1
|
Perdaens O, van Pesch V. Should We Consider Neurodegeneration by Itself or in a Triangulation with Neuroinflammation and Demyelination? The Example of Multiple Sclerosis and Beyond. Int J Mol Sci 2024; 25:12637. [PMID: 39684351 PMCID: PMC11641818 DOI: 10.3390/ijms252312637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself. Mitochondrial dysfunction, leading to energy deficiency and ion imbalance, plays a key role in neurodegeneration, and is partly caused by the oxidative stress generated by microglia and astrocytes. Nodal and paranodal disruption, with or without myelin alteration, is further involved. Myelin loss exposes the axons directly to the inflammatory and oxidative environment. Moreover, oligodendrocytes provide a singular metabolic and trophic support to axons, but do not emerge unscathed from the pathological events, by primary myelin defects and cell apoptosis or secondary to neuroinflammation or axonal damage. Hereby, trophic failure might be an overlooked contributor to neurodegeneration. Thus, a complex interplay between neuroinflammation, demyelination, and neurodegeneration, wherein each is primarily and secondarily involved, might offer a more comprehensive understanding of the pathogenesis and help establishing novel therapeutic strategies for many neurological diseases and beyond.
Collapse
Affiliation(s)
- Océane Perdaens
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
| | - Vincent van Pesch
- Neurochemistry Group, Institute of NeuroScience, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium;
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| |
Collapse
|
2
|
Guadalupi L, Mandolesi G, Vanni V, Balletta S, Caioli S, Pavlovic A, De Vito F, Fresegna D, Sanna K, Vitiello L, Nencini M, Tartacca A, Mariani F, Rovella V, Schippling S, Ruf I, Collin L, Centonze D, Musella A. Pharmacological blockade of 2-AG degradation ameliorates clinical, neuroinflammatory and synaptic alterations in experimental autoimmune encephalomyelitis. Neuropharmacology 2024; 252:109940. [PMID: 38570068 DOI: 10.1016/j.neuropharm.2024.109940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/15/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The endocannabinoid system (ECS) is critically involved in the pathophysiology of Multiple Sclerosis (MS), a neuroinflammatory and neurodegenerative disease of the central nervous system (CNS). Over the past decade, researchers have extensively studied the neuroprotective and anti-inflammatory effects of the ECS. Inhibiting the degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG) has emerged as a promising strategy to mitigate brain damage in MS. In this study, we investigated the effects of a novel reversible MAGL inhibitor (MAGLi 432) on C57/BL6 female mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. We assessed its implications on motor disability, neuroinflammation, and synaptic dysfunction. Systemic in vivo treatment with MAGLi 432 resulted in a less severe EAE disease, accompanied by increased 2-AG levels and decreased levels of arachidonic acid (AA) and prostaglandins (PGs) in the brain. Additionally, MAGLi 432 reduced both astrogliosis and microgliosis, as evidenced by decreased microglia/macrophage density and a less reactive morphology. Flow cytometry analysis further revealed fewer infiltrating CD45+ and CD3+ cells in the brains of MAGLi 432-treated EAE mice. Finally, MAGLi treatment counteracted the striatal synaptic hyperexcitability promoted by EAE neuroinflammation. In conclusion, MAGL inhibition significantly ameliorated EAE clinical disability and striatal inflammatory synaptopathy through potent anti-inflammatory effects. These findings provide new mechanistic insights into the neuroprotective role of the ECS during neuroinflammation and highlight the therapeutic potential of MAGLi-based drugs in mitigating MS-related inflammatory and neurodegenerative brain damage.
Collapse
Affiliation(s)
- Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Sara Balletta
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Silvia Caioli
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Anto Pavlovic
- Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Laura Vitiello
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy; Laboratory of Flow Cytometry, IRCCS San Raffaele Roma, Rome, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Alice Tartacca
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Sven Schippling
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Iris Ruf
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Ludovic Collin
- F. Hoffmann -La Roche Ltd. Roche. Innovation Center Basel, Switzerland by Roche Pharma Research and Early Development (pRED), Roche Innovation Center Basel, 4070 Basel, Switzerland
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Pozzilli (IS), Italy.
