1
|
Wang Y, Fong KNK, Sui Y, Bai Z, Zhang JJ. Repetitive peripheral magnetic stimulation alone or in combination with repetitive transcranial magnetic stimulation in poststroke rehabilitation: a systematic review and meta-analysis. J Neuroeng Rehabil 2024; 21:181. [PMID: 39407278 PMCID: PMC11481378 DOI: 10.1186/s12984-024-01486-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
OBJECTIVE This study aimed to comprehensively review the effects of repetitive peripheral magnetic stimulation (rPMS) alone or in combination with repetitive transcranial magnetic stimulation (rTMS) on improving upper limb motor functions and activities of daily living (ADL) in patients with stroke, and to explore possible efficacy-related modulators. METHODS A literature search from 1st January 2004 to 1st June 2024 was performed to identified studies that investigated the effects of rPMS on upper limb motor functions and ADL in poststroke patients. RESULTS Seventeen studies were included. Compared with the control, both rPMS alone or rPMS in combination with rTMS significantly improved upper limb motor function (rPMS: Hedge's g = 0.703, p = 0.015; rPMS + rTMS: Hedge's g = 0.892, p < 0.001) and ADL (rPMS: Hedge's g = 0.923, p = 0.013; rPMS + rTMS: Hedge's g = 0.923, p < 0.001). However, rPMS combined with rTMS was not superior to rTMS alone on improving poststroke upper limb motor function and ADL (Hedge's g = 0.273, p = 0.123). Meta-regression revealed that the total pulses (p = 0.003) and the number of pulses per session of rPMS (p < 0.001) correlated with the effect sizes of ADL. CONCLUSIONS Using rPMS alone or in combination with rTMS appears to effectively improve upper extremity functional recovery and activity independence in patients after stroke. However, a simple combination of these two interventions may not produce additive benefits than the use of rTMS alone. Optimization of rPMS protocols, such as applying appropriate dosage, may lead to a more favourable recovery outcome in poststroke rehabilitation.
Collapse
Affiliation(s)
- Yong Wang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Rehabilitation, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Kenneth N K Fong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Research Centre for Assistive Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Youxin Sui
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zhongfei Bai
- Department of Neurology and Neurorehabilitation, Shanghai YangZhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jack Jiaqi Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
2
|
Fernanda Silva G, Campos LF, de Aquino Miranda JM, Guirro Zuliani F, de Souza Fonseca BH, de Araújo AET, de Melo PF, Suzuki LG, Aniceto LP, Bazan R, Sande de Souza LAP, Luvizutto GJ. Repetitive peripheral sensory stimulation for motor recovery after stroke: a scoping review. Top Stroke Rehabil 2024; 31:723-737. [PMID: 38452790 DOI: 10.1080/10749357.2024.2322890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/10/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND PURPOSE Enhancing afferent information from the paretic limb can improve post-stroke motor recovery. However, uncertainties exist regarding varied sensory peripheral neuromodulation protocols and their specific impacts. This study outlines the use of repetitive peripheral sensory stimulation (RPSS) and repetitive magnetic stimulation (rPMS) in individuals with stroke. METHODS This scoping review was conducted according to the JBI Evidence Synthesis guidelines. We searched studies published until June 2023 on several databases using a three-step analysis and categorization of the studies: pre-analysis, exploration of the material, and data processing. RESULTS We identified 916 studies, 52 of which were included (N = 1,125 participants). Approximately 53.84% of the participants were in the chronic phase, displaying moderate-to-severe functional impairment. Thirty-two studies used RPSS often combining it with task-oriented training, while 20 used rPMS as a standalone intervention. The RPSS primarily targeted the median and ulnar nerves, stimulating for an average of 92.78 min at an intensity that induced paresthesia. RPMS targeted the upper and lower limb paretic muscles, employing a 20 Hz frequency in most studies. The mean stimulation time was 12.74 min, with an intensity of 70% of the maximal stimulator output. Among the 114 variables analyzed in the 52 studies, 88 (77.20%) were in the "s,b" domain, with 26 (22.8%) falling under the "d" domain of the ICF. DISCUSSION AND CONCLUSION Sensory peripheral neuromodulation protocols hold the potential for enhancing post-stroke motor recovery, yet optimal outcomes were obtained when integrated with intensive or task-oriented motor training.
