1
|
Martins EF, Cappello CH, Shinjo SK, Appenzeller S, de Souza JM. Idiopathic Inflammatory Myopathies: Recent Evidence Linking Pathogenesis and Clinical Features. Int J Mol Sci 2025; 26:3302. [PMID: 40244108 PMCID: PMC11989767 DOI: 10.3390/ijms26073302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Idiopathic inflammatory myopathies are rare and complex representatives of systemic connective tissue diseases. Described initially as only two entities, recent advances in molecular and imaging techniques now divide them into many subtypes, each with unique pathogenesis and clinical phenotypes. Dermatomyositis and its juvenile form are the most prevalent subtypes and are characterized by systemic vasculopathy and humoral autoimmunity. Genetic predisposition and environmental triggers initiate immune tolerance breakdown, leading to autoantibody production, complement activation, and tissue damage. Anti-synthetase syndrome primarily affects the lungs, where immune responses to aminoacyl-RNA synthetases drive vasculopathy, lung inflammation, and fibrosis. Immune-mediated necrotizing myopathies are muscle-specific, with autoantibodies inducing fiber necrosis and atrophy. Lastly, sporadic inclusion body myositis is a slowly progressive myopathy in which dysfunctional protein handling and autophagy are more important pathogenic elements than muscle inflammation itself. The expanding body of basic science evidence can be overwhelming, making it challenging to connect pathogenic mechanisms to clinical manifestations. This review aims to address this challenge by presenting recent insights into myositis pathogenesis from a practical perspective, reinforcing the links between basic science and clinical semiology.
Collapse
Affiliation(s)
- Eunice Fragoso Martins
- Department of Internal Medicine, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-881, Brazil
- Post-Graduate Program in Medical Sciences, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Carla Helena Cappello
- Department of Orthopedics, Rheumatology and Traumatology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, Brazil
- Post-Graduate Program in Child and Adolescent Health, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-888, Brazil
| | - Samuel Katsuyuki Shinjo
- Division of Rheumatology, Faculdade de Medicina FMUSP, Universidade de São Paulo, São Paulo 01246-903, Brazil
| | - Simone Appenzeller
- Department of Orthopedics, Rheumatology and Traumatology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-887, Brazil
| | - Jean Marcos de Souza
- Department of Internal Medicine, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-881, Brazil
| |
Collapse
|
2
|
Mak G, Tarnopolsky M, Lu JQ. Secondary mitochondrial dysfunction across the spectrum of hereditary and acquired muscle disorders. Mitochondrion 2024; 78:101945. [PMID: 39134108 DOI: 10.1016/j.mito.2024.101945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/15/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
Mitochondria form a dynamic network within skeletal muscle. This network is not only responsible for producing adenosine triphosphate (ATP) through oxidative phosphorylation, but also responds through fission, fusion and mitophagy to various factors, such as increased energy demands, oxidative stress, inflammation, and calcium dysregulation. Mitochondrial dysfunction in skeletal muscle not only occurs in primary mitochondrial myopathies, but also other hereditary and acquired myopathies. As such, this review attempts to highlight the clinical and histopathologic aspects of mitochondrial dysfunction seen in hereditary and acquired myopathies, as well as discuss potential mechanisms leading to mitochondrial dysfunction and therapies to restore mitochondrial function.
Collapse
Affiliation(s)
- Gloria Mak
- University of Alberta, Department of Neurology, Edmonton, Alberta, Canada
| | - Mark Tarnopolsky
- McMaster University, Department of Medicine and Pediatrics, Hamilton, Ontario, Canada
| | - Jian-Qiang Lu
- McMaster University, Department of Pathology and Molecular Medicine, Hamilton, Ontario, Canada.
| |
Collapse
|
3
|
Covert LT, Prinz JA, Swain-Lenz D, Dvergsten J, Truskey GA. Genetic changes from type I interferons and JAK inhibitors: clues to drivers of juvenile dermatomyositis. Rheumatology (Oxford) 2024; 63:SI240-SI248. [PMID: 38317053 PMCID: PMC11381683 DOI: 10.1093/rheumatology/keae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE To better understand the pathogenesis of juvenile dermatomyositis (JDM), we examined the effect of the cytokines type I interferons (IFN I) and JAK inhibitor drugs (JAKi) on gene expression in bioengineered pediatric skeletal muscle. METHODS Myoblasts from three healthy pediatric donors were used to create three-dimensional skeletal muscle units termed myobundles. Myobundles were treated with IFN I, either IFNα or IFNβ. A subset of IFNβ-exposed myobundles was treated with JAKi tofacitinib or baricitinib. RNA sequencing analysis was performed on all myobundles. RESULTS Seventy-six myobundles were analysed. Principal component analysis showed donor-specific clusters of gene expression across IFNα and IFNβ-exposed myobundles in a dose-dependent manner. Both cytokines upregulated interferon response and proinflammatory genes; however, IFNβ led to more significant upregulation. Key downregulated pathways involved oxidative phosphorylation, fatty acid metabolism and myogenesis genes. Addition of tofacitinib or baricitinib moderated the gene expression induced by IFNβ, with partial reversal of upregulated inflammatory and downregulated myogenesis pathways. Baricitinib altered genetic profiles more than tofacitinib. CONCLUSION IFNβ leads to more pro-inflammatory gene upregulation than IFNα, correlating to greater decrease in contractile protein gene expression and reduced contractile force. JAK inhibitors, baricitinib more so than tofacitinib, partially reverse IFN I-induced genetic changes. Increased IFN I exposure in healthy bioengineered skeletal muscle leads to IFN-inducible gene expression, inflammatory pathway enrichment, and myogenesis gene downregulation, consistent with what is observed in JDM.