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy; Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Italy
| |
Collapse
|
3
|
Sanna K, Bruno A, Balletta S, Caioli S, Nencini M, Fresegna D, Guadalupi L, Dolcetti E, Azzolini F, Buttari F, Fantozzi R, Borrelli A, Stampanoni Bassi M, Gilio L, Lauritano G, Vanni V, De Vito F, Tartacca A, Mariani F, Rovella V, Musella A, Centonze D, Mandolesi G. Re-emergence of T lymphocyte-mediated synaptopathy in progressive multiple sclerosis. Front Immunol 2024; 15:1416133. [PMID: 38911847 PMCID: PMC11190089 DOI: 10.3389/fimmu.2024.1416133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Background Secondary progressive multiple sclerosis (SPMS) is defined by the irreversible accumulation of disability following a relapsing-remitting MS (RRMS) course. Despite treatments advances, a reliable tool able to capture the transition from RRMS to SPMS is lacking. A T cell chimeric MS model demonstrated that T cells derived from relapsing patients exacerbate excitatory transmission of central neurons, a synaptotoxic event absent during remitting stages. We hypothesized the re-emergence of T cell synaptotoxicity during SPMS and investigated the synaptoprotective effects of siponimod, a sphingosine 1-phosphate receptor (S1PR) modulator, known to reduce grey matter damage in SPMS patients. Methods Data from healthy controls (HC), SPMS patients, and siponimod-treated SPMS patients were collected. Chimeric experiments were performed incubating human T cells on murine cortico-striatal slices, and recording spontaneous glutamatergic activity from striatal neurons. Homologous chimeric experiments were executed incubating EAE mice T cells with siponimod and specific S1PR agonists or antagonists to identify the receptor involved in siponimod-mediated synaptic recovery. Results SPMS patient-derived T cells significantly increased the striatal excitatory synaptic transmission (n=40 synapses) compared to HC T cells (n=55 synapses), mimicking the glutamatergic alterations observed in active RRMS-T cells. Siponimod treatment rescued SPMS T cells synaptotoxicity (n=51 synapses). Homologous chimeric experiments highlighted S1P5R involvement in the siponimod's protective effects. Conclusion Transition from RRMS to SPMS involves the reappearance of T cell-mediated synaptotoxicity. Siponimod counteracts T cell-induced excitotoxicity, emphasizing the significance of inflammatory synaptopathy in progressive MS and its potential as a promising pharmacological target.
Collapse
Affiliation(s)
- Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Bruno
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Sara Balletta
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Silvia Caioli
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Ettore Dolcetti
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Federica Azzolini
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Roberta Fantozzi
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Angela Borrelli
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Mario Stampanoni Bassi
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Luana Gilio
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Gianluca Lauritano
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Alice Tartacca
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
4
|
Ramos-González EJ, Bitzer-Quintero OK, Ortiz G, Hernández-Cruz JJ, Ramírez-Jirano LJ. Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2024; 39:292-301. [PMID: 38553104 DOI: 10.1016/j.nrleng.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 04/02/2024] Open
Abstract
INTRODUCTION This paper highlights the relationship of inflammation and oxidative stress as damage mechanisms of Multiple Sclerosis (MS), considered an inflammatory and autoimmune disease. DEVELOPMENT The oxidative stress concept has been defined by an imbalance between oxidants and antioxidants in favor of the oxidants. There is necessary to do physiological functions, like the respiration chain, but in certain conditions, the production of reactive species overpassed the antioxidant systems, which could cause tissue damage. On the other hand, it is well established that inflammation is a complex reaction in the vascularized connective tissue in response to diverse stimuli. However, an unregulated prolonged inflammatory process also can induce tissue damage. CONCLUSION Both inflammation and oxidative stress are interrelated since one could promote the other, leading to a toxic feedback system, which contributes to the inflammatory and demyelination process in MS.
