1
|
Harland T, Sabourin S, Mayer R, Durphy J, Adam O, Pilitsis J. In Reply: Longevity of Deep Brain Stimulation in Essential Tremor: A Comparison of Omnidirectional and Directional Leads. Neurosurgery 2025:00006123-990000000-01592. [PMID: 40272148 DOI: 10.1227/neu.0000000000003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 04/25/2025] Open
Affiliation(s)
- Tessa Harland
- Department of Neurosurgery, Albany Medical Center, Albany, New York, USA
| | - Shelby Sabourin
- Department of Experimental Therapeutics, Albany Medical Center, Albany, New York, USA
| | - Ryan Mayer
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Jennifer Durphy
- Department of Neurology, Albany Medical Center, Albany, New York, USA
| | - Octavian Adam
- Department of Neurology, Albany Medical Center, Albany, New York, USA
| | - Julie Pilitsis
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
2
|
Hvingelby V, Khalil F, Massey F, Hoyningen A, Xu SS, Candelario-McKeown J, Akram H, Foltynie T, Limousin P, Zrinzo L, Krüger MT. Directional deep brain stimulation electrodes in Parkinson's disease: meta-analysis and systematic review of the literature. J Neurol Neurosurg Psychiatry 2025; 96:188-198. [PMID: 39304337 DOI: 10.1136/jnnp-2024-333947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/25/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Since their introduction in 2015, directional leads have practically replaced conventional leads for deep brain stimulation (DBS) in Parkinson's disease (PD). Yet, the benefits of directional DBS (dDBS) over omnidirectional DBS (oDBS) remain unclear. This meta-analysis and systematic review compares the literature on dDBS and oDBS for PD. METHODS Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Database searches included Pubmed, Cochrane (CENTRAL) and EmBase, using relevant keywords such as 'directional', 'segmented', 'brain stimulation' and 'neuromodulation'. The screening was based on the title and abstract. RESULTS 23 papers reporting on 1273 participants (1542 leads) were included. The therapeutic window was 0.70 mA wider when using dDBS (95% CI 0.13 to 1.26 mA, p=0.02), with a lower therapeutic current (0.41 mA, 95% CI 0.27 to 0.54 mA, p=0.01) and a higher side-effect threshold (0.56 mA, 95% CI 0.38 to 0.73 mA, p<0.01). However, there was no relevant difference in mean Unified Parkinson's Disease Rating Scale III change after dDBS (45.8%, 95% CI 30.7% to 60.9%) compared with oDBS (39.0%, 95% CI 36.9% to 41.2%, p=0.39), in the medication-OFF state. Median follow-up time for dDBS and oDBS studies was 6 months and 3 months, respectively (range 3-12 for both). The use of directionality often improves dyskinesia, dysarthria, dysesthesia and pyramidal side effects. Directionality was used in 55% of directional leads at 3-6 months, remaining stable over time (56% at a mean of 14.1 months). CONCLUSIONS These findings suggest that stimulation parameters favour dDBS. However, these do not appear to have a significant impact on motor scores, and the availability of long-term data is limited. dDBS is widely accepted, but clinical data justifying its increased complexity and cost are currently sparse. PROSPERO REGISTRATION NUMBER CRD42023438056.
Collapse
Affiliation(s)
- Victor Hvingelby
- Department of Clinical Medicine, Aarhus Universitet, Aarhus, Denmark
- Aarhus Universitetshospital, Aarhus, Denmark
| | - Fareha Khalil
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Flavia Massey
- University College London Medical School, London, UK
| | - Alexander Hoyningen
- Department of Neurosurgery, Kantonsspital St Gallen, Sankt Gallen, Switzerland
- Department of Basic Neuroscience, University of Geneva, Geneve, Switzerland
| | - San San Xu
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Clinical and Movement Neurosciences, University College London, London, UK
| | | | - Harith Akram
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Movement Disorders, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Thomas Foltynie
- Movement Disorders, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery, London, UK
| | - Patricia Limousin
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Ludvic Zrinzo
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
| | - Marie T Krüger
- UCL Functional Neurosurgery, National Hospital for Neurology and Neurosurgery, London, UK
- Department of Functional Neurosurgery, Albert-Ludwigs-Universitat Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
3
|
Harland T, Sabourin S, Mayer R, Durphy J, Adam O, Pilitsis JG. Longevity of Deep Brain Stimulation in Essential Tremor: A Comparison of Omnidirectional and Directional Leads. Neurosurgery 2024:00006123-990000000-01474. [PMID: 39665529 DOI: 10.1227/neu.0000000000003308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/24/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients undergoing thalamic ventral intermediate nucleus stimulation to treat essential tremor (ET) develop tolerance over time, requiring higher stimulation amplitudes that lead to more frequent battery changes and suboptimal tremor control. The study objective is to determine whether amplitude tolerance differs between patients with omnidirectional vs directional leads. METHODS We conducted a retrospective analysis of ET patients with omnidirectional and directional leads implanted between 2005 and 2022. We compared patient demographics, tremor scores, and energy utilization for directional and omnidirectional leads. Contact impedance was used to normalize amplitude values between groups. Analyses were duplicated after reclassifying omnidirectional and directional based on the utilization of directional programming for 2 or more years. RESULTS A total of 24 directional leads in 22 patients and 39 omnidirectional leads in 30 patients were followed for a mean of 3.71 and 7.54 years, respectively. There was no significant difference in age or baseline tremor scores between the groups. Both lead types demonstrated increasing amplitudes over time, but directional leads had significantly less change over time, particularly in the first year (P = .0012). Patients with omnidirectional leads were more likely to experience a pulse width increase of greater than 20 µs over 1 year (41.0% vs 12.5%; P = .035). Although time to first implantable pulse generator replacement was shorter for directional leads, this was not significant (P = .062). CONCLUSION Both omnidirectional and directional deep brain stimulation reduces tremor severity in ET patients. However, directional leads offer more stable voltage requirements and less year-to-year voltage change, particularly in the first year. The increased likelihood of significant pulse width changes in omnidirectional leads suggests that directional leads may provide more sustainable therapeutic effects through other programming parameters. Ongoing research is needed to optimize deep brain stimulation technology and programming strategies to maximize patient benefit and device longevity.
