1
|
Lawson McLean A, Nemir J. Quantifying insertional effects in deep brain stimulation: clinical outcomes and neurophysiological mechanisms. Expert Rev Med Devices 2025; 22:285-291. [PMID: 40098272 DOI: 10.1080/17434440.2025.2480660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION Deep brain stimulation (DBS) has revolutionized the treatment of various neurological and psychiatric disorders. However, recent findings highlight the significant clinical and molecular responses elicited by the mere insertion of DBS electrodes, termed 'insertional effects.' This review explores the clinical manifestations and underlying mechanisms of these effects, emphasizing their implications for neuromodulation therapies. AREAS COVERED A comprehensive literature search was conducted, examining studies that document the clinical benefits observed immediately following DBS electrode implantation in conditions such as Parkinson's disease, epilepsy, chronic pain, and psychiatric disorders. The review delves into the molecular and cellular mechanisms, including neuroinflammatory responses and ion channel dynamics, that contribute to these insertional effects. Additionally, the potential for these effects to predict DBS efficacy and inform the development of closed-loop DBS systems is discussed. EXPERT OPINION The insertional effects of DBS represent a crucial yet underappreciated phenomenon with significant implications for optimizing therapeutic protocols and enhancing patient outcomes. Recognizing and harnessing these effects could lead to more personalized and effective neuromodulation strategies, advancing the field of DBS and improving treatment for a range of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Aaron Lawson McLean
- Department of Neurosurgery, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Jakob Nemir
- Department of Neurosurgery, University Hospital Center Zagreb, Zagreb, Croatia
| |
Collapse
|
2
|
Shan M, Mao H, Hu T, Xie H, Ye L, Cheng H. Deep brain stimulation of the subthalamic nucleus for a patient with drug resistant juvenile myoclonic epilepsy: 1 year follow-up. Neurol Sci 2024; 45:4997-5002. [PMID: 38740728 DOI: 10.1007/s10072-024-07553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Drug-resistant juvenile myoclonic epilepsy (DR-JME) remains a significant challenge in neurology. Traditional management strategies often fail to achieve satisfactory control, necessitating innovative treatments. OBJECTIVE This case report aims to evaluate the efficacy and safety of deep brain stimulation (DBS) targeting the subthalamic nucleus (STN-DBS) in a patient with DR-JME. METHODS We describe the treatment of a patient with DR-JME using STN-DBS. The patient underwent implantation and received high-frequency stimulation (HFS) at the STN. RESULTS One year post-implantation, the patient demonstrated a substantial reduction in motor seizure frequency by 87.5%, with improvements in quality of life and seizure severity by 52.0% and 46.7%, respectively. No adverse events were reported during the follow-up period. CONCLUSIONS This case represents the first report of favorable outcomes with STN-DBS in a patient with DR-JME, suggesting that long-term HFS of the STN may be a promising treatment option for patients suffering from this condition.
Collapse
Affiliation(s)
- Ming Shan
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hongliang Mao
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
- First Clinical Medical College, Anhui Medical University, Meishan Road 81, Hefei, 230032, P.R. China
| | - Tianqi Hu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Hutao Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China
| | - Hongwei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Jixi Road 218, Hefei, 230022, P.R. China.