Collapse
Affiliation(s)
- E J Ramos-González
- Unidad de Investigacion Biomedica de Zacatecas, Instituto Mexicano del Seguro Social, Zacatecas, Zacatecas, Mexico
| | - O K Bitzer-Quintero
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico
| | - G Ortiz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - J J Hernández-Cruz
- Departamento de Diciplinas Metodológicas y Filosóficas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - L J Ramírez-Jirano
- División de Neurociencias, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
5
|
Ahmed A, Saleem MA, Saeed F, Afzaal M, Imran A, Akram S, Hussain M, Khan A, Al Jbawi E. A comprehensive review on the impact of calcium and vitamin D insufficiency and allied metabolic disorders in females. Food Sci Nutr 2023; 11:5004-5027. [PMID: 37701195 PMCID: PMC10494632 DOI: 10.1002/fsn3.3519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 09/14/2023] Open
Abstract
Calcium is imperative in maintaining a quality life, particularly during later ages. Its deficiency results in a wide range of metabolic disorders such as dental changes, cataracts, alterations in brain function, and osteoporosis. These deficiencies are more pronounced in females due to increased calcium turnover throughout their life cycle, especially during pregnancy and lactation. Vitamin D perform a central role in the metabolism of calcium. Recent scientific interventions have linked calcium with an array of metabolic disorders in females including hypertension, obesity, premenstrual dysphoric disorder, polycystic ovary syndrome (PCOS), multiple sclerosis, and breast cancer. This review encompasses these female metabolic disorders with special reference to calcium and vitamin D deficiency. This review article aims to present and elaborate on available data regarding the worldwide occurrence of insufficient calcium consumption in females and allied health risks, to provide a basis for formulating strategies and population-level scientific studies to adequately boost calcium intake and position where required.
Collapse
Affiliation(s)
- Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Awais Saleem
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
- Department of Human Nutrition and DieteticsMirpur University of Science and TechnologyMirpurPakistan
| | - Farhan Saeed
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Sidra Akram
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Muzzamal Hussain
- Department of Food SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Aqsa Khan
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | | |
Collapse
|
6
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
7
|
De Vito F, Balletta S, Caioli S, Musella A, Guadalupi L, Vanni V, Fresegna D, Bassi MS, Gilio L, Sanna K, Gentile A, Bruno A, Dolcetti E, Buttari F, Pavone L, Furlan R, Finardi A, Perlas E, Hornstein E, Centonze D, Mandolesi G. MiR-142-3p is a Critical Modulator of TNF-mediated Neuronal Toxicity in Multiple Sclerosis. Curr Neuropharmacol 2023; 21:2567-2582. [PMID: 37021418 PMCID: PMC10616916 DOI: 10.2174/1570159x21666230404103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND TNF-dependent synaptotoxicity contributes to the neuronal damage occurring in patients with Multiple Sclerosis (pwMS) and its mouse model Experimental Autoimmune Encephalomyelitis (EAE). Here, we investigated miR-142-3p, a synaptotoxic microRNA induced by inflammation in EAE and MS, as a potential downstream effector of TNF signalling. METHODS Electrophysiological recordings, supported by molecular, biochemical and histochemical analyses, were performed to explore TNF-synaptotoxicity in the striatum of EAE and healthy mice. MiR-142 heterozygous (miR-142 HE) mice and/or LNA-anti miR-142-3p strategy were used to verify the TNF-miR-142-3p axis hypothesis. The cerebrospinal fluid (CSF) of 151 pwMS was analysed to evaluate possible correlation between TNF and miR-142-3p levels and their impact on clinical parameters (e.g. progression index (PI), age-related clinical severity (gARMSS)) and MRI measurements at diagnosis (T0). RESULTS High levels of TNF and miR-142-3p were detected in both EAE striatum and MS-CSF. The TNF-dependent glutamatergic alterations were prevented in the inflamed striatum of EAE miR-142 HE mice. Accordingly, TNF was ineffective in healthy striatal slices incubated with LNA-anti miR- 142-3p. However, both preclinical and clinical data did not validate the TNF-miR-142-3p axis hypothesis, suggesting a permissive neuronal role of miR-142-3p on TNF-signalling. Clinical data showed a negative impact of each molecule on disease course and/or brain lesions and unveiled that their high levels exert a detrimental synergistic effect on disease activity, PI and white matter lesion volume. CONCLUSION We propose miR-142-3p as a critical modulator of TNF-mediated neuronal toxicity and suggest a detrimental synergistic action of these molecules on MS pathology.