Collapse
Affiliation(s)
- Tessa Harland
- Department of Neurosurgery, Albany Medical Center, Albany, New York, USA
| | - Shelby Sabourin
- Department of Experimental Therapeutics, Albany Medical Center, Albany, New York, USA
| | - Ryan Mayer
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Jennifer Durphy
- Department of Neurology, Albany Medical Center, Albany, New York, USA
| | - Octavian Adam
- Department of Neurology, Albany Medical Center, Albany, New York, USA
| | - Julie G Pilitsis
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| |
Collapse
|
4
|
Koivu M, Sihvonen AJ, Eerola-Rautio J, Pauls KAM, Resendiz-Nieves J, Vartiainen N, Kivisaari R, Scheperjans F, Pekkonen E. Clinical and Brain Morphometry Predictors of Deep Brain Stimulation Outcome in Parkinson's Disease. Brain Topogr 2024; 37:1186-1194. [PMID: 38662300 PMCID: PMC11408547 DOI: 10.1007/s10548-024-01054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Subthalamic deep brain stimulation (STN-DBS) is known to improve motor function in advanced Parkinson's disease (PD) and to enable a reduction of anti-parkinsonian medication. While the levodopa challenge test and disease duration are considered good predictors of STN-DBS outcome, other clinical and neuroanatomical predictors are less established. This study aimed to evaluate, in addition to clinical predictors, the effect of patients' individual brain topography on DBS outcome. The medical records of 35 PD patients were used to analyze DBS outcomes measured with the following scales: Part III of the Unified Parkinson's Disease Rating Scale (UPDRS-III) off medication at baseline, and at 6-months during medication off and stimulation on, use of anti-parkinsonian medication (LED), Abnormal Involuntary Movement Scale (AIMS) and Non-Motor Symptoms Questionnaire (NMS-Quest). Furthermore, preoperative brain MRI images were utilized to analyze the brain morphology in relation to STN-DBS outcome. With STN-DBS, a 44% reduction in the UPDRS-III score and a 43% decrease in the LED were observed (p<0.001). Dyskinesia and non-motor symptoms decreased significantly [median reductions of 78,6% (IQR 45,5%) and 18,4% (IQR 32,2%) respectively, p=0.001 - 0.047]. Along with the levodopa challenge test, patients' age correlated with the observed DBS outcome measured as UPDRS-III improvement (ρ= -0.466 - -0.521, p<0.005). Patients with greater LED decline had lower grey matter volumes in left superior medial frontal gyrus, in supplementary motor area and cingulum bilaterally. Additionally, patients with greater UPDRS-III score improvement had lower grey matter volume in similar grey matter areas. These findings remained significant when adjusted for sex, age, baseline LED and UPDRS scores respectively and for total intracranial volume (p=0.0041- 0.001). However, only the LED decrease finding remained significant when the analyses were further controlled for stimulation amplitude. It appears that along with the clinical predictors of STN-DBS outcome, individual patient topographic differences may influence DBS outcome. Clinical Trial Registration Number: NCT06095245, registration date October 23, 2023, retrospectively registered.
Collapse
Affiliation(s)
- Maija Koivu
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland.
| | - Aleksi J Sihvonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
- Cognitive Brain Research Unit, Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Eerola-Rautio
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - K Amande M Pauls
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | | | - Nuutti Vartiainen
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, Finland, Helsinki, Finland
| |
Collapse
|
5
|
Gharabaghi A, Cebi I, Leavitt D, Scherer M, Bookjans P, Brunnett B, Milosevic L, Weiss D. Randomized crossover trial on motor and non-motor outcome of directional deep brain stimulation in Parkinson's disease. NPJ Parkinsons Dis 2024; 10:204. [PMID: 39461964 PMCID: PMC11513109 DOI: 10.1038/s41531-024-00812-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Deep brain stimulation (DBS) with electric field steering may avoid areas responsible for side effects. This prospective randomized cross-over trial compared omnidirectional (OS) and directional (DS) subthalamic DBS in 19 patients. Electromyographically measured rigidity was the primary outcome. Motor and non-motor scores were secondary outcomes. There were no significant differences between OS and DS. In the acute setting, both conditions improved motor scores compared to no stimulation. Motor symptoms improved after 3 weeks of OS relative to acute measurements, whereas they worsened under DS. The more ventral the active contact, and the less the motor improvement sweet spot was stimulated, the greater the benefit of DS over OS for executive function. Accurate OS of the dorsal subthalamic nucleus ensures motor and non-motor improvements. While DS can mitigate executive decline stemming from off-target stimulation, it may lead to worse motor outcomes. Larger, long-term studies are needed to confirm these findings. (Registration: subthalamic steering for therapy optimization in Parkinson's Disease ClinicalTrials.gov: NCT03548506, 2018-06-06).
Collapse
Affiliation(s)
- Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany.
- Center for Bionic Intelligence Tübingen Stuttgart (BITS), Tübingen, Germany.