| |
Collapse
|
3
|
Davani AJ, Richardson AJ, Vodovozov W, Sanghani SN. Neuromodulation in Psychiatry. ADVANCES IN PSYCHIATRY AND BEHAVIORAL HEALTH 2024; 4:177-198. [DOI: 10.1016/j.ypsc.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
4
|
Rumschlag MT, Misiolek KA, Parikh P, Zawar I. Extremely long RNS implantation effect: The extended impact of RNS electrodes on clinical and ECoG findings without the confounding effect of RNS stimulation. Epileptic Disord 2024; 26:536-539. [PMID: 38787629 PMCID: PMC12034247 DOI: 10.1002/epd2.20233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/01/2024] [Accepted: 04/15/2024] [Indexed: 05/26/2024]
Affiliation(s)
- Matthew T Rumschlag
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA 22903
| | - Kalina A Misiolek
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA 22903
| | - Prachi Parikh
- Department of Neurology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ifrah Zawar
- Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA 22903
| |
Collapse
|
5
|
Ahn S, Edmonds B, Rajaraman RR, Rao LM, Hussain SA, Matsumoto JH, Sankar R, Salamon N, Fallah A, Nariai H. Bilateral centromedian nucleus of thalamus responsive neurostimulation for pediatric-onset drug-resistant epilepsy. Epilepsia 2024; 65:e131-e140. [PMID: 38845459 PMCID: PMC11315622 DOI: 10.1111/epi.18031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 08/10/2024]
Abstract
Neuromodulation therapies offer an efficacious treatment alternative for patients with drug-resistant epilepsy (DRE), particularly those unlikely to benefit from surgical resection. Here we present our retrospective single-center case series of patients with pediatric-onset DRE who underwent responsive neurostimulation (RNS) depth electrode implantation targeting the bilateral centromedian nucleus (CM) of the thalamus between October 2020 and October 2022. Sixteen patients were identified; seizure outcomes, programming parameters, and complications at follow-up were reviewed. The median age at implantation was 13 years (range 3.6-22). Six patients (38%) were younger than 12 years of age at the time of implantation. Ictal electroencephalography (EEG) patterns during patients' most disabling seizures were reliably detected. Ten patients (62%) achieved 50% or greater reduction in seizure frequency at a median 1.3 years (range 0.6-2.6) of follow-up. Eight patients (50%) experienced sensorimotor side effects, and three patients (19%) had superficial pocket infection, prompting the removal of the RNS device. Side effects of stimulation were experienced mostly in monopolar-cathodal configuration and alleviated with programming change to bipolar configuration or low-frequency stimulation. Closed-loop neurostimulation using RNS targeting bilateral CM is a feasible and useful therapy for patients with pediatric-onset DRE.
Collapse
Affiliation(s)
- Samuel Ahn
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Benjamin Edmonds
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- Division of Pediatric Neurology, Department of Neurology, Seattle Children’s Hospital, Seattle, WA, USA
| | - Rajsekar R. Rajaraman
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Lekha M. Rao
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Shaun A. Hussain
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Joyce H. Matsumoto
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Raman Sankar
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, University of California, Los Angeles, CA, USA
| | - Aria Fallah
- Department of Neurosurgery, UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Hiroki Nariai
- Division of Pediatric Neurology, Department of Pediatrics, UCLA Mattel Children’s Hospital, David Geffen School of Medicine, Los Angeles, CA, USA
- The UCLA Children’s Discovery and Innovation Institute, Los Angeles, CA, USA
| |
Collapse
|
6
|
Li Q, Shan Y, Wei P, Zhao G. The comparison of DBS and RNS for adult drug-resistant epilepsy: a systematic review and meta-analysis. Front Hum Neurosci 2024; 18:1429223. [PMID: 38962148 PMCID: PMC11220164 DOI: 10.3389/fnhum.2024.1429223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/11/2024] [Indexed: 07/05/2024] Open
Abstract
Objective Neuromodulation has been proven to be a promising alternative treatment for adult patients with drug-resistant epilepsy (DRE). Deep brain stimulation (DBS) and responsive neurostimulation (RNS) were approved by many countries for the treatment of DRE. However, there is a lack of systematic studies illustrating the differences between them. This meta-analysis is performed to assess the efficacy and clinical characteristics of DBS and RNS in adult patients with DRE. Methods PubMed, Web of Science, and Embase were retrieved to obtain related studies including adult DRE patients who accepted DBS or RNS. The clinical characteristics of these patients were compiled for the following statistical analysis. Results A total of 55 studies (32 of DBS and 23 of RNS) involving 1,568 adult patients with DRE were included in this meta-analysis. There was no significant difference in seizure reduction and responder rate between DBS and RNS for DRE. The seizure reduction of DBS and RNS were 56% (95% CI 50-62%, p > 0.05) and 61% (95% CI 54-68%, p > 0.05). The responder rate of DBS and RNS were 67% (95% CI 58-76%, p > 0.05) and 71% (95% CI 64-78%, p > 0.05). Different targets of DBS did not show significant effect on seizure reduction (p > 0.05). Patients with DRE who accepted DBS were younger than those of RNS (32.9 years old vs. 37.8 years old, p < 0.01). The mean follow-up time was 47.3 months for DBS and 39.5 months for RNS (p > 0.05). Conclusion Both DBS and RNS are beneficial and alternative therapies for adult DRE patients who are not eligible to accept resection surgery. Further and larger studies are needed to clarify the characteristics of different targets and provide tailored treatment for patients with DRE.