Collapse
Affiliation(s)
| | - Sara Balletta
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
| | | | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Krizia Sanna
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Luigi Pavone
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emerald Perlas
- Mouse Biology Unit, European Molecular Biology Laboratory, Monterotondo Scalo, Rome, Italy
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
8
|
Harguindey S, Alfarouk K, Polo Orozco J, Reshkin SJ, Devesa J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022; 23:ijms23052454. [PMID: 35269597 PMCID: PMC8910484 DOI: 10.3390/ijms23052454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The pH-related metabolic paradigm has rapidly grown in cancer research and treatment. In this contribution, this recent oncological perspective has been laterally assessed for the first time in order to integrate neurodegeneration within the energetics of the cancer acid-base conceptual frame. At all levels of study (molecular, biochemical, metabolic, and clinical), the intimate nature of both processes appears to consist of opposite mechanisms occurring at the far ends of a physiopathological intracellular pH/extracellular pH (pHi/pHe) spectrum. This wide-ranging original approach now permits an increase in our understanding of these opposite processes, cancer and neurodegeneration, and, as a consequence, allows us to propose new avenues of treatment based upon the intracellular and microenvironmental hydrogen ion dynamics regulating and deregulating the biochemistry and metabolism of both cancer and neural cells. Under the same perspective, the etiopathogenesis and special characteristics of multiple sclerosis (MS) is an excellent model for the study of neurodegenerative diseases and, utilizing this pioneering approach, we find that MS appears to be a metabolic disease even before an autoimmune one. Furthermore, within this paradigm, several important aspects of MS, from mitochondrial failure to microbiota functional abnormalities, are analyzed in depth. Finally, and for the first time, a new and integrated model of treatment for MS can now be advanced.
Collapse
Affiliation(s)
- Salvador Harguindey
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
- Correspondence: ; Tel.: +34-629-047-141
| | - Khalid Alfarouk
- Institute of Endemic Diseases, University of Khartoum, Khartoum 11111, Sudan;
| | - Julián Polo Orozco
- Division of Oncology, Institute of Clinical Biology and Metabolism, 01004 Vitoria, Spain;
| | - Stephan J Reshkin
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari, 70125 Bari, Italy;
| | - Jesús Devesa
- Scientific Direction, Foltra Medical Centre, 15886 Teo, Spain;
| |
Collapse
|
9
|
Relationship between inflammation and oxidative stress and its effect on multiple sclerosis. Neurologia 2021. [DOI: 10.1016/j.nrl.2021.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
10
|
De Vito F, Musella A, Fresegna D, Rizzo FR, Gentile A, Stampanoni Bassi M, Gilio L, Buttari F, Procaccini C, Colamatteo A, Bullitta S, Guadalupi L, Caioli S, Vanni V, Balletta S, Sanna K, Bruno A, Dolcetti E, Furlan R, Finardi A, Licursi V, Drulovic J, Pekmezovic T, Fusco C, Bruzzaniti S, Hornstein E, Uccelli A, Salvetti M, Matarese G, Centonze D, Mandolesi G. MiR-142-3p regulates synaptopathy-driven disease progression in multiple sclerosis. Neuropathol Appl Neurobiol 2021; 48:e12765. [PMID: 34490928 PMCID: PMC9291627 DOI: 10.1111/nan.12765] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/11/2021] [Accepted: 08/15/2021] [Indexed: 11/30/2022]
Abstract
Aim We recently proposed miR‐142‐3p as a molecular player in inflammatory synaptopathy, a new pathogenic hallmark of multiple sclerosis (MS) and of its mouse model experimental autoimmune encephalomyelitis (EAE), that leads to neuronal loss independently of demyelination. MiR‐142‐3p seems to be unique among potential biomarker candidates in MS, since it is an inflammatory miRNA playing a dual role in the immune and central nervous systems. Here, we aimed to verify the impact of miR‐142‐3p circulating in the cerebrospinal fluid (CSF) of MS patients on clinical parameters, neuronal excitability and its potential interaction with disease modifying therapies (DMTs). Methods and Results In a cohort of 151 MS patients, we found positive correlations between CSF miR‐142‐3p levels and clinical progression, IL‐1β signalling as well as synaptic excitability measured by transcranial magnetic stimulation. Furthermore, therapy response of patients with ‘low miR‐142‐3p’ to dimethyl fumarate (DMF), an established disease‐modifying treatment (DMT), was superior to that of patients with ‘high miR‐142‐3p’ levels. Accordingly, the EAE clinical course of heterozygous miR‐142 mice was ameliorated by peripheral DMF treatment with a greater impact relative to their wild type littermates. In addition, a central protective effect of this drug was observed following intracerebroventricular and ex vivo acute treatments of EAE wild type mice, showing a rescue of miR‐142‐3p‐dependent glutamatergic alterations. By means of electrophysiology, molecular and biochemical analysis, we suggest miR‐142‐3p as a molecular target of DMF. Conclusion MiR‐142‐3p is a novel and potential negative prognostic CSF marker of MS and a promising tool for identifying personalised therapies.
