgenic model of Alzheimer's disease, exhibited intact short-term memory in Pavlovian hippocampal-dependent contextual fear learning task. However, their long-term memory was impaired. Intra-CA1 infusion of isoproterenol hydrochloride, the β-adrenoceptor agonist, to the ventral hippocampus of APPswe/PS1dE9 mice immediately before fear conditioning restored long-term contextual fear memory. Infusion of the β-adrenoceptor agonist + 2.5 h after fear conditioning only partially rescued the fear memory, whereas infusion at + 12 h post conditioning did not interfere with long-term memory persistence in this mouse model. Furthermore, Intra-CA1 infusion of propranolol, the β-adrenoceptor antagonist, administered immediately before conditioning to their wildtype counterpart impaired long-term fear memory, while it was ineffective when administered + 4 h and + 12 h post conditioning. Our results indicate that, long-term fear memory persistence is determined by a unique β-adrenoceptor sensitive time window between 0 and + 2.5 h upon learning acquisition, in the ventral hippocampal CA1 of APPswe/PS1dE9 mice. On the contrary, β-adrenoceptor agonist delivery to ventral hippocampal CA1 per se did not enhance innate anxiety behaviour in open field test. Thus we conclude that, activation of learning dependent early β-adrenoceptor modulation underlies and is necessary to promote long-term fear memory persistence in APPswe/PS1dE9.
Collapse
|
43
|
Matchett BJ, Grinberg LT, Theofilas P, Murray ME. The mechanistic link between selective vulnerability of the locus coeruleus and neurodegeneration in Alzheimer's disease. Acta Neuropathol 2021; 141:631-650. [PMID: 33427939 PMCID: PMC8043919 DOI: 10.1007/s00401-020-02248-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is neuropathologically characterized by the intracellular accumulation of hyperphosphorylated tau and the extracellular deposition of amyloid-β plaques, which affect certain brain regions in a progressive manner. The locus coeruleus (LC), a small nucleus in the pons of the brainstem, is widely recognized as one of the earliest sites of neurofibrillary tangle formation in AD. Patients with AD exhibit significant neuronal loss in the LC, resulting in a marked reduction of its size and function. The LC, which vastly innervates several regions of the brain, is the primary source of the neurotransmitter norepinephrine (NE) in the central nervous system. Considering that NE is a major modulator of behavior, contributing to neuroprotection and suppression of neuroinflammation, degeneration of the LC in AD and the ultimate dysregulation of the LC-NE system has detrimental effects in the brain. In this review, we detail the neuroanatomy and function of the LC, its essential role in neuroprotection, and how this is dysregulated in AD. We discuss AD-related neuropathologic changes in the LC and mechanisms by which LC neurons are selectively vulnerable to insult. Further, we elucidate the neurotoxic effects of LC de-innervation both locally and at projection sites, and how this augments disease pathology, progression and severity. We summarize how preservation of the LC-NE system could be used in the treatment of AD and other neurodegenerative diseases affected by LC degeneration.
Collapse
Affiliation(s)
- Billie J. Matchett
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158 USA
| | - Panos Theofilas
- Memory and Aging Center, Department of Neurology, University of California, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| | - Melissa E. Murray
- Neuropathology Laboratory, Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
44
|
Clark I, Vissel B. Broader Insights into Understanding Tumor Necrosis Factor and Neurodegenerative Disease Pathogenesis Infer New Therapeutic Approaches. J Alzheimers Dis 2021; 79:931-948. [PMID: 33459706 PMCID: PMC7990436 DOI: 10.3233/jad-201186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Proinflammatory cytokines such as tumor necrosis factor (TNF), with its now appreciated key roles in neurophysiology as well as neuropathophysiology, are sufficiently well-documented to be useful tools for enquiry into the natural history of neurodegenerative diseases. We review the broader literature on TNF to rationalize why abruptly-acquired neurodegenerative states do not exhibit the remorseless clinical progression seen in those states with gradual onsets. We propose that the three typically non-worsening neurodegenerative syndromes, post-stroke, post-traumatic brain injury (TBI), and post cardiac arrest, usually become and remain static because of excess cerebral TNF induced by the initial dramatic peak keeping microglia chronically activated through an autocrine loop of microglial activation through excess cerebral TNF. The existence of this autocrine loop rationalizes post-damage repair with perispinal etanercept and proposes a treatment for cerebral aspects of COVID-19 chronicity. Another insufficiently considered aspect of cerebral proinflammatory cytokines is the fitness of the endogenous cerebral anti-TNF system provided by norepinephrine (NE), generated and distributed throughout the brain from the locus coeruleus (LC). We propose that an intact LC, and therefore an intact NE-mediated endogenous anti-cerebral TNF system, plus the DAMP (damage or danger-associated molecular pattern) input having diminished, is what allows post-stroke, post-TBI, and post cardiac arrest patients a strong long-term survival advantage over Alzheimer's disease and Parkinson's disease sufferers. In contrast, Alzheimer's disease and Parkinson's disease patients remorselessly worsen, being handicapped by sustained, accumulating, DAMP and PAMP (pathogen-associated molecular patterns) input, as well as loss of the LC-origin, NE-mediated, endogenous anti-cerebral TNF system. Adrenergic receptor agonists may counter this.