Collapse
Affiliation(s)
| | | | | | - Flávia Guirro Zuliani
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | | | | | | | - Luiz Gustavo Suzuki
- Physical Therapy Division, Hospital de Base do Distrito Federal, Brasília, Brazil
| | - Luiz Paulo Aniceto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Rodrigo Bazan
- Department of Neurology, Psychology and Psychiatry, Botucatu Medical School, Botucatu, São Paulo, Brazil
| | | | - Gustavo José Luvizutto
- Department of Applied Physical Therapy, Federal University of Triângulo Mineiro, Uberaba, Brazil
| |
Collapse
|
3
|
Xie H, Zhang Q, Zhan J, Dong J, Chen J, Kang G, Liu H, Huang Q, Zhu L, Onoda K, Maruyama H, Liu S, Huo M. The relationship between the ratio of the supraspinatus muscle thickness measured by ultrasound imaging and glenohumeral subluxation in stroke patients: a cross-sectional study. Front Neurol 2024; 15:1407638. [PMID: 39246610 PMCID: PMC11380153 DOI: 10.3389/fneur.2024.1407638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Glenohumeral subluxation (GHS) is a common complication in stroke patients with hemiplegia, occurring in approximately 17-81% of cases. This study aims to evaluate the relationship between shoulder muscle thickness and the degree of subluxation using ultrasound imaging. Methods A cross-sectional study of 61 stroke patients with hemiplegia was conducted, measuring supraspinatus muscle thickness, deltoid muscle thickness, and acromion-greater tuberosity (AGT). Logistic regression and ROC analyses were used. ROC curves, calibration plots, and decision curves were drawn on the training and validation sets. Results According to logistic regression analysis, the ratio of supraspinatus muscle thickness was statistically significant (OR: 0.80; 95% CI: 0.70-0.92; p < 0.01), and it was an independent factor for evaluating the presence or absence of GHS. An AUC of 0.906 (95% CI, 0.802-1.000) was found in the training set; meanwhile, the AUC in the validation set was 0.857 (95% CI, 0.669-1.000), indicating good performance. According to the training set ROC curve, the most effective statistical threshold was 93%, with a sensitivity of 84% and a specificity of 96%. Discussion The ratio of supraspinatus muscle thickness is a valuable criterion for evaluating GHS risk, supporting targeted rehabilitation interventions.
Collapse
Affiliation(s)
- Hualong Xie
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Qing Zhang
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiawen Zhan
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jige Dong
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Chen
- The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Guoxin Kang
- Beijing Chaoyang Integrative Medicine Emergency Medical Center, Beijing, China
| | - Huilin Liu
- China Rehabilitation Research Center, Beijing, China
| | - Qiuchen Huang
- China Rehabilitation Research Center, Beijing, China
| | - Liguo Zhu
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Ko Onoda
- Department of Physical Therapy, International University of Health and Welfare, Otawara, Japan
| | - Hitoshi Maruyama
- Department of Physical Therapy, International University of Health and Welfare, Otawara, Japan
| | - Shan Liu
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Ming Huo
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China
- Jilin Province Power Hospital, Changchun, China
- Shaanxi Provincial Rehabilitation Hospital, Xi'an, China
| |
Collapse
|
4
|
Yan T, Liang M, Peng J, Yu Q, Li Y, Yang J, Zhang S, Wang C. Cortical Mechanisms Underlying Effects of Repetitive Peripheral Magnetic Stimulation on Dynamic and Static Postural Control in Patients with Chronic Non-Specific Low Back Pain: A Double-Blind Randomized Clinical Trial. Pain Ther 2024; 13:953-970. [PMID: 38896200 PMCID: PMC11255159 DOI: 10.1007/s40122-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
INTRODUCTION Patients with chronic non-specific low back pain (CNLBP) often experience impaired postural control, contributing to pain recurrence. Although repetitive peripheral magnetic stimulation (rPMS) combined with core muscle training (CMT) could improve postural control, its neural mechanism remains unclear. This study aims to investigate the postural control-related cortical mechanism of the effect of rPMS on patients with CNLBP. METHODS This unicentric, prospective, randomized, double-blind, controlled trial was conducted in a public hospital from May to December 2023. A total of 40 patients (27 females and 13 males, mean age 29.38 ± 7.72) with CNLBP were randomly assigned to either the rPMS group (real rPMS with CMT) or the sham-rPMS group (sham-rPMS with CMT) for 12 sessions over 4 weeks. The rPMS was applied to the lumbar paravertebral multifidus muscle on the painful