Collapse
Affiliation(s)
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Human Sciences and Quality of Life Promotion, University of Rome, San Raffaele, Italy
| | - Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy
| | | | | | | | - Luana Gilio
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy
| | | | - Claudio Procaccini
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.,Unit of Neuroimmunology, IRCCS-Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | | | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Sara Balletta
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Krizia Sanna
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Antonio Bruno
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ettore Dolcetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnologies "C. Darwin," Laboratory of Functional Genomics and Proteomics of Model Systems, University of Rome "Sapienza", Rome, Italy
| | - Jelena Drulovic
- Clinic of Neurology, Clinical Center of Serbia, Belgrade, Serbia.,Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Tatjana Pekmezovic
- Faculty of Medicine, Institute of Epidemiology, University of Belgrade, Belgrade, Serbia
| | - Clorinda Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Sara Bruzzaniti
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Antonio Uccelli
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health Unit and Center of Excellence for Biomedical Research, University of Genova, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Marco Salvetti
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Center for Experimental Neurological Therapies, Sant'Andrea Hospital, Department of Neurosciences, Mental Health and Sensory Organs, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Matarese
- Laboratorio di Immunologia, Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", Consiglio Nazionale delle Ricerche, Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, Pozzilli, Italy.,Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, Italy.,Department of Human Sciences and Quality of Life Promotion, University of Rome, San Raffaele, Italy
| |
Collapse
|
11
|
Derada Troletti C, Enzmann G, Chiurchiù V, Kamermans A, Tietz SM, Norris PC, Jahromi NH, Leuti A, van der Pol SMA, Schouten M, Serhan CN, de Vries HE, Engelhardt B, Kooij G. Pro-resolving lipid mediator lipoxin A 4 attenuates neuro-inflammation by modulating T cell responses and modifies the spinal cord lipidome. Cell Rep 2021; 35:109201. [PMID: 34077725 PMCID: PMC8491454 DOI: 10.1016/j.celrep.2021.109201] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/30/2020] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The chronic neuro-inflammatory character of multiple sclerosis (MS) suggests that the natural process to resolve inflammation is impaired. This protective process is orchestrated by specialized pro-resolving lipid mediators (SPMs), but to date, the role of SPMs in MS remains largely unknown. Here, we provide in vivo evidence that treatment with the SPM lipoxin A4 (LXA4) ameliorates clinical symptoms of experimental autoimmune encephalomyelitis (EAE) and inhibits CD4+ and CD8+ T cell infiltration into the central nervous system (CNS). Moreover, we show that LXA4 potently reduces encephalitogenic Th1 and Th17 effector functions, both in vivo and in isolated human T cells from healthy donors and patients with relapsing-remitting MS. Finally, we demonstrate that LXA4 affects the spinal cord lipidome by significantly reducing the levels of pro-inflammatory lipid mediators during EAE. Collectively, our findings provide mechanistic insight into LXA4-mediated amelioration of neuro-inflammation and highlight the potential clinical application of LXA4 for MS.