- German Center for Mental Health (DZPG), Tübingen, Germany.
| | - Idil Cebi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| | - Dallas Leavitt
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Maximilian Scherer
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Patrick Bookjans
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Bastian Brunnett
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
| | - Luka Milosevic
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tübingen, Tübingen, Germany
- Clinical and Computational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Daniel Weiss
- Center for Neurology, Department for Neurodegenerative Diseases, and Hertie Institute for Clinical Brain Research, University Tübingen, Tübingen, Germany
| |
Collapse
|
6
|
de Almeida Marcelino AL, Heinz V, Astalosch M, Al-Fatly B, Schneider GH, Krause P, Kübler-Weller D, Kühn AA. Single-center experience of utilization and clinical efficacy of segmented leads for subthalamic deep brain stimulation in Parkinson's disease. Clin Park Relat Disord 2024; 11:100273. [PMID: 39429237 PMCID: PMC11489043 DOI: 10.1016/j.prdoa.2024.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/08/2024] [Accepted: 09/26/2024] [Indexed: 10/22/2024] Open
Abstract
Background Segmented electrodes for deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD) enable directional current steering leading to expanded programming options. Objective This retrospective study covering a longitudinal period of up to 7 years compares the efficacy of segmented and non-segmented leads in motor symptom alleviation and reduction of dopaminergic medication in PD patients treated in a specialized center and assesses the long-term use of directional steering in clinical routine. Methods Demographic data and clinical scores before surgery and at 12-month follow-up (12MFU) as well as stimulation parameters at 12MFU and last follow-up (LFU) were assessed in all patients implanted with segmented leads between 01/2016 and 12/2019 and non-segmented leads in a corresponding time-period. Patients were classified as very good (>60 %), good (30-60 %) and poor (<30 %) responders according to DBS-induced motor improvement. Results Clinical data at 12MFU was available for 61/96 patients with segmented (SEG) and 42/53 with non-segmented leads (N-SEG). Mean DBS-induced motor improvement and reduction of medication at 12MFU did not differ significantly between SEG and N-SEG groups or in a subgroup analysis of steering modes. There was a lower proportion of poor responders in the SEG compared with the N-SEG group (23% vs. 31%), though not statistically significant. At LFU, the percentage of patients set at directional steering increased from 54% to 70%. Conclusion Efficacy in reduction of motor symptoms and medication does not differ between electrode types for STN-DBS at 12 months follow-up. The use of directional steering increases over time and may account for a lower proportion of poor responders.
Collapse
Affiliation(s)
- Ana Luísa de Almeida Marcelino
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Viktor Heinz
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Melanie Astalosch
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12200 Berlin, Germany
| | - Bassam Al-Fatly
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Dorothee Kübler-Weller
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Andrea A. Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, Berlin, Germany
- Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt - Universität zu Berlin, Berlin, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|
7
|
Mishra A, Unadkat P, McBriar JD, Schulder M, Ramdhani RA. An Institutional Experience of Directional Deep Brain Stimulation and a Review of the Literature. Neuromodulation 2024; 27:544-550. [PMID: 36658078 DOI: 10.1016/j.neurom.2022.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Directional deep brain stimulation (dDBS) has been suggested to have a similar therapeutic effect when compared with the traditional omnidirectional DBS, but with an improved therapeutic window that yields optimized clinical effect owing to the ability to better direct, or "steer," electric current. We present our single-center, retrospective analysis of our experience in the use of dDBS in patients with movement disorders and provide a review of the literature. MATERIALS AND METHODS We identified all patients with Parkinson disease (PD) and essential tremor (ET) who received a dDBS system between 2018 and 2022 and retrospectively examined characteristics of their longitudinal treatment. A total of 70 leads were identified across 42 patients (28 PD, 14 ET). RESULTS Three types of systems were implemented (single-segment activation, 45.2% of patients; multiple independent current control, 50.0%; and local field potential sensing-enabled, 4.7%). The subthalamic nucleus or globus pallidus internus was targeted in PD, and the ventral intermediate nucleus of the thalamus in ET. Across the entire cohort (n = 70 leads), at initial programming, 54.2% of leads (n = 38) were programmed using directional stimulation. At the most recent reprogramming, 58.6% of leads (n = 41) implemented directionality. In patients with PD, the average decrease in levodopa-equivalent daily dose at six months after implantation was 35.4% ± 39.2%. Despite the ability to steer current to relieve stimulation-induced side effects, ten leads in six patients required surgical revision owing to electrode malposition. CONCLUSIONS We show wide adaptability and implementation of directional stimulation, adding to the growing compendium of real-world uses of dDBS therapy. We used directionality to improve clinical response in both patients with PD and patients with ET and found that its programming flexibility was used at high rates long after implantation and initial programming. In patients with PD, dDBS led to a significant reduction in dopaminergic medication, suggesting sustained clinical improvement. Nonetheless, accurate surgical placement remains necessary to ensure optimal clinical outcomes.