side. Pain and disability were quantified using the visual analog scale (VAS) and Oswestry dysfunction index (ODI) pre- and post-intervention. Furthermore, the sway area and velocity of the center of pressure (COP) were measured using a force platform. The cortical activities in 6 regions of interest during 4 tasks (standing with eyes open/closed on a stable/unstable plane) were recorded by functional near-infrared spectroscopy (fNIRS) pre- and post-intervention. The repeated measure ANOVA was applied for statistical analysis. Spearman's correlation was used to determine the relationships between variables. RESULTS After the intervention, the rPMS group showed decreased pain intensity (p = 0.001) and sway area (unstable eyes-closed task) (p = 0.046) compared to the sham-rPMS group. Additionally, the rPMS group exhibited increased activation in left primary motor cortex (M1) (p = 0.042) and reduced in left supplementary motor area (SMA) (p = 0.045), whereas the sham-rPMS group showed no significant changes. The increased activation of left M1 was negatively correlated to the reduction of pain intensity (r = - 0.537, p = 0.018) and sway area (r = - 0.500, p = 0.029) under the static balancing task. Furthermore, there was a positive correlation between sway velocity and VAS (r = 0.451, p = 0.046) post-rPMS intervention. CONCLUSION Repetitive peripheral magnetic stimulation combined with core muscle training demonstrated better analgesic effects and postural control improvements, compared to sham-stimulation. This may be attributed to the increased activation of the left primary motor cortex. CLINICAL TRIAL REGISTRATION The trial was registered on ClinicalTrials.gov (ChiCTR2300070943).
Collapse
Affiliation(s)
- Takyu Yan
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Meizhen Liang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiahui Peng
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiuhua Yu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yan Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiajia Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Siyun Zhang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
5
|
Fujimura K, Kagaya H, Itoh R, Endo C, Tanikawa H, Maeda H. Repetitive peripheral magnetic stimulation for preventing shoulder subluxation after stroke: a randomized controlled trial. Eur J Phys Rehabil Med 2024; 60:216-224. [PMID: 38483332 PMCID: PMC11114152 DOI: 10.23736/s1973-9087.24.08264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/15/2024] [Accepted: 02/14/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Shoulder subluxation caused by paralysis after stroke is a serious issue affecting shoulder pain and functional prognosis. However, its preventive treatment has not been fully investigated. AIM To investigate the effects of repetitive peripheral magnetic stimulation (rPMS) on the prevention of shoulder subluxation. DESIGN A single-center, parallel-group, prospective randomized, open-blinded, end-point study. SETTING Convalescent rehabilitation ward. POPULATION We included 50 inpatients in the convalescent rehabilitation ward with post-stroke, having upper limb paralysis, and the acromio-humeral interval (AHI) was within 1/2 finger-breadth. METHODS A blinded computer-based allocation system was used to randomly assign patients into two groups: 1) conventional rehabilitation plus rPMS therapy (rPMS group, N=25); and 2) conventional rehabilitation alone (control group, N=25). Blinded assessors evaluated the patients before the intervention (T0), 6 weeks after (T1), and 12 weeks after (T2). The primary outcome was the change in AHIs from T0 to T1 between the groups. In contrast, the secondary outcomes were shoulder pain, spasticity, active range of motion, and Fugl-Meyer Assessment upper extremity (FMA-UE) score. RESULTS Twenty-two patients in the rPMS group and 24 in the control group completed T1, whereas 16 in the rPMS group and 11 in the control group completed T2. The change in AHI was significantly lower in the rPMS group than in the control group ([95% CI, -5.15 to -0.390], P=0.023). Within-group analysis showed that AHI in the rPMS group did not change significantly, whereas it increased in the control group (P=0.004). There were no significant differences between T1 and T2 within or between the groups. Moreover, AHI did not show differences in patients with severe impairment but decreased in the rPMS group in patients with mild impairment (P=0.001). CONCLUSIONS The rPMS may be a new modality for preventing shoulder subluxation. The association between motor impairment and the sustained effect needs to be further examined. CLINICAL REHABILITATION IMPACT Applying rPMS to the muscles of the paralyzed shoulder after a stroke may prevent shoulder subluxation.