Collapse
Affiliation(s)
- Lauren T Covert
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - Joseph A Prinz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
| | - Devjanee Swain-Lenz
- Sequencing and Genomics Technologies Core Facility, School of Medicine, Duke University, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC, USA
| | - Jeffrey Dvergsten
- Department of Pediatrics, Duke University Health System, Durham, NC, USA
| | - George A Truskey
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
4
|
Dai K, Wang Z, Gao B, Li L, Gu F, Tao X, You W, Wang Z. APE1 regulates mitochondrial DNA damage repair after experimental subarachnoid haemorrhage in vivo and in vitro. Stroke Vasc Neurol 2024; 9:230-242. [PMID: 37612054 PMCID: PMC11221324 DOI: 10.1136/svn-2023-002524] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Subarachnoid haemorrhage (SAH) can result in a highly unfavourable prognosis. In recent years, the study of SAH has focused on early brain injury (EBI), which is a crucial progress that contributes to adverse prognosis. SAH can lead to various complications, including mitochondrial dysfunction and DNA damage. Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential protein with multifaceted functionality integral to DNA repair and redox signalling. However, the role of APE1 in mitochondrial DNA damage repair after SAH is still unclear. METHODS Our study involved an in vivo endovascular perforation model in rats and an in vitro neuron oxyhaemoglobin intervention. Then, the effects of APE1 on mitochondrial DNA damage repair were analysed by western blot, immunofluorescence, quantitative real-time PCR, mitochondrial bioenergetics measurement and neurobehavioural experiments. RESULTS We found that the level of APE1 decreased while the mitochondria DNA damage and neuronal death increased in a rat model of SAH. Overexpression of APE1 improved short-term and long-term behavioural impairment in rats after SAH. In vitro, after primary neurons exposed to oxyhaemoglobin, APE1 expression significantly decreased along with increased mitochondrial DNA damage, a reduction in the subunit of respiratory chain complex levels and subsequent respiratory chain dysfunction. Overexpression of APE1 relieved energy metabolism disorders in the mitochondrial of neurons and reduced neuronal apoptosis. CONCLUSION In conclusion, APE1 is involved in EBI after SAH by affecting mitochondrial apoptosis via the mitochondrial respiratory chain. APE1 may potentially play a vital role in the EBI stage after SAH, making it a critical target for treatment.
Collapse
Affiliation(s)
- Kun Dai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Bixi Gao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Longyuan Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Feng Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Xinyu Tao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Wanchun You
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Institute of Stroke Research, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Wang S, Tang Y, Chen X, Song S, Chen X, Zhou Q, Zeng L. Mitochondrial-related hub genes in dermatomyositis: muscle and skin datasets-based identification and in vivo validation. Front Genet 2024; 15:1325035. [PMID: 38389573 PMCID: PMC10882082 DOI: 10.3389/fgene.2024.1325035] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Background: Mitochondrial dysfunction has been implicated in the pathogenesis of dermatomyositis (DM), a rare autoimmune disease affecting the skin and muscles. However, the genetic basis underlying dysfunctional mitochondria and the development of DM remains incomplete. Methods: The datasets of DM muscle and skin tissues were retrieved from the Gene Expression Omnibus database. The mitochondrial related genes (MRGs) were retrieved from MitoCarta. DM-related modules in muscle and skin tissues were identified with the analysis of weighted gene co-expression network (WGCNA), and then compared with the MRGs to obtain the overlapping mitochondrial related module genes (mito-MGs). Subsequently, differential expression genes (DEGs) obtained from muscle and skin datasets were overlapped with MRGs to identify mitochondrial related DEGs (mito-DEGs). Next, functional enrichment analysis was applied to analyze possible relevant biological pathways. We used the Jvenn online tool to intersect mito-MGs with mito-DEGs to identify hub genes and validate them using reverse transcription quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry staining. In addition, we evaluated immune infiltration in muscle and skin tissues of DM patients using the one-sample gene set enrichment analysis (ssGSEA) algorithm and predicted potential transcription factor (TF) -gene network by NetworkAnalyst. Results: The WGCNA analysis revealed 105 mito-MGs, while the DEG analysis identified 3 mito-DEGs. These genes showed functional enrichment for amino acid metabolism, energy metabolism and oxidative phosphorylation. Through the intersection analysis of the mito-MGs from the WGCNA analysis and the mito-DEGs from the DEG set, three DM mito-hub genes (IFI27, CMPK2, and LAP3) were identified and validated by RT-qPCR and immunohistochemistry analysis. Additionally, positive correlations were observed between hub genes and immune cell abundance. The TF-hub gene regulatory network revealed significant interactions involving ERG, VDR, and ZFX with CMPK2 and LAP3, as well as SOX2 with LAP3 and IFI27, and AR with IFI27 and CMPK2. Conclusion: The mito-hub genes (IFI27, CMPK2, and LAP3) are identified in both muscles and skin tissues from DM patients. These genes may be associated with immune infiltration in DM, providing a new entry point for the pathogenesis of DM.