Collapse
Affiliation(s)
- Akash Mishra
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA; Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA
| | - Prashin Unadkat
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA; Elmezzi Graduate School of Molecular Medicine, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Joshua D McBriar
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA; Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA
| | - Michael Schulder
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA
| | - Ritesh A Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
8
|
Manfield J, Thomas S, Bogdanovic M, Sarangmat N, Antoniades C, Green AL, FitzGerald JJ. Seeing Is Believing: Photon Counting Computed Tomography Clearly Images Directional Deep Brain Stimulation Lead Segments and Markers After Implantation. Neuromodulation 2024; 27:557-564. [PMID: 37921733 DOI: 10.1016/j.neurom.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 09/12/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Directional deep brain stimulation (DBS) electrodes are increasingly used, but conventional computed tomography (CT) is unable to directly image segmented contacts owing to physics-based resolution constraints. Postoperative electrode segment orientation assessment is necessary because of the possibility of significant deviation during or immediately after insertion. Photon-counting detector (PCD) CT is a relatively novel technology that enables high resolution imaging while addressing several limitations intrinsic to CT. We show how PCD CT can enable clear in vivo imaging of DBS electrodes, including segmented contacts and markers for all major lead manufacturers. MATERIALS AND METHODS We describe postoperative imaging and reconstruction protocols we have developed to enable optimal lead visualization. PCD CT images were obtained of directional leads from the three major manufacturers and fused with preoperative 3T magnetic resonance imaging (MRI). Radiation dosimetry also was evaluated and compared with conventional imaging controls. Orientation estimates from directly imaged leads were compared with validated software-based reconstructions (derived from standard CT imaging artifact analysis) to quantify congruence in alignment and directional orientation. RESULTS High-fidelity images were obtained for 15 patients, clearly indicating the segmented contacts and directional markers both on CT alone and when fused to MRI. Our routine imaging protocol is described. Ionizing radiation doses were significantly lower than with conventional CT. For most leads, the directly imaged lead orientations and depths corresponded closely to those predicted by CT artifact-based reconstructions. However, unlike direct imaging, the software reconstructions were susceptible to 180° error in orientation assessment. CONCLUSIONS High-resolution photon-counting CT can very clearly image segmented DBS electrode contacts and directional markers and unambiguously determine lead orientation, with lower radiation than in conventional imaging. This obviates the need for further imaging and may facilitate anatomically tailored directional programming.
Collapse
Affiliation(s)
- James Manfield
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | - Sheena Thomas
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Marko Bogdanovic
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | | | | | - Alexander L Green
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - James J FitzGerald
- Oxford Functional Neurosurgery, John Radcliffe Hospital, Oxford, UK; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
Krauss P, Duarte-Batista P, Hart M, Avecillas-Chasin J, Bercu M, Hvingelby V, Massey F, Ackermans L, Kubben P, van der Gaag N, Krüger M. Directional electrodes in deep brain stimulation: Results of a survey by the European Association of Neurosurgical Societies (EANS). BRAIN & SPINE 2024; 4:102756. [PMID: 38510592 PMCID: PMC10951785 DOI: 10.1016/j.bas.2024.102756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/05/2024] [Accepted: 01/21/2024] [Indexed: 03/22/2024]
Abstract
Introduction Directional Leads (dLeads) represent a new technical tool in Deep Brain Stimulation (DBS), and a rapidly growing population of patients receive dLeads. Research question The European Association of Neurosurgical Societies(EANS) functional neurosurgery Task Force on dLeads conducted a survey of DBS specialists in Europe to evaluate their use, applications, advantages, and disadvantages. Material and methods EANS functional neurosurgery and European Society for Stereotactic and Functional Neurosurgery (ESSFN) members were asked to complete an online survey with 50 multiple-choice and open questions on their use of dLeads in clinical practice. Results Forty-nine respondents from 16 countries participated in the survey (n = 38 neurosurgeons, n = 8 neurologists, n = 3 DBS nurses). Five had not used dLeads. All users reported that dLeads provided an advantage (n = 23 minor, n = 21 major). Most surgeons (n = 35) stated that trajectory planning does not differ when implanting dLeads or conventional leads. Most respondents selected dLeads for the ability to optimize stimulation parameters (n = 41). However, the majority (n = 24), regarded time-consuming programming as the main disadvantage of this technology. Innovations that were highly valued by most participants included full 3T MRI compatibility, remote programming, and closed loop technology. Discussion and conclusion Directional leads are widely used by European DBS specialists. Despite challenges with programming time, users report that dLeads have had a positive impact and maintain an optimistic view of future technological advances.
Collapse
Affiliation(s)
- P. Krauss
- Department of Neurosurgery, University Hospital Augsburg, Augsburg, Germany
| | - P. Duarte-Batista
- Neurosurgery Department, North Lisbon University Hospital Centre, Lisbon, Portugal
| | - M.G. Hart
- St George's, University of London & St George's University Hospitals NHS Foundation Trust, Institute of Molecular and Clinical Sciences, Neurosciences Research Centre, Cranmer Terrace, London, United Kingdom
| | - J.M. Avecillas-Chasin
- Department of Neurosurgery. University of Nebraska Medical Center. Omaha, Nebraska, USA
| | - M.M. Bercu
- Department of Pediatric Neurosurgery, Helen DeVos Children's Hospital, Corewell, USA
| | - V. Hvingelby
- Department of Clinical Medicine - Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
| | - F. Massey
- Unit of Neurosurgery, National Hospital of Neurology and Neurosurgery, London, United Kingdom
| | - L. Ackermans
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P.L. Kubben
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, the Netherlands
| | - N.A. van der Gaag
- Department of Neurosurgery, Haga Teaching Hospital, The Hague, the Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, the Netherlands
| | - M.T. Krüger
- Unit of Neurosurgery, National Hospital of Neurology and Neurosurgery, London, United Kingdom
- Department of Neurosurgery, University Medical Centre Freiburg, Germany
| |
Collapse
|
10
|
Maçaneiro MT, Azevedo AC, Poerner BM, da Silva MD, Koerbel A. Directional deep brain stimulation in the management of Parkinson's disease: efficacy and constraints-an analytical appraisal. Neurosurg Rev 2024; 47:43. [PMID: 38216697 DOI: 10.1007/s10143-023-02268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/14/2023] [Accepted: 12/24/2023] [Indexed: 01/14/2024]
Abstract
Deep brain stimulation (DBS) is a widely employed treatment for Parkinson's disease. However, conventional DBS utilizing ring-shaped leads can often result in undesirable side effects by stimulating nearby brain structures, thus limiting its effectiveness. To address this issue, a novel DBS electrode was developed to allow for directional stimulation, avoiding neighboring structures. This literature review aims to analyze the disparities between conventional and directional DBS and discuss the benefits and limitations associated with this innovative electrode design, focusing on the stimulation-induced side effects it can or cannot mitigate. A comprehensive search was conducted in MEDLINE/PubMed, ScienceDirect, and EBSCO databases using the Boolean search criteria: "Deep brain stimulation" AND "Parkinson" AND "Directional." Following the application of inclusion and exclusion criteria, the selected articles were downloaded for full-text reading. Subsequently, the results were organized and analyzed to compose this article. Numerous studies have demonstrated that directional DBS effectively reduces side effects associated with brain stimulation, prevents the stimulation of non-targeted structures, and expands the therapeutic window, among other advantages. However, it has been observed that directional DBS may be more challenging to program and requires higher energy consumption. Furthermore, there is a lack of standardization among different manufacturers of directional DBS electrodes. Various stimulation-induced side effects, including dysarthria, dyskinesia, paresthesias, and symptoms of pyramidal tract activation, have been shown to be mitigated with the use of directional DBS. Moreover, directional electrodes offer a wider therapeutic window and a reduced incidence of undesired effects, requiring the same or lower minimum current for symptom relief compared to conventional DBS. The utilization of directional leads in DBS offers numerous advantages over conventional electrodes without significant drawbacks for patients undergoing directional DBS therapy.