Collapse
Affiliation(s)
- Kenta Fujimura
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan -
| | - Hitoshi Kagaya
- Department of Rehabilitation Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| | - Ryoka Itoh
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Chiharu Endo
- Department of Rehabilitation, Fujita Health University Hospital, Toyoake, Aichi, Japan
| | - Hiroki Tanikawa
- Faculty of Rehabilitation, School of Health Sciences, Fujita Health University, Toyoake, Aichi, Japan
| | - Hirofumi Maeda
- Department of Rehabilitation Medicine I, School of Medicine, Fujita Health University, Toyoake, Aichi, Japan
| |
Collapse
|
6
|
Grosse L, Meuche AC, Parzefall B, Börner C, Schnabel JF, Späh MA, Klug P, Sollmann N, Klich L, Hösl M, Heinen F, Berweck S, Schröder SA, Bonfert MV. Functional Repetitive Neuromuscular Magnetic Stimulation (frNMS) Targeting the Tibialis Anterior Muscle in Children with Upper Motor Neuron Syndrome: A Feasibility Study. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1584. [PMID: 37892247 PMCID: PMC10605892 DOI: 10.3390/children10101584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/29/2023]
Abstract
Non-invasive neurostimulation as an adjunctive intervention to task-specific motor training is an approach to foster motor performance in patients affected by upper motor neuron syndrome (UMNS). Here, we present first-line data of repetitive neuromuscular magnetic stimulation (rNMS) in combination with personalized task-specific physical exercises targeting the tibialis anterior muscle to improve ankle dorsiflexion (functional rNMS (frNMS)). The main objective of this pilot study was to assess the feasibility in terms of adherence to frNMS, safety and practicability of frNMS, and satisfaction with frNMS. First, during 10 training sessions, only physical exercises were performed (study period (SP) A). After a 1 week break, frNMS was delivered during 10 sessions (SPC). Twelve children affected by UMNS (mean age 8.9 ± 1.6 years) adhered to 93% (SPA) and 94% (SPC) of the sessions, and omittance was not related to the intervention itself in any case. frNMS was safe (no AEs reported in 88% of sessions, no AE-related discontinuation). The practicability of and satisfaction with frNMS were high. Patient/caregiver-reported outcomes revealed meaningful benefits on the individual level. The strength of the ankle dorsiflexors (MRC score) clinically meaningfully increased in four participants as spasticity of ankle plantar flexors (Tardieu scores) decreased in four participants after SPC. frNMS was experienced as a feasible intervention for children affected by UMNS. Together with the beneficial effects achieved on the individual level in some participants, this first study supports further real-world, large-scale, sham-controlled investigations to investigate the specific effects and distinct mechanisms of action of frNMS.
Collapse
Affiliation(s)
- Leonie Grosse
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Anne C. Meuche
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Barbara Parzefall
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Corinna Börner
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| | - Julian F. Schnabel
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Malina A. Späh
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Pia Klug
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, 89081 Ulm, Germany
| | - Luisa Klich
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Matthias Hösl
- Gait and Motion Analysis Laboratory, Schoen Clinic Vogtareuth, Krankenhausstr. 20, 83569 Vogtareuth, Germany
| | - Florian Heinen
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Steffen Berweck
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- Specialist Center for Pediatric Neurology, Neurorehabilitation and Epileptology, Schoen Clinic Vogtareuth, 83569 Vogtareuth, Germany
| | - Sebastian A. Schröder
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Michaela V. Bonfert
- Division of Pediatric Neurology and Developmental Medicine, Department of Pediatrics—Dr. von Hauner Children’s Hospital, LMU Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
- LMU Center for Children with Medical Complexity—iSPZ Hauner, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
7
|
Cunha B, Ferreira R, Sousa ASP. Home-Based Rehabilitation of the Shoulder Using Auxiliary Systems and Artificial Intelligence: An Overview. SENSORS (BASEL, SWITZERLAND) 2023; 23:7100. [PMID: 37631637 PMCID: PMC10459225 DOI: 10.3390/s23167100] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023]
Abstract
Advancements in modern medicine have bolstered the usage of home-based rehabilitation services for patients, particularly those recovering from diseases or conditions that necessitate a structured rehabilitation process. Understanding the technological factors that can influence the efficacy of home-based rehabilitation is crucial for optimizing patient outcomes. As technologies continue to evolve rapidly, it is imperative to document the current state of the art and elucidate the key features of the hardware and software employed in these rehabilitation systems. This narrative review aims to provide a summary of the modern technological trends and advancements in home-based shoulder rehabilitation scenarios. It specifically focuses on wearable devices, robots, exoskeletons, machine learning, virtual and augmented reality, and serious games. Through an in-depth analysis of existing literature and research, this review presents the state of the art in home-based rehabilitation systems, highlighting their strengths and limitations. Furthermore, this review proposes hypotheses and potential directions for future upgrades and enhancements in these technologies. By exploring the integration of these technologies into home-based rehabilitation, this review aims to shed light on the current landscape and offer insights into the future possibilities for improving patient outcomes and optimizing the effectiveness of home-based rehabilitation programs.