Collapse
Affiliation(s)
- I.A. Clark
- Research School of Biology, Australian National University, Canberra, Australia
| | - B. Vissel
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology, Sydney, Australia
- St. Vincent’s Centre for Applied Medical Research, Sydney, Australia
| |
Collapse
|
45
|
Del Cerro I, Martínez-Zalacaín I, Guinea-Izquierdo A, Gascón-Bayarri J, Viñas-Diez V, Urretavizcaya M, Naval-Baudin P, Aguilera C, Reñé-Ramírez R, Ferrer I, Menchón JM, Soria V, Soriano-Mas C. Locus coeruleus connectivity alterations in late-life major depressive disorder during a visual oddball task. NEUROIMAGE-CLINICAL 2020; 28:102482. [PMID: 33371943 PMCID: PMC7649653 DOI: 10.1016/j.nicl.2020.102482] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 11/05/2022]
Abstract
Patients with late-life MDD show lower global LC connectivity in an oddball task. Lower LC connectivity was observed with the ACC, fusiform gyrus and cerebellum. LC-ACC connectivity correlated with two different measures of depression severity.
The Locus Coeruleus (LC) is the major source of noradrenergic neurotransmission. Structural alterations in the LC have been observed in neurodegenerative disorders and at-risk individuals, although functional connectivity studies between the LC and other brain areas have not been yet performed in these populations. Patients with late-life major depressive disorder (MDD) are indeed at increased risk for neurodegenerative disorders, and here we investigated LC connectivity in late-life MDD in comparison to individuals with amnestic type mild cognitive impairment (aMCI) and healthy controls (HCs). We assessed 20 patients with late-life MDD, 16 patients with aMCI, and 26 HCs, who underwent a functional magnetic resonance scan while performing a visual oddball task. We assessed task-related modulations of LC connectivity (i.e., Psychophysiological Interactions, PPI) with other brain areas. A T1-weighted fast spin-echo sequence for LC localization was also obtained. Patients with late-life MDD showed lower global connectivity during target detection in a cluster encompassing the right caudal LC. Specifically, we observed lower LC connectivity with the left anterior cingulate cortex (ACC), the right fusiform gyrus, and different cerebellar clusters. Moreover, alterations in LC-ACC connectivity correlated negatively with depression severity (i.e., Geriatric Depression Scale and number of recurrences). Reduced connectivity of the LC during oddball performance seems to specifically characterize patients with late-life MDD, but not other populations of aged individuals with cognitive alterations. Such alteration is associated with different measures of disease severity, such as the current presence of symptoms and the burden of disease (number of recurrences).
Collapse
Affiliation(s)
- Inés Del Cerro
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Andrés Guinea-Izquierdo
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain
| | - Jordi Gascón-Bayarri
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Vanesa Viñas-Diez
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Mikel Urretavizcaya
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Pablo Naval-Baudin
- Imaging Diagnostic Institute (IDI), Neuroradiology Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Carlos Aguilera
- Imaging Diagnostic Institute (IDI), Neuroradiology Unit, Bellvitge University Hospital, Barcelona, Spain
| | - Ramón Reñé-Ramírez
- Dementia Diagnostic and Treatment Unit, Department of Neurology, Bellvitge University Hospital, Barcelona, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Department of Pathologic Anatomy, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Spain
| | - José M Menchón
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain
| | - Virginia Soria
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Department of Clinical Sciences, Bellvitge Campus, University of Barcelona, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain.