Collapse
Affiliation(s)
| | - Ana Clara Azevedo
- Medical Department at Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| | - Bruna Maurício Poerner
- Medical Department at Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| | - Milena Dangui da Silva
- Medical Department at Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| | - Andrei Koerbel
- Universidade da Região de Joinville - UNIVILLE, Joinville, Santa Catarina, Brazil
| |
Collapse
|
11
|
Hvingelby VS, Pavese N. Surgical Advances in Parkinson's Disease. Curr Neuropharmacol 2024; 22:1033-1046. [PMID: 36411569 PMCID: PMC10964101 DOI: 10.2174/1570159x21666221121094343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/24/2022] [Accepted: 10/29/2022] [Indexed: 11/23/2022] Open
Abstract
While symptomatic pharmacological therapy remains the main therapeutic strategy for Parkinson's disease (PD), over the last two decades, surgical approaches have become more commonly used to control levodopa-induced motor complications and dopamine-resistant and non-motor symptoms of PD. In this paper, we discuss old and new surgical treatments for PD and the many technological innovations in this field. We have initially reviewed the relevant surgical anatomy as well as the pathological signaling considered to be the underlying cause of specific symptoms of PD. Subsequently, early attempts at surgical symptom control will be briefly reviewed. As the most well-known surgical intervention for PD is deep brain stimulation, this subject is discussed at length. As deciding on whether a patient stands to benefit from DBS can be quite difficult, the different proposed paradigms for precisely this are covered. Following this, the evidence regarding different targets, especially the subthalamic nucleus and internal globus pallidus, is reviewed as well as the evidence for newer proposed targets for specific symptoms. Due to the rapidly expanding nature of knowledge and technological capabilities, some of these new and potential future capabilities are given consideration in terms of their current and future use. Following this, we have reviewed newer treatment modalities, especially magnetic resonance-guided focused ultrasound and other potential surgical therapies, such as spinal cord stimulation for gait symptoms and others. As mentioned, the field of surgical alleviation of symptoms of PD is undergoing a rapid expansion, and this review provides a general overview of the current status and future directions in the field.
Collapse
Affiliation(s)
- Victor S. Hvingelby
- Department of Clinical Medicine, Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
| | - Nicola Pavese
- Department of Clinical Medicine, Nuclear Medicine and PET Center, Aarhus University, Aarhus, Denmark
- Clinical Ageing Research Unit, Newcastle Upon Tyne, Newcastle University, United Kingdom
| |
Collapse
|
12
|
Xu W, Wang J, Li XN, Liang J, Song L, Wu Y, Liu Z, Sun B, Li WG. Neuronal and synaptic adaptations underlying the benefits of deep brain stimulation for Parkinson's disease. Transl Neurodegener 2023; 12:55. [PMID: 38037124 PMCID: PMC10688037 DOI: 10.1186/s40035-023-00390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/19/2023] [Indexed: 12/02/2023] Open
Abstract
Deep brain stimulation (DBS) is a well-established and effective treatment for patients with advanced Parkinson's disease (PD), yet its underlying mechanisms remain enigmatic. Optogenetics, primarily conducted in animal models, provides a unique approach that allows cell type- and projection-specific modulation that mirrors the frequency-dependent stimulus effects of DBS. Opto-DBS research in animal models plays a pivotal role in unraveling the neuronal and synaptic adaptations that contribute to the efficacy of DBS in PD treatment. DBS-induced neuronal responses rely on a complex interplay between the distributions of presynaptic inputs, frequency-dependent synaptic depression, and the intrinsic excitability of postsynaptic neurons. This orchestration leads to conversion of firing patterns, enabling both antidromic and orthodromic modulation of neural circuits. Understanding these mechanisms is vital for decoding position- and programming-dependent effects of DBS. Furthermore, patterned stimulation is emerging as a promising strategy yielding long-lasting therapeutic benefits. Research on the neuronal and synaptic adaptations to DBS may pave the way for the development of more enduring and precise modulation patterns. Advanced technologies, such as adaptive DBS or directional electrodes, can also be integrated for circuit-specific neuromodulation. These insights hold the potential to greatly improve the effectiveness of DBS and advance PD treatment to new levels.
Collapse
Affiliation(s)
- Wenying Xu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Wang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin-Ni Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jingxue Liang
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lu Song
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Bomin Sun
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei-Guang Li
- Department of Rehabilitation Medicine, Huashan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.