Collapse
Affiliation(s)
- Qinghua Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongzhi Shan
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Penghu Wei
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Epilepsy Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
7
|
Hamani C, Davidson B, Lipsman N, Abrahao A, Nestor SM, Rabin JS, Giacobbe P, Pagano RL, Campos ACP. Insertional effect following electrode implantation: an underreported but important phenomenon. Brain Commun 2024; 6:fcae093. [PMID: 38707711 PMCID: PMC11069120 DOI: 10.1093/braincomms/fcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 03/26/2024] [Indexed: 05/07/2024] Open
Abstract
Deep brain stimulation has revolutionized the treatment of movement disorders and is gaining momentum in the treatment of several other neuropsychiatric disorders. In almost all applications of this therapy, the insertion of electrodes into the target has been shown to induce some degree of clinical improvement prior to stimulation onset. Disregarding this phenomenon, commonly referred to as 'insertional effect', can lead to biased results in clinical trials, as patients receiving sham stimulation may still experience some degree of symptom amelioration. Similar to the clinical scenario, an improvement in behavioural performance following electrode implantation has also been reported in preclinical models. From a neurohistopathologic perspective, the insertion of electrodes into the brain causes an initial trauma and inflammatory response, the activation of astrocytes, a focal release of gliotransmitters, the hyperexcitability of neurons in the vicinity of the implants, as well as neuroplastic and circuitry changes at a distance from the target. Taken together, it would appear that electrode insertion is not an inert process, but rather triggers a cascade of biological processes, and, as such, should be considered alongside the active delivery of stimulation as an active part of the deep brain stimulation therapy.
Collapse
Affiliation(s)
- Clement Hamani
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Benjamin Davidson
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurosurgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Agessandro Abrahao
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sean M Nestor
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Jennifer S Rabin
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto M5G 1V7, Canada
| | - Peter Giacobbe
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Harquail Centre for Neuromodulation, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Psychiatry, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Rosana L Pagano
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| | - Ana Carolina P Campos
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada
- Laboratory of Neuroscience, Hospital Sírio-Libanês, São Paulo, SP CEP 01308-060, Brazil
| |
Collapse
|
8
|
Bottan JS, Alshahrani A, Gilmore G, Steven DA, Burneo JG, Lau JC, McLachlan RS, Parrent AG, MacDougall KW, Diosy DC, Mirsattari SM, Suller Marti A. Lack of spontaneous typical seizures during intracranial monitoring with stereo-electroencephalography. Epileptic Disord 2023; 25:833-844. [PMID: 37792454 DOI: 10.1002/epd2.20165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/05/2023]
Abstract
OBJECTIVE In the presurgical evaluation of patients with drug-resistant epilepsy (DRE), occasionally, patients do not experience spontaneous typical seizures (STS) during a stereo-electroencephalography (SEEG) study, which limits its effectiveness. We sought to identify risk factors for patients who did not have STS during SEEG and to analyze the clinical outcomes for this particular set of patients. METHODS We conducted a retrospective analysis of all patients with DRE who underwent depth electrode implantation and SEEG recordings between January 2013 and December 2018. RESULTS SEEG was performed in 155 cases during this period. 11 (7.2%) did not experience any clinical seizures (non-STS group), while 143 experienced at least one patient-typical seizure during admission (STS group). No significant differences were found between STS and non-STS groups in terms of patient demographics, lesional/non-lesional epilepsy ratio, pre-SEEG seizure frequency, number of ASMs used, electrographic seizures or postoperative seizure outcome in those who underwent resective surgery. Statistically significant differences were found in the average number of electrodes implanted (7.0 in the non-STS group vs. 10.2 in STS), days in Epilepsy Monitoring Unit (21.8 vs. 12.8 days) and the number of cases that underwent resective surgery following SEEG (27.3% vs. 60.8%), respectively. The three non-STS patients (30%) who underwent surgery, all had their typical seizures triggered during ECS studies. Three cases were found to have psychogenic non-epileptic seizures. None of the patients in the non-STS group were offered neurostimulation devices. Five of the non-STS patients experienced transient seizure improvement following SEEG. SIGNIFICANCE We were unable to identify any factors that predicted lack of seizures during SEEG recordings. Resective surgery was only offered in cases where ECS studies replicated patient-typical seizures. Larger datasets are required to be able to identify factors that predict which patients will fail to develop seizures during SEEG.