Collapse
Affiliation(s)
- Shuo Wang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yiping Tang
- Department of Internal Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xixi Chen
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Siyuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Xi Chen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
6
|
Soontrapa P, Shahar S, Eauchai L, Ernste FC, Liewluck T. Disease spectrum of myopathies with elevated aldolase and normal creatine kinase. Eur J Neurol 2024; 31:e16117. [PMID: 37922500 PMCID: PMC11235866 DOI: 10.1111/ene.16117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 11/05/2023]
Abstract
BACKGROUND AND PURPOSE Elevation of serum creatine kinase (CK) or hyperCKemia is considered a biological marker of myopathies. However, selective elevation of serum aldolase with normal CK has been reported in a few myopathies, including dermatomyositis, immune-mediated myopathy with perimysial pathology and fasciitis with associated myopathy. The aim was to investigate the disease spectrum of myopathies with isolated aldolase elevation. METHODS Medical records were reviewed to identify patients >18 years old seen between December 1994 and June 2020 who had pathologically proven myopathies with elevated aldolase and normal CK level. Patients with alternative causes of aldolase elevation were excluded. RESULTS Thirty-four patients with various types of myopathies were identified. Myopathies were treatable in 27 patients. The three most common etiologies were dermatomyositis (n = 8), overlap myositis (n = 4) and nonspecific myopathy (n = 4). Perimysial pathology comprising inflammation, fragmentation, vasculitis, calcified perimysial vessels or extracellular amyloid deposition was found in 17/34 patients (50%). Eight dermatomyositis patients with selective elevated aldolase were compared to 24 sex- and age-matched patients with dermatomyositis and hyperCKemia. Dermatomyositis patients with normal CK significantly (p < 0.05) had less frequent cutaneous involvement (50.0% vs. 100.0%) and fibrillation potentials (50.0% vs. 90.5%) but higher median erythrocyte sedimentation rate (33.5 vs. 13.5 mm/h) and more common perifascicular mitochondrial pathology (37.5% vs. 4.2%). CONCLUSION Isolated aldolase elevation can be found in a greater variety of myopathies than initially thought and most were treatable. Dermatomyositis is the most common myopathy with selective elevation of aldolase in our cohort, which features some unique characteristics compared to dermatomyositis with hyperCKemia.