- Ministry of Education-Shanghai Key Laboratory for Children's Environmental Health, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
13
|
Oliveira AM, Coelho L, Carvalho E, Ferreira-Pinto MJ, Vaz R, Aguiar P. Machine learning for adaptive deep brain stimulation in Parkinson's disease: closing the loop. J Neurol 2023; 270:5313-5326. [PMID: 37530789 PMCID: PMC10576725 DOI: 10.1007/s00415-023-11873-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 08/03/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease bearing a severe social and economic impact. So far, there is no known disease modifying therapy and the current available treatments are symptom oriented. Deep Brain Stimulation (DBS) is established as an effective treatment for PD, however current systems lag behind today's technological potential. Adaptive DBS, where stimulation parameters depend on the patient's physiological state, emerges as an important step towards "smart" DBS, a strategy that enables adaptive stimulation and personalized therapy. This new strategy is facilitated by currently available neurotechnologies allowing the simultaneous monitoring of multiple signals, providing relevant physiological information. Advanced computational models and analytical methods are an important tool to explore the richness of the available data and identify signal properties to close the loop in DBS. To tackle this challenge, machine learning (ML) methods applied to DBS have gained popularity due to their ability to make good predictions in the presence of multiple variables and subtle patterns. ML based approaches are being explored at different fronts such as the identification of electrophysiological biomarkers and the development of personalized control systems, leading to effective symptom relief. In this review, we explore how ML can help overcome the challenges in the development of closed-loop DBS, particularly its role in the search for effective electrophysiology biomarkers. Promising results demonstrate ML potential for supporting a new generation of adaptive DBS, with better management of stimulation delivery, resulting in more efficient and patient-tailored treatments.
Collapse
Affiliation(s)
- Andreia M Oliveira
- Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
| | - Luis Coelho
- Instituto Superior de Engenharia do Porto, Porto, Portugal
| | - Eduardo Carvalho
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal
- ICBAS-School of Medicine and Biomedical Sciences, University of Porto, Porto, Portugal
| | - Manuel J Ferreira-Pinto
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Rui Vaz
- Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Paulo Aguiar
- Faculdade de Engenharia da Universidade do Porto, Porto, Portugal.
- Neuroengineering and Computational Neuroscience Lab, Instituto de Investigação e Inovação da Universidade do Porto, Porto, Portugal.
- Faculdade de Medicina da Universidade do Porto, Porto, Portugal.
- i3S-Instituto de Investigação e Inovação em Saúde, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
14
|
Gilbert Z, Mason X, Sebastian R, Tang AM, Martin Del Campo-Vera R, Chen KH, Leonor A, Shao A, Tabarsi E, Chung R, Sundaram S, Kammen A, Cavaleri J, Gogia AS, Heck C, Nune G, Liu CY, Kellis SS, Lee B. A review of neurophysiological effects and efficiency of waveform parameters in deep brain stimulation. Clin Neurophysiol 2023; 152:93-111. [PMID: 37208270 DOI: 10.1016/j.clinph.2023.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/09/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
Neurostimulation has diverse clinical applications and potential as a treatment for medically refractory movement disorders, epilepsy, and other neurological disorders. However, the parameters used to program electrodes-polarity, pulse width, amplitude, and frequency-and how they are adjusted have remained largely untouched since the 1970 s. This review summarizes the state-of-the-art in Deep Brain Stimulation (DBS) and highlights the need for further research to uncover the physiological mechanisms of neurostimulation. We focus on studies that reveal the potential for clinicians to use waveform parameters to selectively stimulate neural tissue for therapeutic benefit, while avoiding activating tissue associated with adverse effects. DBS uses cathodic monophasic rectangular pulses with passive recharging in clinical practice to treat neurological conditions such as Parkinson's Disease. However, research has shown that stimulation efficiency can be improved, and side effects reduced, through modulating parameters and adding novel waveform properties. These developments can prolong implantable pulse generator lifespan, reducing costs and surgery-associated risks. Waveform parameters can stimulate neurons based on axon orientation and intrinsic structural properties, providing clinicians with more precise targeting of neural pathways. These findings could expand the spectrum of diseases treatable with neuromodulation and improve patient outcomes.
Collapse
Affiliation(s)
- Zachary Gilbert
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States.
| | - Xenos Mason
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Rinu Sebastian
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Austin M Tang
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Andrea Leonor
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur Shao
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Emiliano Tabarsi
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Ryan Chung
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Jonathan Cavaleri
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Angad S Gogia
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - George Nune
- Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine of USC, Los Angeles, CA, United States
| |
Collapse
|
15
|
Ramanathan PV, Salas-Vega S, Shenai MB. Directional Deep Brain Stimulation-A Step in the Right Direction? A Systematic Review of the Clinical and Therapeutic Efficacy of Directional Deep Brain Stimulation in Parkinson Disease. World Neurosurg 2023; 170:54-63.e1. [PMID: 36435384 DOI: 10.1016/j.wneu.2022.11.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/18/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND The use of directional deep brain stimulation (dDBS) electrodes for the treatment of movement disorders such as Parkinson disease (PD) has become relatively widespread. However, the efficacy of dDBS relative to its omnidirectional deep brain stimulation (oDBS) counterpart is not well characterized. This systematic review aims to synthesize the literature comparing clinical and therapeutic outcomes of dDBS relative to oDBS in patients with PD. METHODS A systematic literature search for studies with comparative clinical outcome data between dDBS and oDBS was performed across the PubMed, Ovid MEDLINE, and Web of Science databases. Data including therapeutic window (TW) and surrogate measures and the Unified Parkinson's Disease Rating Scale score were collected and summarized across multiple time periods. RESULTS Ten studies met the eligibility criteria. Three of these studies evaluated motor performance in the form of Unified Parkinson's Disease Rating Scale III, with none finding differences between dDBS and oDBS. Two studies assessed quality-of-life measures with neither finding differences between dDBS and oDBS. TW or a surrogate measure was assessed in 6 studies; 5 studies found an increase or strong trend toward increase in dDBS relative to oDBS. CONCLUSIONS The current evidence, although limited by bias, does suggest that dDBS in the treatment of PD yields improvements in motor symptoms and quality of life that are comparable to oDBS; TW and surrogate measures are consistently improved in patients with PD under a directional configuration relative to omnidirectional.