Collapse
Affiliation(s)
- Juan S Bottan
- Section of Neurosurgery, Hospital General de Niños "Pedro De Elizalde", Ciudad Autónoma de Buenos Aires, Argentina
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ashwaq Alshahrani
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Greydon Gilmore
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David A Steven
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jorge G Burneo
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Epidemiology & Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Neuroepidemiology Unit, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jonathan C Lau
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Richard S McLachlan
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Andrew G Parrent
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Keith W MacDougall
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - David C Diosy
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Seyed M Mirsattari
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Ana Suller Marti
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
9
|
Fisher RS. Deep brain stimulation of thalamus for epilepsy. Neurobiol Dis 2023; 179:106045. [PMID: 36809846 DOI: 10.1016/j.nbd.2023.106045] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Neuromodulation (neurostimulation) is a relatively new and rapidly growing treatment for refractory epilepsy. Three varieties are approved in the US: vagus nerve stimulation (VNS), deep brain stimulation (DBS) and responsive neurostimulation (RNS). This article reviews thalamic DBS for epilepsy. Among many thalamic sub-nuclei, DBS for epilepsy has been targeted to the anterior nucleus (ANT), centromedian nucleus (CM), dorsomedial nucleus (DM) and pulvinar (PULV). Only ANT is FDA-approved, based upon a controlled clinical trial. Bilateral stimulation of ANT reduced seizures by 40.5% at three months in the controlled phase (p = .038) and 75% by 5 years in the uncontrolled phase. Side effects related to paresthesias, acute hemorrhage, infection, occasional increased seizures, and usually transient effects on mood and memory. Efficacy was best documented for focal onset seizures in temporal or frontal lobe. CM stimulation may be useful for generalized or multifocal seizures and PULV for posterior limbic seizures. Mechanisms of DBS for epilepsy are largely unknown, but animal work points to changes in receptors, channels, neurotransmitters, synapses, network connectivity and neurogenesis. Personalization of therapies, in terms of connectivity of the seizure onset zone to the thalamic sub- nucleus and individual characteristics of the seizures, might lead to improved efficacy. Many questions remain about DBS, including the best candidates for different types of neuromodulation, the best targets, the best stimulation parameters, how to minimize side effects and how to deliver current noninvasively. Despite the questions, neuromodulation provides useful new opportunities to treat people with refractory seizures not responding to medicines and not amenable to resective surgery.
Collapse
Affiliation(s)
- Robert S Fisher
- Department of Neurology and Neurological Sciences and Neurosurgery by Courtesy, Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 213 Quarry Road, Room 4865, Palo Alto, CA 94304, USA.
| |
Collapse
|
10
|
Skrehot HC, Englot DJ, Haneef Z. Neuro-stimulation in focal epilepsy: A systematic review and meta-analysis. Epilepsy Behav 2023; 142:109182. [PMID: 36972642 DOI: 10.1016/j.yebeh.2023.109182] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/29/2023]
Abstract
OBJECTIVES Different neurostimulation modalities are available to treat drug-resistant focal epilepsy when surgery is not an option including vagus nerve stimulation (VNS), responsive neurostimulation (RNS), and deep brain stimulation (DBS). Head-to-head comparisons of efficacy do not exist between them nor are likely to be available in the future. We performed a meta-analysis on VNS, RNS, and DBS outcomes to compare seizure reduction efficacy for focal epilepsy. METHODS We systematically reviewed the literature for reported seizure outcomes following implantation with VNS, RNS, and DBS in focal-onset seizures and performed a meta-analysis. Prospective or retrospective clinical studies were included. RESULTS Sufficient data were available at years one (n = 642, two (n = 480), and three (n = 385) for comparing the three modalities with each other. Seizure reduction for the devices at years one, two, and three respectively were: RNS: 66.3%, 56.0%, 68.4%; DBS- 58.4%, 57.5%, 63.8%; VNS 32.9%, 44.4%, 53.5%. Seizure reduction at year one was greater for RNS (p < 0.01) and DBS (p < 0.01) compared to VNS. CONCLUSIONS Our findings indicate the seizure reduction efficacy of RNS is similar to DBS, and both had greater seizure reductions compared to VNS in the first-year post-implantation, with the differences diminishing with longer-term follow-up. SIGNIFICANCE The results help guide neuromodulation treatment in eligible patients with drug-resistant focal epilepsy.