Collapse
Affiliation(s)
- Pannathat Soontrapa
- Department of Neurology, Division of Neuromuscular MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Medicine, Division of Neurology, Siriraj HospitalMahidol UniversityBangkokThailand
| | - Shelly Shahar
- Department of Neurology, Division of Neuromuscular MedicineMayo ClinicRochesterMinnesotaUSA
- Department of NeurologyRambam Health Care CampusHaifaIsrael
- Bruce Rappaport Faculty of MedicineTechnion‐Israel Institute of TechnologyHaifaIsrael
| | - Lattawat Eauchai
- Department of Neurology, Division of Neuromuscular MedicineMayo ClinicRochesterMinnesotaUSA
- Department of Anatomy, Siriraj HospitalMahidol UniversityBangkokThailand
| | - Floranne C. Ernste
- Department of Medicine, Division of RheumatologyMayo ClinicRochesterMinnesotaUSA
| | - Teerin Liewluck
- Department of Neurology, Division of Neuromuscular MedicineMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
7
|
Kamiya M, Kimura N, Umezawa N, Hasegawa H, Yasuda S. Muscle fiber necroptosis in pathophysiology of idiopathic inflammatory myopathies and its potential as target of novel treatment strategy. Front Immunol 2023; 14:1191815. [PMID: 37483632 PMCID: PMC10361824 DOI: 10.3389/fimmu.2023.1191815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Idiopathic inflammatory myopathies (IIMs), which are a group of chronic and diverse inflammatory diseases, are primarily characterized by weakness in the proximal muscles that progressively leads to persistent disability. Current treatments of IIMs depend on nonspecific immunosuppressive agents (including glucocorticoids and immunosuppressants). However, these therapies sometimes fail to regulate muscle inflammation, and some patients suffer from infectious diseases and other adverse effects related to the treatment. Furthermore, even after inflammation has subsided, muscle weakness persists in a significant proportion of the patients. Therefore, the elucidation of pathophysiology of IIMs and development of a better therapeutic strategy that not only alleviates muscle inflammation but also improves muscle weakness without increment of opportunistic infection is awaited. Muscle fiber death, which has been formerly postulated as "necrosis", is a key histological feature of all subtypes of IIMs, however, its detailed mechanisms and contribution to the pathophysiology remained to be elucidated. Recent studies have revealed that muscle fibers of IIMs undergo necroptosis, a newly recognized form of regulated cell death, and promote muscle inflammation and dysfunction through releasing inflammatory mediators such as damage-associated molecular patterns (DAMPs). The research on murine model of polymyositis, a subtype of IIM, revealed that the inhibition of necroptosis or HMGB1, one of major DAMPs released from muscle fibers undergoing necroptosis, ameliorated muscle inflammation and recovered muscle weakness. Furthermore, not only the necroptosis-associated molecules but also PGAM5, a mitochondrial protein, and reactive oxygen species have been shown to be involved in muscle fiber necroptosis, indicating the multiple target candidates for the treatment of IIMs acting through necroptosis regulation. This article overviews the research on muscle injury mechanisms in IIMs focusing on the contribution of necroptosis in their pathophysiology and discusses the potential treatment strategy targeting muscle fiber necroptosis.
Collapse
|
8
|
Oxidative stress, mitochondrial dysfunction, and respiratory chain enzyme defects in inflammatory myopathies. Autoimmun Rev 2023; 22:103308. [PMID: 36822387 DOI: 10.1016/j.autrev.2023.103308] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/19/2023] [Indexed: 02/24/2023]
Abstract
We investigated the relationship between oxidative stress and inflammatory myopathies. We searched in the current literature the role of mitochondria and respiratory chain defects as sources of oxidative stress and reactive oxygen species production that led to muscle weakness and fatigue. Different molecules and pathways contribute to redox milieu, reactive oxygen species generation, accumulation of misfolded and carbonylated proteins that lose their ability to fulfil cellular activities. Small peptides and physical techniques proved, in mice models, to reduce oxidative stress. We focused on inclusion body myositis, as a major expression of myopathy related to oxidative stress, where mitochondrial abnormalities are causative agents as well. We described the effect of physical exercise in inclusion body myositis that showed to increase strength and to reduce beta amyloid accumulation with subsequent improvement of the mitochondrial functions. We illustrated the influence of epigenetic control on the immune system by non-coding genetic material in the interaction between oxidative stress and inflammatory myopathies.
Collapse
|
9
|
Margeta M. Neuromuscular disease: 2023 update. FREE NEUROPATHOLOGY 2023; 4:2. [PMID: 37283936 PMCID: PMC10209858 DOI: 10.17879/freeneuropathology-2023-4682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 02/22/2023] [Indexed: 06/08/2023]
Abstract
This review highlights ten important advances in the neuromuscular disease field that were reported in 2022. As with prior updates in this article series, the overarching topics include (i) advances in understanding of fundamental neuromuscular biology; (ii) new / emerging diseases; (iii) advances in understanding of disease etiology and pathogenesis; (iv) diagnostic advances; and (v) therapeutic advances. Within this general framework, the individual disease entities that are discussed in more detail include neuromuscular complications of COVID-19 (another look at the topic first covered in the 2021 and 2022 reviews), DNAJB4-associated myopathy, NMNAT2-deficient hereditary axonal neuropathy, Guillain-Barré syndrome, sporadic inclusion body myositis, and amyotrophic lateral sclerosis. In addition, the review highlights a few other advances (including new insights into mechanisms of fiber maturation during muscle regeneration and fiber rebuilding following reinnervation, improved genetic testing methods for facioscapulohumeral and myotonic muscular dystrophies, and the use of SARM1 inhibitors to block Wallerian degeneration) that will be of significant interest for clinicians and researchers who specialize in neuromuscular disease.
Collapse
Affiliation(s)
- Marta Margeta
- Department of Pathology, University of California, San Francisco, CA, USA
| |
Collapse
|