Collapse
Affiliation(s)
| | | | - Mahesh B Shenai
- Department of Neurosurgery, INOVA Medical Group, Fairfax, Virginia, USA.
| |
Collapse
|
16
|
Koivu M, Scheperjans F, Eerola-Rautio J, Vartiainen N, Resendiz-Nieves J, Kivisaari R, Pekkonen E. Real-Life Experience on Directional Deep Brain Stimulation in Patients with Advanced Parkinson’s Disease. J Pers Med 2022; 12:jpm12081224. [PMID: 36013173 PMCID: PMC9410362 DOI: 10.3390/jpm12081224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022] Open
Abstract
Directional deep brain stimulation (dDBS) is preferred by patients with advanced Parkinson’s disease (PD) and by programming neurologists. However, real-life data of dDBS use is still scarce. We reviewed the clinical data of 53 PD patients with dDBS to 18 months of follow-up. Directional stimulation was favored in 70.5% of dDBS leads, and single segment activation (SSA) was used in 60% of dDBS leads. Current with SSA was significantly lower than with other stimulation types. During the 6-month follow-up, a 44% improvement in the Unified Parkinson’s Disease Rating Scale (UPDRS-III) points and a 43% decline in the levodopa equivalent daily dosage (LEDD) was observed. After 18 months of follow-up, a 35% LEDD decrease was still noted. The Hoehn and Yahr (H&Y) stages and scores on item no 30 “postural stability” in UPDRS-III remained lower throughout the follow-up compared to baseline. Additionally, dDBS relieved non-motor symptoms during the 6 months of follow-up. Patients with bilateral SSA had similar clinical outcomes to those with other stimulation types. Directional stimulation appears to effectively reduce both motor and non-motor symptoms in advanced PD with minimal adverse effects in real-life clinical care.
Collapse
Affiliation(s)
- Maija Koivu
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, PL 00029 Helsinki, Finland; (F.S.); (J.E.-R.); (E.P.)
- Correspondence:
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, PL 00029 Helsinki, Finland; (F.S.); (J.E.-R.); (E.P.)
| | - Johanna Eerola-Rautio
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, PL 00029 Helsinki, Finland; (F.S.); (J.E.-R.); (E.P.)
| | - Nuutti Vartiainen
- Department of Neurosurgery, Helsinki University Hospital, PL 00029 Helsinki, Finland; (N.V.); (J.R.-N.); (R.K.)
| | - Julio Resendiz-Nieves
- Department of Neurosurgery, Helsinki University Hospital, PL 00029 Helsinki, Finland; (N.V.); (J.R.-N.); (R.K.)
| | - Riku Kivisaari
- Department of Neurosurgery, Helsinki University Hospital, PL 00029 Helsinki, Finland; (N.V.); (J.R.-N.); (R.K.)
| | - Eero Pekkonen
- Department of Neurology, Helsinki University Hospital and Department of Clinical Neurosciences (Neurology), University of Helsinki, PL 00029 Helsinki, Finland; (F.S.); (J.E.-R.); (E.P.)
| |
Collapse
|
17
|
Potel SR, Marceglia S, Meoni S, Kalia SK, Cury RG, Moro E. Advances in DBS Technology and Novel Applications: Focus on Movement Disorders. Curr Neurol Neurosci Rep 2022; 22:577-588. [PMID: 35838898 DOI: 10.1007/s11910-022-01221-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Deep brain stimulation (DBS) is an established treatment in several movement disorders, including Parkinson's disease, dystonia, tremor, and Tourette syndrome. In this review, we will review and discuss the most recent findings including but not limited to clinical evidence. RECENT FINDINGS New DBS technologies include novel hardware design (electrodes, cables, implanted pulse generators) enabling new stimulation patterns and adaptive DBS which delivers potential stimulation tailored to moment-to-moment changes in the patient's condition. Better understanding of movement disorders pathophysiology and functional anatomy has been pivotal for studying the effects of DBS on the mesencephalic locomotor region, the nucleus basalis of Meynert, the substantia nigra, and the spinal cord. Eventually, neurosurgical practice has improved with more accurate target visualization or combined targeting. A rising research domain emphasizes bridging neuromodulation and neuroprotection. Recent advances in DBS therapy bring more possibilities to effectively treat people with movement disorders. Future research would focus on improving adaptive DBS, leading more clinical trials on novel targets, and exploring neuromodulation effects on neuroprotection.
Collapse
Affiliation(s)
- Sina R Potel
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
| | - Sara Marceglia
- Dipartimento Di Ingegneria E Architettura, Università Degli Studi Di Trieste, Trieste, Italy
| | - Sara Meoni
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France
| | - Suneil K Kalia
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Rubens G Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Elena Moro
- Service de Neurologie, CHU Grenoble Alpes, Université Grenoble Alpes, Grenoble, France.