Collapse
Affiliation(s)
- Claudio Derada Troletti
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands; Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council, 00133 Rome, Italy; Laboratory of Resolution of Neuroinflammation, European Center for Brain Research, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Alwin Kamermans
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | | | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Susanne M A van der Pol
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Marijn Schouten
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Helga E de Vries
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Gijs Kooij
- MS Center Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1117, 1081 Amsterdam, the Netherlands; Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
12
|
The microRNA let-7b-5p Is Negatively Associated with Inflammation and Disease Severity in Multiple Sclerosis. Cells 2021; 10:cells10020330. [PMID: 33562569 PMCID: PMC7915741 DOI: 10.3390/cells10020330] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The identification of microRNAs in biological fluids for diagnosis and prognosis is receiving great attention in the field of multiple sclerosis (MS) research but it is still in its infancy. In the present study, we observed in a large sample of MS patients that let-7b-5p levels in the cerebrospinal fluid (CSF) were highly correlated with a number of microRNAs implicated in MS, as well as with a variety of inflammation-related protein factors, showing specific expression patterns coherent with let-7b-5p-mediated regulation. Additionally, we found that the CSF let-7b-5p levels were significantly reduced in patients with the progressive MS compared to patients with relapsing-remitting MS and were negatively correlated with characteristic hallmark processes of the two phases of the disease. Indeed, in the non-progressive phase, let-7b-5p inversely associated with both central and peripheral inflammation; whereas, in progressive MS, the CSF levels of let-7b-5p negatively correlated with clinical disability at disease onset and after a follow-up period. Overall, our results uncovered, by the means of a multidisciplinary approach and multiple statistical analyses, a new possible pleiotropic action of let-7b-5p in MS, with potential utility as a biomarker of MS course.
Collapse
|
13
|
Sharma DS, Paddibhatla I, Raghuwanshi S, Malleswarapu M, Sangeeth A, Kovuru N, Dahariya S, Gautam DK, Pallepati A, Gutti RK. Endocannabinoid system: Role in blood cell development, neuroimmune interactions and associated disorders. J Neuroimmunol 2021; 353:577501. [PMID: 33571815 DOI: 10.1016/j.jneuroim.2021.577501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/19/2022]
Abstract
The endocannabinoid system (ECS) is a complex physiological network involved in creating homeostasis and maintaining human health. Studies of the last 40 years have shown that endocannabinoids (ECs), a group of bioactive lipids, together with their set of receptors, function as one of the most important physiologic systems in human body. ECs and cannabinoid receptors (CBRs) are found throughout the body: in the brain tissues, immune cells, and in the peripheral organs and tissues as well. In recent years, ECs have emerged as key modulators of affect, neurotransmitter release, immune function, and several other physiological functions. This modulatory homoeostatic system operates in the regulation of brain activity and states of physical health and disease. In several research studies and patents the ECS has been recognised with neuro-protective properties thus it might be a target in neurodegenerative diseases. Most immune cells express these bioactive lipids and their receptors, recent data also highlight the immunomodulatory effects of endocannabinoids. Interplay of immune and nervous system has been recognized in past, recent studies suggest that ECS function as a bridge between neuronal and immune system. In several ongoing clinical trial studies, the ECS has also been placed in the anti-cancer drugs spotlight. This review summarizes the literature of cannabinoid ligands and their biosynthesis, cannabinoid receptors and their distribution, and the signaling pathways initiated by the binding of cannabinoid ligands to cannabinoid receptors. Further, this review highlights the functional role of cannabinoids and ECS in blood cell development, neuroimmune interactions and associated disorders. Moreover, we highlight the current state of knowledge of cannabinoid ligands as the mediators of neuroimmune interactions, which can be therapeutically effective for neuro-immune disorders and several diseases associated with neuroinflammation.