Collapse
Affiliation(s)
- Henry C Skrehot
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dario J Englot
- Departments of Neurological Surgery, Neurology, Radiology, Electrical Engineering, and Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Zulfi Haneef
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Neurology Care Line, VA Medical Center, Houston, TX 77030, USA.
| |
Collapse
|
11
|
Lőrincz K, Bóné B, Karádi K, Kis-Jakab G, Tóth N, Halász L, Erőss L, Balás I, Faludi B, Jordán Z, Chadaide Z, Gyimesi C, Fabó D, Janszky J. Effects of anterior thalamic nucleus DBS on interictal heart rate variability in patients with refractory epilepsy. Clin Neurophysiol 2023; 147:17-30. [PMID: 36630886 DOI: 10.1016/j.clinph.2022.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/02/2022] [Accepted: 11/21/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Heart rate variability (HRV) changes were investigated by several studies after resective epilepsy surgery/vagus nerve stimulation. We examined anterior thalamic nucleus (ANT)-deep brain stimulation (DBS) effects on HRV parameters. METHODS We retrospectively analyzed 30 drug-resistant epilepsy patients' medical record data and collected electrocardiographic epochs recorded during video- electroencephalography monitoring sessions while awake and during N1- or N2-stage sleep pre-DBS implantation surgery, post-surgery but pre-stimulation, and after stimulation began. RESULTS The mean square root of the mean squared differences between successive RR intervals and RR interval standard deviation values differed significantly (p < 0.05) among time-points, showing increased HRV post-surgery. High (0.15-0.4 Hz) and very low frequency (<0.04 Hz) increased, while low frequency (0.04-0.15 Hz) and the LF/HF ratio while awake decreased, suggesting improved autonomic regulation post-surgery. Change of effect size was larger in patients where both activated contacts were located in the ANT than in those where only one or none of the contacts hit the ANT. CONCLUSIONS In patients with drug-resistant epilepsy, ANT-DBS might positively influence autonomic regulation, as reflected by increased HRV. SIGNIFICANCE To gain a more comprehensive outcome estimation after DBS implantation, we suggest including HRV measures with seizure count in the post-surgery follow-up protocol.
Collapse
Affiliation(s)
- Katalin Lőrincz
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; Department of Neurosurgery, University Hospital Tübingen, Eberhard Karls University, Hoppe-Seyler str. 3, 72076 Tübingen, Germany.
| | - Beáta Bóné
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Kázmér Karádi
- Department of Behavioral Sciences, Medical School, University of Pecs, Szigeti u.12, H-7624 Pecs, Hungary
| | - Greta Kis-Jakab
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2., H-7623 Pecs, Hungary
| | - Natália Tóth
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - László Halász
- Department of Functional Neurosurgery, National Institute of Neurosciences, Amerikai ut 57, H-1345 Budapest, Hungary
| | - Loránd Erőss
- Department of Functional Neurosurgery, National Institute of Neurosciences, Amerikai ut 57, H-1345 Budapest, Hungary
| | - István Balás
- Department of Neurosurgery, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Béla Faludi
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Zsófia Jordán
- Department of Neurology, National Institute of Neurosciences, Amerikai ut 57., H-1345 Budapest, Hungary
| | - Zoltan Chadaide
- University of Szeged Albert Szentgyörgyi Medical School, Tisza Lajos krt.109, 6725 Szeged, Hungary
| | - Csilla Gyimesi
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary
| | - Dániel Fabó
- Department of Neurology, National Institute of Neurosciences, Amerikai ut 57., H-1345 Budapest, Hungary
| | - József Janszky
- Department of Neurology, Medical School, University of Pecs, Ret u. 2, H-7623 Pecs, Hungary; MTA-PTE Clinical Neuroscience MR Research Group, Ret u. 2., H-7623 Pecs, Hungary
| |
Collapse
|
12
|
Ding J, Wang L, Li W, Wang Y, Jiang S, Xiao L, Zhu C, Hao X, Zhao J, Kong X, Wang Z, Lu G, Wang F, Sun T. Up to What Extent Does Dravet Syndrome Benefit From Neurostimulation Techniques? Front Neurol 2022; 13:843975. [PMID: 35493838 PMCID: PMC9044920 DOI: 10.3389/fneur.2022.843975] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dravet syndrome (DS) is a refractory developmental and epileptic encephalopathy (EE) with a variety of comorbidities, including cognitive impairment, autism-like behavior, speech dysfunction, and ataxia, which can seriously affect the quality of life of patients and impose a great burden on society and their families. Currently, the pharmacological therapy is patient dependent and may work or not. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), transcranial magnetic stimulation (TMS), responsive neurostimulation (RNS), and chronic subthreshold cortical stimulation (CSCS), have become common adjuvant therapies for neurological diseases, but their efficacy in the treatment of DS is unknown. METHODS We searched Web of Science, PubMed, and SpringerLink for all published cases related to the neuromodulation techniques of DS until January 15, 2022. The systematic review was supplemented with relevant articles from the references. The results reported by each study were summarized narratively. RESULTS The Web of science, PubMed and SpringerLink search yielded 258 items. A total of 16 studies published between 2016 and 2021 met the final inclusion criteria. Overall, 16 articles (109 cases) were included in this study, among which fifteen (107 patients) were involved VNS, and one (2 patients) was involved DBS. After VNS implantation, seizures were reduced to ≥50% in 60 cases (56%), seizure free were found in 8 cases (7.5%). Only two DS patients received DBS treatment, and the initial outcomes of DBS implantation were unsatisfactory. The seizures significantly improved over time for both DBS patients after the addition of antiepileptic drugs. CONCLUSION More than half of the DS patients benefited from VNS, and VNS may be effective in the treatment of DS. However, it is important to note that VNS does not guarantee improvement of seizures, and there is a risk of infection and subsequent device failure. Although DBS is a safe and effective strategy for the treatment of refractory epilepsy, the role of DBS in DS needs further study, as the sample size was small. Thus far, there is no strong evidence for the role of DBS in DS.
Collapse
Affiliation(s)
- Jiangwei Ding
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lei Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Wenchao Li
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Yangyang Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Shucai Jiang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Changliang Zhu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Xiaoyan Hao
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Jiali Zhao
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Xuerui Kong
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Ziqin Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
| | - Feng Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Sun
- Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, China
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, China
| |
Collapse
|
13
|
Maher Hulou M, Maglinger B, McLouth CJ, Reusche CM, Fraser JF. Freehand frontal external ventricular drain (EVD) placement: Accuracy and complications. J Clin Neurosci 2022; 97:7-11. [PMID: 35026606 DOI: 10.1016/j.jocn.2021.12.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Ventriculostomy placement is a life-saving procedure. Our aim was to determine the predictors of inaccurate placement, our infection and hemorrhage rate. This was a retrospective study of EVD placements between January - November 2019. Data related to hemorrhage, infection and catheter misplacement were collected. Univariate and multivariate analyses of predictors of suboptimal catheter placement were performed. 131 consecutive patients underwent freehand EVD placement. The indications were subarachnoid hemorrhage in 36 (27.5%) patients, hemorrhagic stroke in 36 (27.5%), and trauma in 32 (24.4%) patients. Nine patients (6.8%) had culture-proven CSF bacterial infection. Sixteen (12.2%) patients developed small tract hemorrhage, while 8 (6.1%) patients developed large intraparenchymal hemorrhage. There was no correlation between tract hemorrhage or large hemorrhage with the use of antiplatelet or anticoagulation medicines on presentation, diagnosis or Kakarla grade. Trauma diagnosis (odds ratio 2.59, p-value 0.05), left side of EVD placement (odds ratio 2.84, p-value 0.03), increasing midline shift (odds ratio 1.09, p-value 0.03), and lower bicaudate index (odds ratio 0.56, p-value 0.02) were all predictors of Kakarla grade 3 suboptimal placement. When Kakarla grade 2 and 3 were combined, similar results were obtained except that midline shift was no longer statistically significant. The multivariable regression model predicting Kakarla 3 suboptimal placement revealed that low bicaudate index and left sided EVD were predictors of misplaced EVD.
Collapse
Affiliation(s)
- M Maher Hulou
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | - Benton Maglinger
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA
| | | | | | - Justin F Fraser
- Department of Neurosurgery, University of Kentucky, Lexington, KY, USA; Department of Radiology, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|