- Grenoble Institut Neurosciences, INSERM U1416, Grenoble, France.
| |
Collapse
|
18
|
Karl JA, Joyce J, Ouyang B, Verhagen Metman L. Long-Term Clinical Experience with Directional Deep Brain Stimulation Programming: A Retrospective Review. Neurol Ther 2022; 11:1309-1318. [PMID: 35776383 PMCID: PMC9338213 DOI: 10.1007/s40120-022-00381-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/09/2022] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Directional deep brain stimulation (d-DBS) axially displaces the volume of tissue activated (VTA) towards the intended target and away from neighboring structures potentially improving benefit and reducing side effects (SE) of stimulation. A clinical trial evaluating d-DBS demonstrated a wider therapeutic window (TW) with directional electrodes. While this seems advantageous, it remains unclear when and why directional stimulation is chosen clinically. To evaluate the implementation of d-DBS in our practice we examined the prevalence of and motivation for directional programming. METHODS A retrospective review was completed in consecutive patients with Parkinson's disease (PD)/essential tremor (ET) implanted with the Abbott Infinity system from December 2016 to January 2020. At 3, 12, 24, and 36 months we extracted post-DBS stimulation parameters; use of directional electrodes and other advanced programming techniques; and reasons for directional programming. RESULTS Fifty-six patients with PD and 18 patients with ET (104 and 33 leads, respectively) were identified. The numbers of patients programmed with a directional electrode in at least one DBS lead in PD and ET, respectively, were 22/56 (39%) and 13/18 (72%) at 3 months; 19/48 (40%) and 8/12 (67%) at 12 months; 12/31 (39%) and 5/8 (63%) at 24 months; and 6/9 (67%) and 1/2 (50%) at 36 months. In PD and ET, reasons for using directional stimulation were better symptom control, less SE, or combination of better symptom control/SE; additional reasons in ET were improved battery/TW%. CONCLUSION Over a 36-month time period 39-68% of patients with PD and 50-72% of patients with ET had at least one lead programmed directionally in order to either improve symptom control or reduce side effects, an option not available with conventional omnidirectional stimulation. Initially directional electrodes were used in ET more frequently than PD, likely because of the less complex nature of programming for a monosymptomatic disorder. However, over time this shifted as we gained directional experience and sought solutions to reduce worsening symptoms.
Collapse
Affiliation(s)
- Jessica A Karl
- Movement Disorder Division of the Department of Neurological Sciences at Rush University Medical Center, 1725 W. Harrison St, Suite 755, Chicago, IL, 60612, USA.
| | - Jessica Joyce
- Movement Disorder Division of the Department of Neurological Sciences at Rush University Medical Center, 1725 W. Harrison St, Suite 755, Chicago, IL, 60612, USA
| | - Bichun Ouyang
- Movement Disorder Division of the Department of Neurological Sciences at Rush University Medical Center, 1725 W. Harrison St, Suite 755, Chicago, IL, 60612, USA
| | - Leo Verhagen Metman
- Movement Disorder Division of the Department of Neurological Sciences at Rush University Medical Center, 1725 W. Harrison St, Suite 755, Chicago, IL, 60612, USA
| |
Collapse
|
19
|
Shetty N. Essential Tremor-Do We Have Better Therapeutics? A Review of Recent Advances and Future Directions. Curr Neurol Neurosci Rep 2022; 22:197-208. [PMID: 35235170 DOI: 10.1007/s11910-022-01185-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Essential tremor (ET) is a very common condition that significantly impacts quality of life. Current medical treatments are quite limited, and while surgical treatments like deep brain stimulation (DBS) can be very effective, they come with their own limitations as well as procedural risks. This article reviews updates on recent advances and future directions in the treatment of ET. RECENT FINDINGS A new generation of pharmacologic agents specifically designed for ET is in clinical trials. Advances in DBS technology continue to improve this therapy. MRI-guided focused ultrasound (MRgFUS) is now an approved noninvasive ablative treatment for ET that is effective and shows potential for continuing improvement. The first peripheral stimulation device for ET has also now been approved. This article reviews updates on the treatment of ET, encompassing pharmacologic agents in clinical trials, DBS, MRgFUS, and noninvasive stimulation therapies. Recent treatment advances and future directions of development show a great deal of promise for ET therapeutics.
Collapse
Affiliation(s)
- Neil Shetty
- Parkinson's Disease and Movement Disorders Center, Department of Neurology, Northwestern University Feinberg School of Medicine, Abbott Hall, 11th Floor, 710 N. Lake Shore Drive, Chicago, IL, 60611, USA.
| |
Collapse
|
20
|
Role of Directional Configuration in Deep Brain Stimulation for Essential Tremor: A Single Center Experience. Tremor Other Hyperkinet Mov (N Y) 2021; 11:47. [PMID: 34824890 PMCID: PMC8588889 DOI: 10.5334/tohm.628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
Background Traditionally, the standard of care for medication refractory essential tremor has been to utilize omnidirectional deep brain stimulation of the ventral intermediate nucleus. The advent of directional stimulation allows for spatial restriction of the stimulation on selected targets without involving the neighboring structures, thereby limiting off-target side effects and improving clinical utility. Methods We performed a retrospective review of patients between February 2017 and September 2019 who had received ventral intermediate nucleus deep brain stimulation that allowed for directional programming (specifically Abbott/St. Jude). Initial and final major programming sessions post-operatively (approximately 30- and 90-days post-surgery) were examined to determine frequency and reason for use of directional programming. Results A total of 33 total patients were identified. A little over half were males (58%, N = 19), with an average age of 68 years old (SD 9.3) at the time of surgery, and a disease duration of almost 30 years (27.2, SD 19) with a wide range from 2-62 years. After initial programming, over 50% (17 of 33) of patients were using directional configurations. This increased to 85% (28 of 33) at the 90-day programming. Reasons for conversion to directional configuration included avoidance of side effects (specifically, muscle contractions (9/33), paresthesia (5/33), dysarthria (1/33) and gait ataxia (1/33)) or improved tremor control (12/33). Discussion Our single-center experience suggests that in the large majority of cases, directional leads were utilized and offered advantages in tremor control or side effect avoidance.
Collapse
|
21
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|