| | - Carles Soriano-Mas
- Bellvitge Biomedical Research Institute-IDIBELL, Department of Psychiatry, Bellvitge University Hospital, Barcelona, Spain; Network Center for Biomedical Research on Mental Health (CIBERSAM), Carlos III Health Institute (ISCIII), Barcelona, Spain; Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
46
|
Frost M, Keable A, Baseley D, Sealy A, Andreea Zbarcea D, Gatherer M, Yuen HM, Sharp MM, Weller RO, Attems J, Smith C, Chiarot PR, Carare RO. Vascular α1A Adrenergic Receptors as a Potential Therapeutic Target for IPAD in Alzheimer's Disease. Pharmaceuticals (Basel) 2020; 13:ph13090261. [PMID: 32971843 PMCID: PMC7560129 DOI: 10.3390/ph13090261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/14/2020] [Accepted: 09/19/2020] [Indexed: 01/20/2023] Open
Abstract
Drainage of interstitial fluid from the brain occurs via the intramural periarterial drainage (IPAD) pathways along the basement membranes of cerebral capillaries and arteries against the direction of blood flow into the brain. The cerebrovascular smooth muscle cells (SMCs) provide the motive force for driving IPAD, and their decrease in function may explain the deposition of amyloid-beta as cerebral amyloid angiopathy (CAA), a key feature of Alzheimer’s disease. The α-adrenoceptor subtype α1A is abundant in the brain, but its distribution in the cerebral vessels is unclear. We analysed cultured human cerebrovascular SMCs and young, old and CAA human brains for (a) the presence of α1A receptor and (b) the distribution of the α1A receptor within the cerebral vessels. The α1A receptor was present on the wall of cerebrovascular SMCs. No significant changes were observed in the vascular expression of the α1A-adrenergic receptor in young, old and CAA cases. The pattern of vascular staining appeared less punctate and more diffuse with ageing and CAA. Our results show that the α1A-adrenergic receptor is preserved in cerebral vessels with ageing and in CAA and is expressed on cerebrovascular smooth muscle cells, suggesting that vascular adrenergic receptors may hold potential for therapeutic targeting of IPAD.
Collapse
Affiliation(s)
- Miles Frost
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Abby Keable
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Dan Baseley
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Amber Sealy
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Diana Andreea Zbarcea
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Maureen Gatherer
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Ho Ming Yuen
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Matt MacGregor Sharp
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Roy O. Weller
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newacstle upon Tyne NE4 5PL, UK;
| | - Colin Smith
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK;
| | - Paul R. Chiarot
- Department of Mechanical Engineering, State University of New York at Binghamton, Binghamton, NY 13902, USA;
| | - Roxana O. Carare
- Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.F.); (A.K.); (D.B.); (A.S.); (D.A.Z.); (M.G.); (H.M.Y.); (M.M.S.); (R.O.W.)
- Correspondence:
| |
Collapse
|
47
|
Pan X, Kaminga AC, Jia P, Wen SW, Acheampong K, Liu A. Catecholamines in Alzheimer's Disease: A Systematic Review and Meta-Analysis. Front Aging Neurosci 2020; 12:184. [PMID: 33024430 PMCID: PMC7516036 DOI: 10.3389/fnagi.2020.00184] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 05/26/2020] [Indexed: 12/11/2022] Open
Abstract
Background and Purpose: Previous studies found inconsistent results regarding the relationship between Alzheimer's disease (AD) and catecholamines, such as dopamine (DA), norepinephrine (NE), and epinephrine (EPI). Therefore, the purpose of this study was to perform a systematic review and meta-analysis to evaluate the results of previous studies on this relationship. Method: Literature retrieval of eligible studies was performed in four databases (Web of Science, PubMed, Embase, and PsycARTICLES). Standardized mean differences (SMDs) were calculated to assess differences in catecholamine concentrations between the AD groups and controls. Results: Thirteen studies met the eligibility criteria. Compared with the controls, significant lower concentrations of NE (SMD = −1.10, 95% CI: −2.01 to −0.18, p = 0.019) and DA (SMD = −1.12, 95% CI: −1.88 to −0.37, p = 0.003) were observed in patients with AD. No difference was found in the concentrations of EPI between the two groups (SMD = −0.74, 95% CI: −1.85 to 0.37, p = 0.189). Conclusion: Overall, these findings are in line with the hypothesis that reduced NE and DA may be an important indicator for AD (Registration number CRD42018112816).