Collapse
Affiliation(s)
- Durga Shankar Sharma
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Indira Paddibhatla
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Sanjeev Raghuwanshi
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Mahesh Malleswarapu
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Anjali Sangeeth
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Narasaiah Kovuru
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Swati Dahariya
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Dushyant Kumar Gautam
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Aditya Pallepati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India
| | - Ravi Kumar Gutti
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad 500046, Telangana, India.
| |
Collapse
|
14
|
Fresegna D, Bullitta S, Musella A, Rizzo FR, De Vito F, Guadalupi L, Caioli S, Balletta S, Sanna K, Dolcetti E, Vanni V, Bruno A, Buttari F, Stampanoni Bassi M, Mandolesi G, Centonze D, Gentile A. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020; 9:cells9102290. [PMID: 33066433 PMCID: PMC7602209 DOI: 10.3390/cells9102290] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical and experimental studies delineate abnormal expression of specific cytokines over the course of the disease. One major cytokine that has been shown to play a pivotal role in MS is tumor necrosis factor (TNF). TNF is a pleiotropic cytokine regulating many physiological and pathological functions of both the immune system and the central nervous system (CNS). Convincing evidence from studies in human and experimental MS have demonstrated the involvement of TNF in various pathological hallmarks of MS, including immune dysregulation, demyelination, synaptopathy and neuroinflammation. However, due to the complexity of TNF signaling, which includes two-ligands (soluble and transmembrane TNF) and two receptors, namely TNF receptor type-1 (TNFR1) and type-2 (TNFR2), and due to its cell- and context-differential expression, targeting the TNF system in MS is an ongoing challenge. This review summarizes the evidence on the pathophysiological role of TNF in MS and in different MS animal models, with a special focus on pharmacological treatment aimed at controlling the dysregulated TNF signaling in this neurological disorder.
Collapse
Affiliation(s)
- Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Francesca De Vito
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Mario Stampanoni Bassi
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
- Correspondence: ; Tel.: +39-06-7259-6010; Fax: +39-06-7259-6006
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| |
Collapse
|
15
|
Emerging Role of Extracellular Vesicles in the Pathophysiology of Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21197336. [PMID: 33020408 PMCID: PMC7582271 DOI: 10.3390/ijms21197336] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/26/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) represent a new reality for many physiological and pathological functions as an alternative mode of intercellular communication. This is due to their capacity to interact with distant recipient cells, usually involving delivery of the EVs contents into the target cells. Intensive investigation has targeted the role of EVs in different pathological conditions, including multiple sclerosis (MS). MS is a chronic inflammatory and neurodegenerative disease of the nervous system, one of the main causes of neurological disability in young adults. The fine interplay between the immune and nervous systems is profoundly altered in this disease, and EVs seems to have a relevant impact on MS pathogenesis. Here, we provide an overview of both clinical and preclinical studies showing that EVs released from blood–brain barrier (BBB) endothelial cells, platelets, leukocytes, myeloid cells, astrocytes, and oligodendrocytes are involved in the pathogenesis of MS and of its rodent model experimental autoimmune encephalomyelitis (EAE). Most of the information points to an impact of EVs on BBB damage, on spreading pro-inflammatory signals, and altering neuronal functions, but EVs reparative function of brain damage deserves attention. Finally, we will describe recent advances about EVs as potential therapeutic targets and tools for therapeutic intervention in MS.
Collapse
|
16
|
A Single Nucleotide ADA Genetic Variant Is Associated to Central Inflammation and Clinical Presentation in MS: Implications for Cladribine Treatment. Genes (Basel) 2020; 11:genes11101152. [PMID: 33007809 PMCID: PMC7601054 DOI: 10.3390/genes11101152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
In multiple sclerosis (MS), activated T and B lymphocytes and microglial cells release various proinflammatory cytokines, promoting neuroinflammation and negatively affecting the course of the disease. The immune response homeostasis is crucially regulated by the activity of the enzyme adenosine deaminase (ADA), as evidenced in patients with genetic ADA deficiency and in those treated with cladribine tablets. We investigated in a group of patients with MS the associations of a single nucleotide polymorphism (SNP) of ADA gene with disease characteristics and cerebrospinal fluid (CSF) inflammation. The SNP rs244072 of the ADA gene was determined in 561 patients with MS. Disease characteristics were assessed at the time of diagnosis; furthermore, in 258 patients, proinflammatory and anti-inflammatory molecules were measured in the CSF. We found a significant association between rs244072 and both clinical characteristics and central inflammation. In C-carriers, significantly enhanced disability and increased CSF levels of TNF, IL-5 and RANTES was observed. In addition, lower CSF levels of the anti-inflammatory cytokine IL-10 were found. Finally, the presence of the C allele was associated with a tendency of increased lymphocyte count. In MS patients, ADA SNP rs244072 is associated with CSF inflammation and disability. The selective targeting of the ADA pathway through cladribine tablet therapy could be effective in MS by acting on a pathogenically relevant biological mechanism.