Collapse
Affiliation(s)
- Bruno Cunha
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health-Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| | - Ricardo Ferreira
- Institute for Systems and Computer Engineering, Technology and Science—Telecommunications and Multimedia Centre, FEUP, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal;
| | - Andreia S. P. Sousa
- Center for Rehabilitation Research—Human Movement System (Re)habilitation Area, Department of Physiotherapy, School of Health-Polytechnic of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| |
Collapse
|
8
|
Feasibility of Functional Repetitive Neuromuscular Magnetic Stimulation (frNMS) Targeting the Gluteal Muscle in a Child with Cerebral Palsy: A Case Report. Phys Occup Ther Pediatr 2022; 43:338-350. [PMID: 37016574 DOI: 10.1080/01942638.2022.2138732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND Motor impairment due to spasticity, weakness, and insufficient selective motor control is a key feature of cerebral palsy (CP). For standing and walking, the gluteal muscles play an important role. Physical therapy represents an evidence-based treatment to promote strength and endurance but may be limited to address selective motor control. Treatment incorporating neurostimulating techniques may increase the therapeutic benefits in these situations. PURPOSE The aim of this case report was to evaluate the feasibility, safety and clinical effects of a customized protocol of functional repetitive neuromuscular magnetic stimulation (frNMS). METHODS This case report describes a frNMS protocol applied to the gluteal muscles in an 8-year old boy with bilateral spastic CP. The protocol combines 12 sessions of customized physiotherapeutic exercises with simultaneous electromagnetic stimulation. RESULTS frNMS protocol was adhered to as planned, no relevant adverse events were observed. At day fourafter the intervention the patient reported clinical benefits and improvements of standing and walking assessed by Gross Motor Function Measure dimensions D (+5.1%) and E (+4.2%) were documented. Body sway as measured by center of pressure displacement during posturography decreased. CONCLUSION Clinical studies are warranted to assess effects of frNMS and its mechanisms of action in a controlled setting.
Collapse
|
9
|
Li K, Fu N. Observation on the Effect of Shoulder Pain Caused by Volleyball Training Injury Based on MRI Image Scanning. SCANNING 2022; 2022:4368871. [PMID: 35795614 PMCID: PMC9152345 DOI: 10.1155/2022/4368871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
In order to observe the effect of MRI image scanning on shoulder pain caused by volleyball training injury, this paper proposes to analyze the value of MR arthrography and conventional MRI image scanning in the diagnosis of shoulder injury. Taking the female volleyball players in a no. 1 middle school for nearly ten years as the research object, the injury investigation and statistics were carried out. The shoulder joint injury was investigated using arthroscopy and no injury was found. All patients underwent MR arthrography and routine MRI image scanning after admission. All patients underwent MR arthrography and routine MRI image scanning after admission. The patient took the flat lying position and put their arms flat on both sides of the body, and the Philips Achieva 3.0T MRI image scanning and Sense Flex M soft coil for MRI image scanning detection were used. The plain scan included oblique sagittal, axial, and oblique coronal proton density weighted image sequences; echo chain ETL = 6, TR/TE 2300/25 ms; and oblique sagittal and oblique coronal SET1W1; TRTE is 400/10 ms. Comparison was made with regard to the sensitivity, specificity, Jordan index, and accuracy of MR arthrography versus conventional MRI imaging in the diagnosis of shoulder injuries. The results were 38 true positives, 19 true negatives, 1 false positive, and 2 false negatives; a normal MRI scan showed 33 true positives, 13 true negatives, 7 false positives, and 7 false negatives. MR arthrography is more accurate than MRI image scanners in the diagnosis of shoulder injuries.