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Peng Jia
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,International Initiative on Spatial Lifecourse Epidemiology (ISLE), Hong Kong, China.,Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands
| | - Shi Wu Wen
- Department of Obstetrics and Gynaecology, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Kwabena Acheampong
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Public, School of Postgraduate Studies, Adventist University of Africa, Nairobi, Kenya
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
48
|
Ausó E, Gómez-Vicente V, Esquiva G. Biomarkers for Alzheimer's Disease Early Diagnosis. J Pers Med 2020; 10:E114. [PMID: 32899797 PMCID: PMC7563965 DOI: 10.3390/jpm10030114] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/27/2020] [Accepted: 09/01/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, affecting the central nervous system (CNS) through the accumulation of intraneuronal neurofibrillary tau tangles (NFTs) and β-amyloid plaques. By the time AD is clinically diagnosed, neuronal loss has already occurred in many brain and retinal regions. Therefore, the availability of early and reliable diagnosis markers of the disease would allow its detection and taking preventive measures to avoid neuronal loss. Current diagnostic tools in the brain, such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and cerebrospinal fluid (CSF) biomarkers (Aβ and tau) detection are invasive and expensive. Brain-secreted extracellular vesicles (BEVs) isolated from peripheral blood have emerged as novel strategies in the study of AD, with enormous potential as a diagnostic evaluation of therapeutics and treatment tools. In addition; similar mechanisms of neurodegeneration have been demonstrated in the brain and the eyes of AD patients. Since the eyes are more accessible than the brain, several eye tests that detect cellular and vascular changes in the retina have also been proposed as potential screening biomarkers. The aim of this study is to summarize and discuss several potential markers in the brain, eye, blood, and other accessible biofluids like saliva and urine, and correlate them with earlier diagnosis and prognosis to identify individuals with mild symptoms prior to dementia.
Collapse
Affiliation(s)
| | | | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain; (E.A.); (V.G.-V.)
| |
Collapse
|
49
|
Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, Fornai F. Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. J Neurosci Res 2020; 98:2406-2434. [PMID: 32875628 DOI: 10.1002/jnr.24718] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/26/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022]
Abstract
Locus coeruleus (LC) is the main noradrenergic (NA) nucleus of the central nervous system. LC degenerates early during Alzheimer's disease (AD) and NA loss might concur to AD pathogenesis. Aside from neurons, LC terminals provide dense innervation of brain intraparenchymal arterioles/capillaries, and NA modulates astrocyte functions. The term neurovascular unit (NVU) defines the strict anatomical/functional interaction occurring between neurons, glial cells, and brain vessels. NVU plays a fundamental role in coupling the energy demand of activated brain regions with regional cerebral blood flow, it includes the blood-brain barrier (BBB), plays an active role in neuroinflammation, and participates also to the glymphatic system. NVU alteration is involved in AD pathophysiology through several mechanisms, mainly related to a relative oligoemia in activated brain regions and impairment of structural and functional BBB integrity, which contributes also to the intracerebral accumulation of insoluble amyloid. We review the existing data on the morphological features of LC-NA innervation of the NVU, as well as its contribution to neurovascular coupling and BBB proper functioning. After introducing the main experimental data linking LC with AD, which have repeatedly shown a key role of neuroinflammation and increased amyloid plaque formation, we discuss the potential mechanisms by which the loss of NVU modulation by LC might contribute to AD pathogenesis. Surprisingly, thus far not so many studies have tested directly these mechanisms in models of AD in which LC has been lesioned experimentally. Clarifying the interaction of LC with NVU in AD pathogenesis may disclose potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Filippo Sean Giorgi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,Neurology Unit, Pisa University Hospital, Pisa, Italy
| | | | | | - Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.,I.R.C.C.S. I.N.M. Neuromed, Pozzilli, Italy
| |
Collapse
|
50
|
Uddin MS, Mamun AA, Sumsuzzman DM, Ashraf GM, Perveen A, Bungau SG, Mousa SA, El-Seedi HR, Bin-Jumah MN, Abdel-Daim MM. Emerging Promise of Cannabinoids for the Management of Pain and Associated Neuropathological Alterations in Alzheimer's Disease. Front Pharmacol 2020; 11:1097. [PMID: 32792944 PMCID: PMC7387504 DOI: 10.3389/fphar.2020.01097] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible chronic neurodegenerative disorder that occurs when neurons in the brain degenerate and die. Pain frequently arises in older patients with neurodegenerative diseases including AD. However, the presence of pain in older people is usually overlooked with cognitive dysfunctions. Most of the times dementia patients experience moderate to severe pain but the development of severe cognitive dysfunctions tremendously affects their capability to express the presence of pain. Currently, there are no effective treatments against AD that emphasize the necessity for increasing research to develop novel drugs for treating or preventing the disease process. Furthermore, the prospective therapeutic use of cannabinoids in AD has been studied for the past few years. In this regard, targeting the endocannabinoid system has considered as a probable therapeutic strategy to control several associated pathological pathways, such as mitochondrial dysfunction, excitotoxicity, oxidative stress, and neuroinflammation for the management of AD. In this review, we focus on recent studies about the role of cannabinoids for the treatment of pain and related neuropathological changes in AD.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | - Abdullah Al Mamun
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Simona G. Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, New York, NY, United States
| | - Hesham R. El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom, Egypt
| | - May N. Bin-Jumah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|