Collapse
|
17
|
Stampanoni Bassi M, Buttari F, Gilio L, De Paolis N, Fresegna D, Centonze D, Iezzi E. Inflammation and Corticospinal Functioning in Multiple Sclerosis: A TMS Perspective. Front Neurol 2020; 11:566. [PMID: 32733354 PMCID: PMC7358546 DOI: 10.3389/fneur.2020.00566] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) has been employed in multiple sclerosis (MS) to assess the integrity of the corticospinal tract and the corpus callosum and to explore some physiological properties of the motor cortex. Specific alterations of TMS measures have been strongly associated to different pathophysiological mechanisms, particularly to demyelination and neuronal loss. Moreover, TMS has contributed to investigate the neurophysiological basis of MS symptoms, particularly those not completely explained by conventional structural damage, such as fatigue. However, variability existing between studies suggests that alternative mechanisms should be involved. Knowledge of MS pathophysiology has been enriched by experimental studies in animal models (i.e., experimental autoimmune encephalomyelitis) demonstrating that inflammation alters synaptic transmission, promoting hyperexcitability and neuronal damage. Accordingly, TMS studies have demonstrated an imbalance between cortical excitation and inhibition in MS. In particular, cerebrospinal fluid concentrations of different proinflammatory and anti-inflammatory molecules have been associated to corticospinal hyperexcitability, highlighting that inflammatory synaptopathy may represent a key pathophysiological mechanism in MS. In this perspective article, we discuss whether corticospinal excitability alterations assessed with TMS in MS patients could be useful to explain the pathophysiological correlates and their relationships with specific MS clinical characteristics and symptoms. Furthermore, we discuss evidence indicating that, in MS patients, inflammatory synaptopathy could be present since the early phases, could specifically characterize relapses, and could progressively increase during the disease course.
Collapse
Affiliation(s)
| | - Fabio Buttari
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Luana Gilio
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Nicla De Paolis
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Diego Fresegna
- Laboratory of Synaptic Immunopathology, IRCCS San Raffaele Pisana, Rome, Italy
| | - Diego Centonze
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology & Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
18
|
Central Modulation of Selective Sphingosine-1-Phosphate Receptor 1 Ameliorates Experimental Multiple Sclerosis. Cells 2020; 9:cells9051290. [PMID: 32455907 PMCID: PMC7291065 DOI: 10.3390/cells9051290] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/10/2023] Open
Abstract
Future treatments of multiple sclerosis (MS), a chronic autoimmune neurodegenerative disease of the central nervous system (CNS), aim for simultaneous early targeting of peripheral immune function and neuroinflammation. Sphingosine-1-phosphate (S1P) receptor modulators are among the most promising drugs with both “immunological” and “non-immunological” actions. Selective S1P receptor modulators have been recently approved for MS and shown clinical efficacy in its mouse model, the experimental autoimmune encephalomyelitis (EAE). Here, we investigated the anti-inflammatory/neuroprotective effects of ozanimod (RPC1063), a S1P1/5 modulator recently approved in the United States for the treatment of MS, by performing ex vivo studies in EAE brain. Electrophysiological experiments, supported by molecular and immunofluorescence analysis, revealed that ozanimod was able to dampen the EAE glutamatergic synaptic alterations, through attenuation of local inflammatory response driven by activated microglia and infiltrating T cells, the main CNS-cellular players of EAE synaptopathy. Electrophysiological studies with selective S1P1 (AUY954) and S1P5 (A971432) agonists suggested that S1P1 modulation is the main driver of the anti-excitotoxic activity mediated by ozanimod. Accordingly, in vivo intra-cerebroventricular treatment of EAE mice with AUY954 ameliorated clinical disability. Altogether these results strengthened the relevance of S1P1 agonists as immunomodulatory and neuroprotective drugs for MS therapy.
Collapse
|
19
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|