Collapse
Affiliation(s)
- Kesen Li
- Dianchi College of Yunnan University, Yunnan Kunming 650228, China
| | - Nan Fu
- Yunnan Technology and Business University, Yunnan Kunming 650217, China
| |
Collapse
|
10
|
Schneider C, Zangrandi A, Sollmann N, Bonfert MV, Beaulieu LD, the rPMS Consensus Group. Checklist on the Quality of the Repetitive Peripheral Magnetic Stimulation (rPMS) Methods in Research: An International Delphi Study. Front Neurol 2022; 13:852848. [PMID: 35392633 PMCID: PMC8981720 DOI: 10.3389/fneur.2022.852848] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
An increasing number of clinical research studies have used repetitive peripheral magnetic stimulation (rPMS) in recent years to alleviate pain or improve motor function. rPMS is non-invasive, painless, and administrated over peripheral nerve, spinal cord roots, or a muscle using a coil affixed to the skin and connected to a rapid-rate magnetic stimulator. Despite the clinical impact and scientific interest, the methodological inconsistencies or incomplete details and findings between studies could make the rPMS demonstration difficult to replicate. Given the lack of guidelines in rPMS literature, the present study aimed at developing a checklist to improve the quality of rPMS methods in research. An international panel of experts identified among those who had previously published on the topic were enrolled in a two-round web-based Delphi study with the aim of reaching a consensus on the items that should be reported or controlled in any rPMS study. The consensual rPMS checklist obtained comprises 8 subject-related items (e.g., age, sex), 16 methodological items (e.g., coil type, pulse duration), and 11 stimulation protocol items (e.g., paradigm of stimulation, number of pulses). This checklist will contribute to new interventional or exploratory rPMS research to guide researchers or clinicians on the methods to use to test and publish rPMS after-effects. Overall, the checklist will guide the peer-review process on the quality of rPMS methods reported in a publication. Given the dynamic nature of a consensus between international experts, it is expected that future research will affine the checklist.
Collapse
Affiliation(s)
- Cyril Schneider
- Noninvasive Stimulation Laboratory (NovaStim), Neuroscience Division, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- *Correspondence: Cyril Schneider
| | - Andrea Zangrandi
- Noninvasive Stimulation Laboratory (NovaStim), Neuroscience Division, Research Center of CHU de Québec-Université Laval, Quebec City, QC, Canada
- Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Nico Sollmann
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States
| | - Michaela Veronika Bonfert
- Division of Pediatric Neurology and Developmental Medicine and LMU Center for Children With Medical Complexity, Dr. von Hauner Children's Hospital, LMU Hospital, Munich, Germany
| | | | | |
Collapse
|
11
|
Mahasupachai N, Premsiri A, Chanlalit C. Arthroscopic Lateral Collateral Ligament Repair for the Acute Elbow Dislocation in Primary Lateral Sclerosis Patient: A Case Report. Orthop Rev (Pavia) 2022; 14:32287. [DOI: 10.52965/001c.32287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
12
|
Jiang YF, Zhang D, Zhang J, Hai H, Zhao YY, Ma YW. A Randomized Controlled Trial of Repetitive Peripheral Magnetic Stimulation applied in Early Subacute Stroke: Effects on Severe Upper-limb Impairment. Clin Rehabil 2022; 36:693-702. [PMID: 34985366 DOI: 10.1177/02692155211072189] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Repetitive peripheral magnetic stimulation (rPMS) is a non-invasive method that activates peripheral nerves and enhances muscle strength. This study aimed to investigate the effect of rPMS applied in early subacute stroke on severe upper extremity impairment. DESIGN Randomized controlled trial. SETTING Rehabilitation department of a university hospital. SUBJECTS People aged 30-80 years with no practical arm function within four weeks of a first stroke. INTERVENTIONS Participants were randomly assigned to either the rPMS group (n = 24, 20Hz and 2400 pulses of rPMS to triceps brachii and extensor digitorum muscles daily for two weeks in addition to conventional physiotherapy) or the control group (n = 20, conventional physiotherapy). MAIN MEASURES The primary outcome was the upper extremity motor section of Fugl-Meyer Assessment after treatment. Secondary outcomes included Barthel Index and root mean square of surface electromyography for muscle strength and stretch-induced spasticity of critical muscles of the upper extremity. Data presented: mean (SD) or median (IQR). RESULTS The rPMS group showed more significant improvements in the Fugl-Meyer Assessment (12.5 (2.5) vs. 7.0 (1.4), P < 0.001), Barthel Index (15 (5) vs. 10 (3.7), P < 0.001), and strength-root mean square (biceps brachii: 20.5 (4.8) vs. 6.2 (2.7), p < 0.001; triceps brachii: 14.9 (5.8) vs. 4.3 (1.2), p < 0.001; flexor digitorum: 5.1 (0.8) vs. 4.0 (1.1), p < 0.001) compared with the control group. CONCLUSION In patients with no functional arm movement, rPMS of upper limb extensors improves arm function and muscle strength for grip and elbow flexion and extension.
Collapse
Affiliation(s)
- Yi-Fan Jiang
- Department of Rehabilitation Medicine, the 159407First Affiliated Hospital of China Medical University, Shenyang, China *Equal contribution
| | - Dai Zhang
- Department of Rehabilitation Medicine, the 159407First Affiliated Hospital of China Medical University, Shenyang, China *Equal contribution
| | | | | | | | | |
Collapse
|
13
|
Sui M, Jiang N, Yan L, Liu J, Luo B, Zhang C, Yan T, Xiang Y, Li G. Effect of Electroacupuncture on Shoulder Subluxation in Poststroke Patients with Hemiplegic Shoulder Pain: A Sham-Controlled Study Using Multidimensional Musculoskeletal Ultrasound Assessment. Pain Res Manag 2021; 2021:5329881. [PMID: 34840636 PMCID: PMC8626186 DOI: 10.1155/2021/5329881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/22/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to use multidimensional musculoskeletal ultrasound imaging technique to investigate the effect of electroacupuncture (EA) on shoulder subluxation in poststroke patients with hemiplegic shoulder pain. METHODS In this prospective single-blind, randomized, sham-controlled study, thirty-four patients with shoulder subluxation and hemiplegic shoulder pain were recruited and randomly assigned into the EA group or the sham EA (SEA) group. In the EA group, EA was applied to the Jian yu (LI15), Bi nao (LI14), Jian zhen (SI9), and Jian liao (TE14) acupoints. In the SEA group, the EA was applied 15 mm away from the Lou gu (SP7), Di ji (SP8), Jiao xin (KI8), and Zhu bin (KI9) acupoints. Both groups underwent treatment 30 minutes/day, five days a week, for two weeks using dense waves with a frequency of 2/100 Hz. A Visual Analogue Scale (VAS) was used to evaluate the effectiveness of treatment in reducing shoulder pain. Musculoskeletal ultrasound was used to evaluate the changes of measures of shoulder subluxation in multidimensions (i.e., the acromiohumeral distance, AHD; acromion-greater tuberosity, AGT; and acromion-lesser tuberosity, ALT). Both the within- and between-groups treatment effects were assessed. RESULTS The pain intensity measured by VAS and shoulder subluxation measured by musculoskeletal ultrasound (i.e., AHD, AGT, and ALT) showed significant (p < 0.05) within-group difference in both groups. The between-group difference appeared in the pain intensity (p < 0.05), while it disappeared in the three measures of shoulder subluxation (p > 0.05). CONCLUSIONS Using VAS for measuring pain intensity and multidimensional musculoskeletal ultrasound imaging technique for measuring shoulder subluxation, this study finds that the hemiplegic shoulder pain can be improved significantly by the EA while the shoulder subluxation cannot be. Our findings further reveal the analgesic mechanism of EA on hemiplegic shoulder pain following stroke.
Collapse
Affiliation(s)
- Minghong Sui
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan People's Hospital), Shenzhen 518052, China
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
| | - Naifu Jiang
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen 518055, China
| | - Luhui Yan
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan People's Hospital), Shenzhen 518052, China
| | - Jiaqing Liu
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan People's Hospital), Shenzhen 518052, China
| | - Bin Luo
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan People's Hospital), Shenzhen 518052, China
| | - Chenxi Zhang
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan People's Hospital), Shenzhen 518052, China
| | - Tiebin Yan
- Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Yun Xiang
- Department of Rehabilitation Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Shenzhen Nanshan People's Hospital), Shenzhen 518052, China
- Department of Sports Rehabilitation, School of Sports Medicine and Health, Chengdu Sport University, Chengdu 610041, China
| | - Guanglin Li
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS) and the SIAT Branch, Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen 518055, China
- Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen 518055, China
| |
Collapse
|